1
|
Hu Y, Xia Y, Mo H, Zhang L, Cao W, Fang R, Zhao J. Rapid detection of African swine fever virus by a blue latex microsphere immunochromatographic strip. AMB Express 2025; 15:48. [PMID: 40088339 PMCID: PMC11910487 DOI: 10.1186/s13568-025-01857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
African swine fever (ASF) is a contagious viral disease in pigs, caused by the African swine fever virus (ASFV). Currently, there are no effective vaccines and drugs for ASFV, making diagnostic methods crucial for the prevention and control of ASF. In this study, the ASFV p30 protein was successfully expressed using a prokaryotic expression system and used as an immunogen to prepare monoclonal antibody (mAb) 2A5. The antigenic epitope recognized by the mAb 2A5 was identified as 58VKYDIVKSARIYAGQGY74. Then, a blue latex microsphere immunochromatographic strip method for detecting ASFV antigens was established. Wherein a rabbit polyclonal antibody (pAb) against p30 stored in our laboratory was coupled with blue latex microspheres to prepare an immune probe, with mAb 2A5 as the test line and goat anti-rabbit IgG as the control line. The immunochromatographic strip exhibited excellent sensitivity, with a minimum detection limit of 10 ng/mL for the p30 protein. It demonstrated good specificity, showing no cross-reactivity with PRRSV, PCV2, PPV, and PEDV. Moreover, it maintained good stability and could be stored for at least 100 days at 37 °C. The concordance rate between the immunochromatographic strip and qPCR test kit was 92.2%. The immunochromatographic strip method can meet the requirements of clinical testing and provide technical support for ASFV diagnosis.
Collapse
Affiliation(s)
- Yanli Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingjun Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huiwen Mo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenjian Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junlong Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Ma X, Chen Z, Zhang Z, Liu S, Wang M, Zhang X, Shi J, Gao H, Gu J, Han H, Pan Y, Wang Q. Comprehensive genomic analysis and selection signature detection in endangered Beigang pigs using whole-genome sequencing data. Anim Genet 2025; 56:e13502. [PMID: 39844685 DOI: 10.1111/age.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
The Beigang pig was recently identified as one of the endangered breeds during a Chinese indigenous pig genetic resource survey. The Beigang breed is notable for its remarkable roughage tolerance and high reproductive capacity according to historical records. Morphologically, the Beigang pig resembles many indigenous pigs in eastern China, especially in its large ears. This makes the Beigang pig a valuable reference for studying the genetic mechanisms on large ear size in pigs. However, there is currently a lack of clear understanding regarding the genetic structure and inbreeding levels of the Beigang pig population. This study used whole-genome sequencing data from Beigang pig (N = 145 pigs) and integrated genetic information from commercial pigs and indigenous pigs in eastern China to conduct a comprehensive analysis of the Beigang pig's genetic structure. Three selection signal detection methods-runs of homozygosity, fixation index, and integrated haplotype score-were employed to explore the differences in genomic selection signatures between Beigang pig and other pig populations. Additionally, we used a public project for regulatory variants discovery and molecular phenotype prediction in farm animal species called FarmGtex to explore the expression of three genes (WIF1, LEMD3, and MSRB3) related to ear size in Beigang pig. This research identified five homozygous variant sites in the WIF1 gene as important candidate loci potentially influencing ear size in Beigang pig. The results indicate that the Beigang pig holds a unique status among Chinese indigenous pigs, characterized by high genetic diversity and low levels of inbreeding. The study also revealed that WIF1 may play a significant role in influencing ear size in this breed. These findings contribute to a deeper understanding of the population structure and genetic characteristics of Beigang pig.
Collapse
Affiliation(s)
- Xuejian Ma
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zitao Chen
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shengqiang Liu
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Xiaowei Zhang
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Jinhu Shi
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Hui Gao
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Jiamin Gu
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - He Han
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qishan Wang
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Chu X, Ge S, Li Y, Zhang Q, Cui X, Zuo Y, Li R, Sun H, Yin L, Wang Z, Li J, Xiao Y, Wang Z. ASFV infection induces lipid metabolic disturbances and promotes viral replication. Front Microbiol 2025; 15:1532678. [PMID: 39872814 PMCID: PMC11771140 DOI: 10.3389/fmicb.2024.1532678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction African swine fever is a highly transmissible and lethal infectious disease caused by the African swine fever virus (ASFV), which has considerably impacted the global swine industry. Lipid metabolism plays a vital role in sustaining lipid and energy homeostasis within cells and influences the viral life cycle. Methods and results In this study, we found that ASFV infection disrupts lipid metabolism in the host. Transcriptomic analysis of cells infected with ASFV revealed that the levels of lipid metabolism significantly changed as the duration of the infection progressed. The intracellular cholesterol levels of the host exhibited a pattern similar to the viral growth curve during the course of infection. Notably, increased cholesterol levels promoted ASFV replication in host cells, whereas inhibition of the cholesterol biosynthesis pathway markedly reduced intracellular ASFV replication. Discussion The findings of this study showed that ASFV led to lipid metabolism disturbances to facilitate its replication, which is useful for revealing the mechanism underlying ASFV infection.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, Qingdao, China
- Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao, China
- Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Yingchao Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qin Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinyu Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Ruihong Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hongtao Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Lei Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenzhong Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yihong Xiao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Gao H, Gu T, Gao X, Song Z, Liu J, Song Y, Zhang G, Sun Y. African swine fever virus enhances viral replication by increasing intracellular reduced glutathione levels, which suppresses stress granule formation. Vet Res 2024; 55:172. [PMID: 39707514 DOI: 10.1186/s13567-024-01433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 12/23/2024] Open
Abstract
African swine fever virus (ASFV) is a DNA virus that has significantly impacted the global swine industry. Currently, there are no effective therapies or vaccines against ASFV. Stress granules (SGs), known for their antiviral properties, are not induced during ASFV infection, even though reactive oxygen species (ROS) are generated. The mechanism by which ASFV regulates SGs formation remains unclear. This study demonstrates that ASFV antagonises SGs formation and increases intracellular levels of reduced glutathione (GSH) levels. The use of the GSH inhibitor BSO and the activator NAC confirmed that the ASFV-induced increase in GSH helps to suppress SGs formation and influences viral replication. Additionally, this study revealed that ASFV enhances GSH by upregulating the antioxidant transcription factor NRF2, as well as factors involved in GSH synthesis and regeneration, such as GCLC, and those related to the ferroptosis pathway, such as SLC7A11. Furthermore, the study uncovered that ASFV manipulates intracellular GSH levels by activating the mitochondrial protein AIFM1. This regulatory mechanism helps the virus inhibit the formation of intracellular SGs, thereby creating an optimal environment for viral replication. These findings provide new insights into the molecular strategies employed by ASFV.
Collapse
Affiliation(s)
- Han Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Taoming Gu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Xiaopeng Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Zebu Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jing Liu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Yi Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guihong Zhang
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yankuo Sun
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
5
|
Dolata KM, Karger A. Insights into the Role of VPS39 and Its Interaction with CP204L and A137R in ASFV Infection. Viruses 2024; 16:1478. [PMID: 39339953 PMCID: PMC11437485 DOI: 10.3390/v16091478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal disease in swine, for which no antiviral drugs or vaccines are currently available. Studying viral-host protein-protein interactions advances our understanding of the molecular mechanisms underlying viral replication and pathogenesis and can facilitate the discovery of antiviral therapeutics. In this study, we employed affinity tagging and purification mass spectrometry to characterize the interactome of VPS39, an important cellular factor during the early phase of ASFV replication. The interaction network of VPS39 revealed associations with mitochondrial proteins involved in membrane contact sites formation and cellular respiration. We show that the ASFV proteins CP204L and A137R target VPS39 by interacting with its clathrin heavy-chain functional domain. Furthermore, we elaborate on the potential mechanisms by which VPS39 may contribute to ASFV replication and prioritize interactions for further investigation into mitochondrial protein function in the context of ASFV infection.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Yang Y, Jiang G, He W, Tian X, Zheng H, Xiang B, Sun Y. Network of Interactions between the Mut Domains of the E2 Protein of Atypical Porcine Pestivirus and Host Proteins. Genes (Basel) 2024; 15:991. [PMID: 39202352 PMCID: PMC11354059 DOI: 10.3390/genes15080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of the E2 protein of APPV. This study identified 14 host cellular proteins that exhibit potential interactions with the Mut domains of the E2 protein using yeast two-hybrid screening. Using bioinformatics analysis, we discovered that the Mut domains of the E2 protein might exert regulatory effects on apoptosis by modulating energy metabolism within the mitochondria. We also conducted co-immunoprecipitation, glutathione S-transferase pull-down, and immunofluorescence assays to confirm the interaction between the Mut domains of the E2 protein and cathepsin H and signal sequence receptor subunit 4 (SSR4). Ultimately, SSR4 enhanced APPV replication in vitro. In summary, our study successfully elucidated the interactions between the Mut domains of the E2 protein and host cell protein, predicted the potential pathways implicated in these interactions, and demonstrated SSR4 involvement in APPV infection. These significant findings contribute valuable knowledge toward a deeper understanding of APPV pathogenesis and the role of the Mut domains of the E2 protein in this intricate process.
Collapse
Affiliation(s)
- Yuai Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Guangfei Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Weiqi He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Xin Tian
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Huanli Zheng
- Yunnan Animal Health Supervision Institute, Kunming 650201, China;
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Yongke Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| |
Collapse
|
7
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Li C, Si XY, Wang XG, Yan ZW, Hou HY, You LQ, Chen YL, Zhang AK, Wang N, Sun AJ, Du YK, Zhang GP. Preparation and epitope analysis of monoclonal antibodies against African swine fever virus DP96R protein. BMC Vet Res 2024; 20:191. [PMID: 38734611 PMCID: PMC11088100 DOI: 10.1186/s12917-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Xuan-Ying Si
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Xiao-Ge Wang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Zhi-Wei Yan
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Hao-Yu Hou
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Long-Qi You
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Yin-Long Chen
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Ang-Ke Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Na Wang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Ai-Jun Sun
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Yong-Kun Du
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, China.
| | - Gai-Ping Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Chootip J, Hansoongnern P, Thangthamniyom N, Theerawatanasirikul S, Chankeeree P, Kaewborisuth C, Lekcharoensuk P. Small ubiquitin-like modifier-tag and modified protein purification significantly increase the quality and quantity of recombinant African swine fever virus p30 protein. Vet World 2024; 17:1157-1167. [PMID: 38911078 PMCID: PMC11188891 DOI: 10.14202/vetworld.2024.1157-1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim African swine fever (ASF) is a highly virulent and contagious viral disease caused by the ASF virus (ASFV). It has a significant impact on swine production throughout the world, while existing vaccines and specific treatments remain ineffective. ASFV p30 is a potent antigenic protein that induces protective antibodies immediately after infection; however, most recombinant p30 is insoluble. This study aimed to improve the solubility, yield, and purity of recombinant p30 by tagging it with a small ubiquitin-like modifier (SUMO) and modifying the protein purification process. Materials and Methods SUMO fused with ASFV p30 (SUMO-p30) and p30 alone were cloned and expressed in Escherichia coli. SUMO-p30 and p30 solubility and expression levels were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein purification was modified by combining ammonium sulfate precipitation method with affinity chromatography. In addition, large-scale production of all versions of p30 were compared using SDS-PAGE and western blotting, and the purified p30 was used to develop the indirect enzyme-linked immunosorbent assay (ELISA). Results The solubility and expression levels of SUMO-p30 were dramatically enhanced compared with that of p30. Modification of the purification process significantly increased purified and soluble SUMO-p30 and p30 yields by 6.59 and 1.02 μg/mL, respectively. Large-scale production confirmed that this procedure increased the quantity of recombinant p30 while maintaining protein purity and immunogenicity. The p30-based indirect ELISA was able to discriminate between positive and negative serum samples with statistically significant differences in mean optical density 450 values (p < 0.001). Conclusion This study demonstrates the enhancement of solubility, purity, and yield of ASFV p30 expressed in E.coli by SUMO fusion tagging and combining ammonium sulfate precipitation with affinity chromatography for protein purification. These positive effects were sustained in large-scale production. Cleavage and removal of hexahistidine-SUMO tag from the fusion protein by protease may not be suitable when handling a large amount of the protein. However, the SUMO-fused p30 retained strong immunoreactivity to convalescent swine serum, indicating its application in immunization and diagnostic purposes. The expression and purification procedures in this study could be applied to increase solubility, quality, and quantity of other recombinant proteins as well.
Collapse
Affiliation(s)
- Jullada Chootip
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Payuda Hansoongnern
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
10
|
Yang W, Li L, Zhang J, Wu J, Kang W, Wang Y, Ding H, Li D, Zheng H. SNX32 is a host restriction factor that degrades African swine fever virus CP204L via the RAB1B-dependent autophagy pathway. J Virol 2024; 98:e0159923. [PMID: 38169281 PMCID: PMC10804981 DOI: 10.1128/jvi.01599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
African swine fever virus (ASFV) causes a highly contagious and deadly disease in domestic pigs and European wild boars, posing a severe threat to the global pig industry. ASFV CP204L, a highly immunogenic protein, is produced during the early stages of ASFV infection. However, the impact of CP204L protein-interacting partners on the outcome of ASFV infection is poorly understood. To accomplish this, coimmunoprecipitation and mass spectrometry analysis were conducted in ASFV-infected porcine alveolar macrophages (PAMs). We have demonstrated that sorting nexin 32 (SNX32) is a CP204L-binding protein and that CP204L interacted and colocalized with SNX32 in ASFV-infected PAMs. ASFV growth and replication were promoted by silencing SNX32 and suppressed by overexpressing SNX32. SNX32 degraded CP204L by recruiting the autophagy-related protein Ras-related protein Rab-1b (RAB1B). RAB1B overexpression inhibited ASFV replication, while knockdown of RAB1B had the opposite effect. Additionally, RAB1B, SNX32, and CP204L formed a complex upon ASFV infection. Taken together, this study demonstrates that SNX32 antagonizes ASFV growth and replication by recruiting the autophagy-related protein RAB1B. This finding extends our understanding of the interaction between ASFV CP204L and its host and provides new insights into exploring the relationship between ASFV infection and autophagy.IMPORTANCEAfrican swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality near 100% in domestic pigs. ASF virus (ASFV), which is the only member of the family Asfarviridae, is a dsDNA virus of great complexity and size, encoding more than 150 proteins. Currently, there are no available vaccines against ASFV. ASFV CP204L represents the most abundantly expressed viral protein early in infection and plays an important role in regulating ASFV replication. However, the mechanism by which the interaction between ASFV CP204L and host proteins affects ASFV replication remains unclear. In this study, we demonstrated that the cellular protein SNX32 interacted with CP204L and degraded CP204L by upregulating the autophagy-related protein RAB1B. In summary, this study will help us understand the interaction mechanism between CP204L and its host upon infection and provide new insights for the development of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Junhuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weifang Kang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haiyan Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
11
|
Ahmad I, Fatemi SN, Ghaheri M, Rezvani A, Khezri DA, Natami M, Yasamineh S, Gholizadeh O, Bahmanyar Z. An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Commun Signal 2023; 21:352. [PMID: 38098077 PMCID: PMC10722723 DOI: 10.1186/s12964-023-01376-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Rezvani
- Anesthesiology Department, Case Western Reserve University, Cleveland, USA
| | - Dorsa Azizi Khezri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Sun H, Wu M, Zhang Z, Wang Y, Yang J, Liu Z, Guan G, Luo J, Yin H, Niu Q. OAS1 suppresses African swine fever virus replication by recruiting TRIM21 to degrade viral major capsid protein. J Virol 2023; 97:e0121723. [PMID: 37815352 PMCID: PMC10617512 DOI: 10.1128/jvi.01217-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) completes the replication process by resisting host antiviral response via inhibiting interferon (IFN) secretion and interferon-stimulated genes (ISGs) function. 2', 5'-Oligoadenylate synthetase gene 1 (OAS1) has been reported to inhibit the replication of various RNA and some DNA viruses. However, the regulatory mechanisms involved in the ASFV-induced IFN-related pathway still need to be fully elucidated. Here, we found that OAS1, as a critical host factor, inhibits ASFV replication in an RNaseL-dependent manner. Furthermore, overexpression of OAS1 can promote the activation of the JAK-STAT pathway promoting innate immune responses. In addition, OAS1 plays a new function, which could interact with ASFV P72 protein to suppress ASFV infection. Mechanistically, OAS1 enhances the proteasomal degradation of P72 by promoting TRIM21-mediated ubiquitination. Meanwhile, P72 inhibits the production of avSG and affects the interaction between OAS1 and DDX6. Our findings demonstrated OAS1 as an important target against ASFV replication and revealed the mechanisms and intrinsic regulatory relationships during ASFV infection.
Collapse
Affiliation(s)
- Hualin Sun
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mengli Wu
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yiwang Wang
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jifei Yang
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Qingli Niu
- African Swine Fever Regional Laboratory, China (Lanzhou); State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
13
|
Dolata KM, Pei G, Netherton CL, Karger A. Functional Landscape of African Swine Fever Virus-Host and Virus-Virus Protein Interactions. Viruses 2023; 15:1634. [PMID: 37631977 PMCID: PMC10459248 DOI: 10.3390/v15081634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Viral replication fully relies on the host cell machinery, and physical interactions between viral and host proteins mediate key steps of the viral life cycle. Therefore, identifying virus-host protein-protein interactions (PPIs) provides insights into the molecular mechanisms governing virus infection and is crucial for designing novel antiviral strategies. In the case of the African swine fever virus (ASFV), a large DNA virus that causes a deadly panzootic disease in pigs, the limited understanding of host and viral targets hinders the development of effective vaccines and treatments. This review summarizes the current knowledge of virus-host and virus-virus PPIs by collecting and analyzing studies of individual viral proteins. We have compiled a dataset of experimentally determined host and virus protein targets, the molecular mechanisms involved, and the biological functions of the identified virus-host and virus-virus protein interactions during infection. Ultimately, this work provides a comprehensive and systematic overview of ASFV interactome, identifies knowledge gaps, and proposes future research directions.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
García-Dorival I, Cuesta-Geijo MÁ, Galindo I, Del Puerto A, Barrado-Gil L, Urquiza J, Alonso C. Elucidation of the Cellular Interactome of African Swine Fever Virus Fusion Proteins and Identification of Potential Therapeutic Targets. Viruses 2023; 15:v15051098. [PMID: 37243184 DOI: 10.3390/v15051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.
Collapse
Affiliation(s)
- Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Ana Del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
15
|
Shi Z, Cao L, Luo J, Zhou G, Zuo Q, Liu X, Hu Y, Tian H, Zheng H. A chemiluminescent magnetic microparticle immunoassay for the detection of antibody against African swine fever virus. Appl Microbiol Biotechnol 2023; 107:3779-3788. [PMID: 37099055 DOI: 10.1007/s00253-023-12518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023]
Abstract
The p30 protein is abundantly expressed in the early stage of African swine fever virus (ASFV) infection. Thus, it is an ideal antigen candidate for serodiagnosis with the use of an immunoassay. In this study, a chemiluminescent magnetic microparticle immunoassay (CMIA) was developed for the detection of antibodies (Abs) against ASFV p30 protein in porcine serum. Purified p30 protein was coupled to magnetic beads, and the experimental conditions including concentration, temperature, incubation time, dilution ratio, buffers, and other relevant variables were evaluated and optimized. To evaluate the performance of the assay, a total of 178 pig serum samples (117 negative and 61 positive samples) were tested. According to receiver operator characteristic curve analysis, the cut-off value of the CMIA was 104,315 (area under the curve, 0.998; Youden's index, 0.974; 95% confidence interval: 99.45 to 100%). Sensitivity results showed that the dilution ratio of p30 Abs in ASFV-positive sera detected by the CMIA is much higher when compared to commercial blocking ELISA kit. Specificity testing showed that no cross-reactivity was observed with sera positive for other porcine disease viruses. The intraassay coefficient of variation (CV) was < 5%, and the interassay CV was < 10%. The p30-magnetic beads could be stored at 4 °C for more than 15 months without loss of activity. The kappa coefficient between CMIA and INGENASA blocking ELISA kit was 0.946, showing strong agreement. In conclusion, our method showed superiority with high sensitivity, specificity, reproducibility, and stability and potentialized its application in the development of a diagnostic kit for the detection of ASF in clinical samples. KEY POINTS: • ASFV tag-free p30 was successfully purified. • High sensitivity, specificity, relatively simple, and time-saving to detect antibody against ASFV were developed. • The development of CMIA will help the clinical diagnosis of ASFV and will be useful for large-scale serological test.
Collapse
Affiliation(s)
- Zhengwang Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Juncong Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Gaijing Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qingshan Zuo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - XiangTao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
16
|
Dolata KM, Fuchs W, Caignard G, Dupré J, Pannhorst K, Blome S, Mettenleiter TC, Karger A. CP204L Is a Multifunctional Protein of African Swine Fever Virus That Interacts with the VPS39 Subunit of the Homotypic Fusion and Vacuole Protein Sorting Complex and Promotes Lysosome Clustering. J Virol 2023; 97:e0194322. [PMID: 36722971 PMCID: PMC9972913 DOI: 10.1128/jvi.01943-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Virus replication depends on a complex interplay between viral and host proteins. In the case of African swine fever virus (ASFV), a large DNA virus, only a few virus-host protein-protein interactions have been identified to date. In this study, we demonstrate that the ASFV protein CP204L interacts with the cellular homotypic fusion and protein sorting (HOPS) protein VPS39, blocking its association with the lysosomal HOPS complex, which modulates endolysosomal trafficking and promotes lysosome clustering. Instead, CP204L and VPS39 are targeted to virus factories and localized at the periphery of the virus DNA replication sites. Furthermore, we show that loss of VPS39 reduces the levels of virus proteins synthesized in the early phase of infection and delays ASFV replication but does not completely inhibit it. Collectively, these results identify a novel virus-host protein interaction that modulates host membrane rearrangement during infection and provide evidence that CP204L is a multifunctional protein engaged in distinct steps of the ASFV life cycle. IMPORTANCE African swine fever virus (ASFV) was first identified over a hundred years ago. Since then, much effort has been made to understand the pathogenesis of ASFV. However, the specific roles of many individual ASFV proteins during the infection remain enigmatic. This study provides evidence that CP204L, one of the most abundant ASFV proteins, modulates endosomal trafficking during virus infection. Through protein-protein interaction, CP204L prevents the recruitment of VPS39 to the endosomal and lysosomal membranes, resulting in their accumulation. Consequently, CP204L and VPS39 become sequestered in the ASFV replication and assembly site, known as the virus factory. These results uncover a novel function of viral protein CP204L and extend our understanding of complex interaction between virus and host.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Grégory Caignard
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Juliette Dupré
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
Li J, Jiao J, Liu N, Ren S, Zeng H, Peng J, Zhang Y, Guo L, Liu F, Lv T, Chen Z, Sun W, Hrabchenko N, Yu J, Wu J. Novel p22 and p30 dual-proteins combination based indirect ELISA for detecting antibodies against African swine fever virus. Front Vet Sci 2023; 10:1093440. [PMID: 36846265 PMCID: PMC9950402 DOI: 10.3389/fvets.2023.1093440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction African swine fever virus (ASFV) infection is one of the most complex and fatal hemorrhagic viral diseases, causing a devastating loss to the swine industry. Since no effective vaccine is available, prevention and control of ASFV heavily depends on early diagnostic detection. Methods In this study, a novel indirect ELISA was established for detecting antibodies against ASFV using dual-proteins, p22 and p30. Recombinants p22 and p30 were expressed and purified from E.coli vector system by recombined plasmids pET-KP177R and pET-CP204L. p22 and p30 were mixed as antigens for developing the indirect ELISA. Results Through optimizing coating concentrations of p30 and p22, coating ratio (p30: p22 = 1:3), and serum dilution (as 1:600), the established ELISA performed higher specificity, sensitivity, and repeatability against ASFV-positive serum. Furthermore, 184 clinical serum samples from suspected diseased pigs were verified the established ELISA in clinical diagnosis. The results showed that compared with two commercial ELISA kits, the established ELISA possessed higher sensitivity and almost uniform coincidence rate. Conclusion The novel indirect ELISA based on dual-proteins p30 and p22 performed a valuable role in diagnostic detection of ASFV, providing a broad insight into serological diagnostic methods of ASFV.
Collapse
Affiliation(s)
- Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian Jiao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Na Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Zeng
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jun Peng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Tingting Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,Jiang Yu ✉
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China,School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,School of Life Sciences, Shandong Normal University, Jinan, China,*Correspondence: Jiaqiang Wu ✉
| |
Collapse
|