1
|
Zhou Y, Liang P, Bi T, Tang B, Zhu X, Liu X, Wang H, Shen H, Sun Q, Yang S, Ren W. Angiotensin II depends on hippo/YAP signaling to reprogram angiogenesis and promote liver fibrosis. Cell Signal 2024; 123:111355. [PMID: 39173854 DOI: 10.1016/j.cellsig.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Liver fibrosis is a chronic pathological process in which the abnormal proliferation of connective tissue is induced by various pathogenic factors. During the process of fibrosis, excessive angiogenesis is observed. Physiological angiogenesis has the potential to impede the progression of liver fibrosis through augmenting matrix metalloenzyme activity; however, pathological angiogenesis can exacerbate liver fibrosis by promoting collagen accumulation. Therefore, a key scientific research focus in the treatment of liver diseases is to search for the "on-off" mechanism that regulates angiogenesis from normal proliferation to pathological proliferation. In this study, we found that excessive angiogenesis appeared during the initial phase of hepatic fibrosis without mesenchymal characteristics. In addition, angiogenesis accompanied by significant endothelial-to-mesenchymal transition (EndMT) was observed in mice after the intraperitoneal injection of angiotensin II (Ang II). Interestingly, the changes in Yes-associated protein (YAP) activity in endothelial cells (ECs) can affect the regulation of angiogenesis by Ang II. The results of in vitro experiments revealed that the regulatory influence of Ang II on ECs was significantly attenuated upon suppression of YAP activity. Furthermore, the function of Ang II in regulating angiogenesis during fibrosis was investigated in liver-specific transgenic mice. The results revealed that Ang II gene deletion could restrain liver fibrosis and EndMT. Meanwhile, Ang II deletion downregulated the profibrotic YAP signaling pathway in ECs. The small molecule AT1R agonist olmesartan targeting Ang II-YAP signaling could also alleviate liver fibrosis. In conclusion, this study identified Ang II as a pivotal regulator of EndMT during the progression of liver fibrosis and evaluated the therapeutic effect of the Ang II-targeted drug olmesartan on liver fibrosis.
Collapse
Affiliation(s)
- Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xiaoning Zhu
- Department of Hepatobiliary, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xinyue Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China.
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Moore LL, Qu D, Sureban S, Mitchell S, Pitts K, Cooper N, Fazili J, Harty R, Oseini A, Ding K, Bronze M, Houchen CW. From Inflammation to Oncogenesis: Tracing Serum DCLK1 and miRNA Signatures in Chronic Liver Diseases. Int J Mol Sci 2024; 25:6481. [PMID: 38928187 PMCID: PMC11203803 DOI: 10.3390/ijms25126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic liver diseases, fibrosis, cirrhosis, and HCC are often a consequence of persistent inflammation. However, the transition mechanisms from a normal liver to fibrosis, then cirrhosis, and further to HCC are not well understood. This study focused on the role of the tumor stem cell protein doublecortin-like kinase 1 (DCLK1) in the modulation of molecular factors in fibrosis, cirrhosis, or HCC. Serum samples from patients with hepatic fibrosis, cirrhosis, and HCC were analyzed via ELISA or NextGen sequencing and were compared with control samples. Differentially expressed (DE) microRNAs (miRNA) identified from these patient sera were correlated with DCLK1 expression. We observed elevated serum DCLK1 levels in fibrosis, cirrhosis, and HCC patients; however, TGF-β levels were only elevated in fibrosis and cirrhosis. While DE miRNAs were identified for all three disease states, miR-12136 was elevated in fibrosis but was significantly increased further in cirrhosis. Additionally, miR-1246 and miR-184 were upregulated when DCLK1 was high, while miR-206 was downregulated. This work distinguishes DCLK1 and miRNAs' potential role in different axes promoting inflammation to tumor progression and may serve to identify biomarkers for tracking the progression from pre-neoplastic states to HCC in chronic liver disease patients as well as provide targets for treatment.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Sripathi Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stephanie Mitchell
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kamille Pitts
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nasya Cooper
- Department of Natural Sciences, Langston University, Langston, OK 73050, USA;
| | - Javid Fazili
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Richard Harty
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Abdul Oseini
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michael Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Zhou P, Li Z, Li D, Xue S, Li R, Zhang L, Bai Q, Li X. [ 99mTc]Tc-labeled cyc-DX600-HYNIC as a SPECT probe for ACE2-specific pancreatic cancer imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:122-133. [PMID: 38737645 PMCID: PMC11087297 DOI: 10.62347/vfht4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
As a regulator in renin-angiotensin-aldosterone system, angiotensin-converting enzyme 2 (ACE2) closely correlated with tumor progression of pancreatic cancer, meantime, was easily affected by a variety of factors. [99mTc]Tc-cyc-DX600 SPECT was established as an ACE2-specific imaging protocol to figure out the ACE2 status in pancreatic tumor. BALB/C-NU mice were used to prepare the subcutaneous cell derived xenograft (CDX) models with HEK-293T or HEK-293T/hACE2 cells to validate ACE2 specificity of [99mTc]Tc-cyc-DX600 SPECT and establish SPECT imaging protocol. On the basis of [99mTc]Tc-cyc-DX600 SPECT and [18F]F-FDG PET/CT, ACE2-dependence on tumor size and tumor metabolism were further verified on orthotopic pancreatic cancer model with KPC cells. Immunohistochemical analysis was used to demonstrate the findings on ACE2 SPECT. [99mTc]Tc-cyc-DX600 was of superior tumor uptake in HEK-293T/hACE2 CDX than wild type (6.74 ± 0.31 %ID/mL vs 1.83 ± 0.26 %ID/mL at 1.5 h post injection (p.i.); 3.14 ± 0.31 %ID/mL vs 1.16 ± 0.15 %ID/mL at 4.5 h p.i.). For the CDX models with PANC-1 cells, a significant negative correlation between the slope of tumor volume and tumor uptake was observed (r = -0.382 for the 1-4th day; r = -0.146 for the 1-5th day; r = -0.114 for the 1-6th day; r = -0.152 for the 1-7th day; but P > 0.05 for all). For orthotopic pancreatic cancer model, the linear correlation between FDG PET and ACE2 SPECT of the pancreatic lesions was negative (r = -0.878), the quantitative values of ACE2 SPCET was positively correlated with the volume of primary lesions (r = 0.752) and also positively correlated with the quantitative values of ACE2 immunohistochemical analysis (r = 0.991). Conclusively, [99mTc]Tc-cyc-DX600 SPECT is an ACE2-specific imaging protocol with clinical translational potential, adding multidimensional information on the disease progression of pancreatic cancer.
Collapse
Affiliation(s)
- Pan Zhou
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Zheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
| | - Shuai Xue
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Qingyun Bai
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan UniversityShanghai 201399, China
| |
Collapse
|
4
|
Abstract
OBJECTIVE To investigate the correlation between the expression of Kruppel-like transcription factor 9 (KLF9) and the prognostic value of tumors as well as its relationship with tumor immune invasion. METHODS A series of bioinformatics methods were used to analyze the relationship between KLF9 and tumor prognosis, tumor mutation burden, microsatellite instability (MSI), and immune cell infiltration in multiple carcinomas. RESULTS In multiple tumor tissues, the expression of KLF9 was lower compared with paracancerous tissues. Therefore, KLF9 can serve as a protective factor to improve the prognosis of carcinoma patients with certain tumor types. KLF9 was closely related to the clinical staging of various carcinomas. The expression of KLF9 was not only associated with tumor mutation burden and MSI in some tumor types, but also positively correlated with immune and stromal cells in multiple tumors. Further studies have found that, the level of immune cell infiltration was significantly related to the expression of KLF9. CONCLUSION KLF9 can affect the prognosis of pan-carcinoma, which is related to immune invasion. Therefore, KLF9 can be used as a potential biomarker for the prognosis of pan-carcinoma.
Collapse
Affiliation(s)
- Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| | - Weihong Cao
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| |
Collapse
|
5
|
Sapena V, Iavarone M, Boix L, Facchetti F, Guarino M, Sanduzzi Zamparelli M, Granito A, Samper E, Scartozzi M, Corominas J, Marisi G, Díaz A, Casadei-Gardini A, Gramantieri L, Lampertico P, Morisco F, Torres F, Bruix J, Reig M. Polymorphism AGT2 (rs4762) is involved in the development of dermatologic events: Proof-of-concept in hepatocellular carcinoma patients treated with sorafenib. World J Hepatol 2022; 14:1438-1458. [PMID: 36158918 PMCID: PMC9376774 DOI: 10.4254/wjh.v14.i7.1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dermatologic adverse events (DAEs) are associated with a better outcome in patients with hepatocellular carcinoma (HCC) irrespective of the therapeutic agent received. The exact mechanisms associated with the development of DAEs are unknown although several studies point to direct toxicity of tyrosine kinase inhibitors (TKIs) to the skin or an immune-mediated reaction triggered by the oncologic treatment. As is the case in other conditions, individual genetic variants may partially explain a higher risk of DAEs. AIM To evaluate the contribution of several gene variants to the risk of developing DAEs in HCC patients treated with TKIs. METHODS We first analyzed 27 single-nucleotide polymorphisms (SNPs) from 12 genes selected as potential predictors of adverse event (AE) development in HCC patients treated with sorafenib [Barcelona Clinic Liver Cancer 1 (BCLC1) cohort]. Three additional cohorts were analyzed for AGT1 (rs699) and AGT2 (rs4762) polymorphisms-initially identified as predictors of DAEs: BCLC2 (n = 79), Northern Italy (n = 221) and Naples (n = 69) cohorts, respectively. The relation between SNPs and DAEs and death were assessed by univariate and multivariate Cox regression models, and presented with hazard ratios and their 95% confidence intervals (95%CI). RESULTS The BCLC1 cohort showed that patients with arterial hypertension (AHT) (HR = 1.61; P value = 0.007) and/or AGT SNPs had an increased risk of DAEs. Thereafter, AGT2 (rs4762) AA genotype was found to be linked to a statistically significant increased probability of DAEs (HR = 5.97; P value = 0.0201, AA vs GG) in the Northern Italy cohort by multivariate analysis adjusted for BCLC stage, ECOG-PS, diabetes and AHT. The value of this genetic marker was externally validated in the cohort combining the BCLC1, BCLC2 and Naples cohorts [HR = 3.12 (95%CI: 1.2-8.14), P value = 0.0199, AGT2 (rs4762) AA vs AG genotype and HR = 2.73 (95%CI: 1.18-6.32) P value = 0.0188, AGT2 (rs4762) AA vs GG genotype]. None of the other gene variants tested were found to be associated with the risk of DAE development. CONCLUSION DAE development in HCC patients receiving TKIs could be explained by the AGT2 (rs4762) gene variant. If validated in other anti-oncogenic treatments, it might be considered a good prognosis marker.
Collapse
Affiliation(s)
- Víctor Sapena
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
- Universidad de Barcelona, Barcelona 08036, Spain
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Loreto Boix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
| | - Floriana Facchetti
- Gastroenterology and Hepatology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20100, Italy
| | - Maria Guarino
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University of Naples "Federico II", Napoli 80100, Italy
| | - Marco Sanduzzi Zamparelli
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
- Universidad de Barcelona, Barcelona 08036, Spain
- Department of Clinical Medicine and Surgery, Gastroenterology and Hepatology, Federico II University of Naples, Naples 80131, Italy
| | - Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica Azienda Ospedaliero-Universitaria di Bologna, Bologna 40139, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40139, Italy
| | - Esther Samper
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
| | - Mario Scartozzi
- Department of Medical Oncology, University of Cagliari, Cagliari 45698, Italy
| | - Josep Corominas
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola 47014, Italy
| | - Alba Díaz
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
- Universidad de Barcelona, Barcelona 08036, Spain
- Department of Pathology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona 08036, Spain
| | - Andrea Casadei-Gardini
- School of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
- Unit of Oncology, Università Vita-Salute, Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica-San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica Azienda Ospedaliero, Bologna 40138, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico di Natura Pubblica Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
- Department of Pathophysiology and Transplantation, Colorectal Cancer "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Milano 20122, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University of Naples Federico II, Naples 80131, Italy
| | - Ferran Torres
- Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic Barcelona, Barcelona 08036, Spain
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola 08193, Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
- Universidad de Barcelona, Barcelona 08036, Spain
| | - María Reig
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain
- Universidad de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
6
|
Analysis of CFTR gene expression as an immunological and prognostic biomarker in pan-cancers. Comput Biol Med 2022; 146:105614. [DOI: 10.1016/j.compbiomed.2022.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
|
7
|
Silva MG, Falcoff NL, Corradi GR, Alfie J, Seguel RF, Tabaj GC, Iglesias LI, Nuñez M, Guman GR, Gironacci MM. Renin-angiotensin system blockade on angiotensin-converting enzyme 2 and TMPRSS2 in human type II pneumocytes. Life Sci 2022; 293:120324. [PMID: 35032553 PMCID: PMC8754457 DOI: 10.1016/j.lfs.2022.120324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
AIMS Angiotensin-converting enzyme (ACE) 2 is the receptor for severe acute respiratory syndrome coronavirus 2 which causes coronavirus disease 2019 (COVID-19). Viral cellular entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). ACE inhibitors (ACEIs) or angiotensin (Ang) receptor blockers (ARBs) influence ACE2 in animals, though evidence in human lungs is lacking. We investigated ACE2 and TMPRSS2 in type II pneumocytes, the key cells that maintain lung homeostasis, in lung parenchymal of ACEI/ARB-treated subjects compared to untreated control subjects. MAIN METHODS Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. KEY FINDINGS We found that the ratio Ang-(1-7)/Ang II, a surrogate marker of ACE2 activity, as well as the amount of ACE2-expressing type II pneumocytes were not different between ACEI/ARB-treated and untreated subjects. ACE2 protein content correlated positively with smoking habit and age. The percentage of TMPRSS2-expressing type II pneumocytes was higher in males than females and in subjects under 60 years of age but it was not different between ACEI/ARB-treated and untreated subjects. However, there was a positive association of TMPRSS2 protein content with age and smoking in ACEI/ARB-treated subjects, with high TMPRSS2 protein levels most evident in ACEI/ARB-treated older adults and smokers. SIGNIFICANCE ACEI/ARB treatment influences human lung TMPRSS2 but not ACE2 protein content and this effect is dependent on age and smoking habit. This finding may help explain the increased susceptibility to COVID-19 seen in smokers and older patients with treated cardiovascular-related pathologies.
Collapse
Affiliation(s)
- Mauro G. Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Nora L. Falcoff
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - José Alfie
- Servicio de Hipertensión Arterial, Hospital Italiano, Buenos Aires, Argentina
| | - Rolando F. Seguel
- Servicio de Neumonología Hospital Prov de Tórax “Dr. A. Cetrángolo”, Buenos Aires, Argentina
| | - Gabriela C. Tabaj
- Servicio de Neumonología Hospital Prov de Tórax “Dr. A. Cetrángolo”, Buenos Aires, Argentina
| | - Laura I. Iglesias
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Myriam Nuñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Matemáticas, Buenos Aires, Argentina
| | - Gabriela R. Guman
- Servicio Unificado de Patología Hospital Prov de Tórax “Dr. A. Cetrángolo” y Municipal de Vicente López “Prof. B. Houssay”, Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina,Corresponding author
| |
Collapse
|
8
|
Huang WJ, He WY, Li JD, He RQ, Huang ZG, Zhou XG, Li JJ, Zeng DT, Chen JT, Wu WZ, Dang YW, Chen G. Clinical significance and molecular mechanism of angiotensin-converting enzyme 2 in hepatocellular carcinoma tissues. Bioengineered 2021; 12:4054-4069. [PMID: 34369278 PMCID: PMC8806523 DOI: 10.1080/21655979.2021.1952791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the pandemic of the coronavirus disease 2019, there exist quite a few studies on angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 infection, while little is known about ACE2 in hepatocellular carcinoma (HCC). The detailed mechanism among ACE2 and HCC still remains unclear, which needs to be further investigated. In the current study with a total of 6,926 samples, ACE2 expression was downregulated in HCC compared with non-HCC samples (standardized mean difference = −0.41). With the area under the curve of summary receiver operating characteristic = 0.82, ACE2 expression showed a better ability to differentiate HCC from non-HCC. The mRNA expression of ACE2 was related to the age, alpha-fetoprotein levels and cirrhosis of HCC patients, and it was identified as a protected factor for HCC patients via Kaplan–Meier survival, Cox regression analyses. The potential molecular mechanism of ACE2 may be relevant to catabolic and cell division. In all, decreasing ACE2 expression can be seen in HCC, and its protective role for HCC patients and underlying mechanisms were explored in the study.
Collapse
Affiliation(s)
- Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin, Yulin, P.R. China
| | - Wei-Ying He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xian-Guo Zhou
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Jian-Jun Li
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin, Yulin, P.R. China
| | - Ji-Tian Chen
- Department of Pathology, Lingshan People's Hospital, Qinzhou, P.R. China
| | - Wei-Zi Wu
- Department of Pathology, Lingshan People's Hospital, Qinzhou, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
9
|
Zhang HF, Gao X, Wang X, Chen X, Huang Y, Wang L, Xu ZW. The mechanisms of renin-angiotensin system in hepatocellular carcinoma: From the perspective of liver fibrosis, HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed Pharmacother 2021; 141:111868. [PMID: 34328104 DOI: 10.1016/j.biopha.2021.111868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, of which the occurrence and development involve a variety of pathophysiological processes, such as liver fibrosis, hepatocellular malignant proliferation, metastasis, and tumor angiogenesis. Some important cytokines, such as TGF-β, PI3K, protein kinase B (Akt), VEGF and NF-κB, can regulate the growth, proliferation, diffusion, metastasis, and apoptosis of HCC cells by acting on the corresponding signaling pathways. Besides, many studies have shown that the formation of HCC is closely related to the main components of renin-angiotensin system (RAS), such as Ang II, ACE, ACE2, MasR, AT1R, and AT2R. Therefore, this review focused on liver fibrosis, HCC cell proliferation, metastasis, tumor angiogenesis, and corresponding protective measures. ACE-Ang II-AT1 axis and ACE2-Ang-(1-7)-MasR axis were taken as the main lines to introduce the mechanism of RAS in the occurrence and development of HCC, so as to provide references for future clinical work and scientific research.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiang Gao
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xuan Wang
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu Huang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lang Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China.
| |
Collapse
|
10
|
Tang Q, Wang Y, Ou L, Li J, Zheng K, Zhan H, Gu J, Zhou G, Xie S, Zhang J, Huang W, Wang S, Wang X. Downregulation of ACE2 expression by SARS-CoV-2 worsens the prognosis of KIRC and KIRP patients via metabolism and immunoregulation. Int J Biol Sci 2021; 17:1925-1939. [PMID: 34131396 PMCID: PMC8193256 DOI: 10.7150/ijbs.57802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection. Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control. Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.
Collapse
MESH Headings
- Adult
- Aged
- Angiotensin-Converting Enzyme 2/biosynthesis
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/physiology
- Animals
- COVID-19/complications
- Carcinoma, Renal Cell/complications
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/mortality
- Chlorocebus aethiops
- Down-Regulation
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/complications
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Models, Animal
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Organ Specificity
- Prognosis
- Proportional Hazards Models
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Renin-Angiotensin System/physiology
- SARS-CoV-2
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine Endopeptidases/physiology
- Tissue Array Analysis
- Vero Cells
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yue Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Ling Ou
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Hui Zhan
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Guibao Zhou
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jianping Zhang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Xiao Wang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
11
|
Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF, Kennedy-Smith A, Itinteang T, Tan ST. Expression of Components of the Renin-Angiotensin System by Cancer Stem Cells in Renal Clear Cell Carcinoma. Biomolecules 2021; 11:537. [PMID: 33916968 PMCID: PMC8067590 DOI: 10.3390/biom11040537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
This study investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cells (CSCs) we have recently demonstrated in renal clear cell carcinoma (RCCC). Fifteen RCCC tissue samples underwent immunohistochemical staining for components of the RAS: renin, pro-renin receptor (PRR), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), and angiotensin II receptor 2 (AT2R). Immunofluorescence co-staining or double immunohistochemical staining of these components of the RAS with stemness-associated markers OCT4 or KLF4 was performed on two of the samples. Protein and transcript expression of these components of the RAS in six RCCC tissue samples was investigated using western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, angiotensin II receptor 1 (AT1R) was investigated using RT-qPCR only. Immunohistochemical staining demonstrated expression of renin, PRR, and ACE2 in 11, 13, and 13 out of 15 RCCC samples, respectively, while AT2R was expressed in all 15 samples. ACE was detected in the endothelium of normal vasculature only. Double immunohistochemical staining demonstrated localization of ACE2, but not renin, to the KLF4+ CSCs. Immunofluorescence staining showed localization of PRR and AT2R to the OCT4+ CSCs. Western blotting confirmed protein expression of all components of the RAS except renin. RT-qPCR demonstrated transcript expression of all components of the RAS including AT1R, but not AT2R, in all six RCCC tissue samples. This study demonstrated expression of PRR, ACE2, and AT2R by the CSCs within RCCC. Further studies may lead to novel therapeutic targeting of CSCs by manipulation of the RAS in the treatment of this aggressive cancer.
Collapse
Affiliation(s)
- Sam Siljee
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Bridget Milne
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Helen D. Brasch
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Nicholas Bockett
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Andrew Kennedy-Smith
- Department of Urology, Wellington Regional Hospital, Wellington 6021, New Zealand;
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|