1
|
Opris RV, Baciu AM, Filip GA, Florea A, Costache C. The use of Galleria mellonella in metal nanoparticle development: A systematic review. Chem Biol Interact 2025; 415:111511. [PMID: 40246051 DOI: 10.1016/j.cbi.2025.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Research on metal nanoparticles is crucial for their application in diverse fields, requiring detailed assessments of their effects and potential. Galleria mellonella larvae have emerged as a valuable model for studying the impacts of metal nanoparticles, offering ethical and logistical advantages over traditional models. This systematic review synthesizes evidence on the application of Galleria mellonella in evaluating the toxicity, distribution, and therapeutic potential of metal nanoparticles. Adhering to PRISMA guidelines, a comprehensive database search (MEDLINE, Embase, Cochrane, Scopus, Google Scholar, Science Citation Index Expanded) was conducted using keywords related to Galleria mellonella and metal nanoparticles. The SYRCLE's risk of bias tool (adapted for G. mellonella) was used for risk of bias assessment. Out of 1696 initially identified studies, 31 met the inclusion criteria, encompassing research from 2011 to 2024. The included studies effectively demonstrate G. mellonella's capacity to model the toxicity of metal nanoparticles, their therapeutic potential in treating infections, and the impact on the innate immune response, bridging the gap between simpler in vitro assays and more complex mammalian models. Galleria mellonella stands out as a critical model for the early-stage development and evaluation of metal nanoparticles, particularly in assessing toxicity, therapeutic efficacy in infection treatment, and interaction with immune systems. This review underscores the larvae's role in metal nanoparticle research, advocating for its broader use to streamline development processes while minimizing ethical concerns.
Collapse
Affiliation(s)
- Razvan Vlad Opris
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Alina Mihaela Baciu
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Carmen Costache
- Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Lu H, He N, Zhang L, You Y, Lv Z. Revolutionizing Retinal Therapy: The Role of Nanoparticle Drug Carriers in Managing Vascular Retinal Disorders. Clin Ophthalmol 2025; 19:1565-1582. [PMID: 40391093 PMCID: PMC12087915 DOI: 10.2147/opth.s503273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/31/2025] [Indexed: 05/21/2025] Open
Abstract
Vascular Retinopathy (VR), such as diabetic retinopathy, pose significant challenges to vision and overall health. Traditional treatment methods often face limitations in efficacy and delivery. Vascular retinopathy is a common and potentially blinding group of eye diseases with core pathologic mechanisms involving vascular injury, ischemia, exudation, and neovascularization. Clinical management relies heavily on etiologic control (eg, diabetes, hypertension), anti-VEGF therapy, laser therapy, and surgical intervention. Recent advancements in nanotechnology have led to the development of innovative nanoparticle drug carriers, which offer promising solutions for targeted and sustained drug delivery in the retinal environment. This review explores the application of both conventional and novel nanoparticle carriers in treating VR. We discuss various types of nanoparticles, including liposomes, polymeric nanoparticles, and metal-based carriers, highlighting their unique properties, mechanisms of action, and therapeutic benefits. Finally, we provide insights into future perspectives for nanoparticle-based therapies in retinal disorders, emphasizing the potential for improved patient outcomes and the need for further research to optimize these advanced drug delivery systems.
Collapse
Affiliation(s)
- Huihui Lu
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Na He
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yayan You
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Zhigang Lv
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
3
|
Yao Y, Cao Q, Fang H, Tian H. Application of Nanomaterials in the Diagnosis and Treatment of Retinal Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503070. [PMID: 40197854 DOI: 10.1002/smll.202503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
In recent years, nanomaterials have demonstrated broad prospects in the diagnosis and treatment of retinal diseases due to their unique physicochemical properties, such as small-size effects, high biocompatibility, and functional surfaces. Retinal diseases are often accompanied by complex pathological microenvironments, where conventional diagnostic and therapeutic approaches face challenges such as low drug delivery efficiency, risks associated with invasive procedures, and difficulties in real-time monitoring. Nanomaterials hold promise in addressing these limitations of traditional therapies, thereby improving treatment precision and efficacy. The applications of nanomaterials in diagnostics are summarized, where they enable high-resolution retinal imaging by carrying fluorescent probes or contrast agents or act as biosensors to sensitively detect disease-related biomarkers, facilitating early diagnosis and dynamic monitoring. In therapeutics, functionalized nanocarriers can precisely deliver drugs, genes, or antioxidant molecules to retinal target cells, significantly enhancing therapeutic outcomes while reducing systemic toxicity. Additionally, nanofiber materials possess unique properties that make them particularly suitable for retinal regeneration in tissue engineering. By loading neurotrophic factors into nanofiber scaffolds, their regenerative effects can be amplified, promoting the repair of retinal neurons. Despite their immense potential, clinical translation of nanomaterials still requires addressing challenges such as long-term biosafety, scalable manufacturing processes, and optimization of targeting efficiency.
Collapse
Affiliation(s)
- Yingli Yao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qiannan Cao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Huayu Tian
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Khan I, Ramzan F, Tayyab H, Damji KF. Rekindling Vision: Innovative Strategies for Treating Retinal Degeneration. Int J Mol Sci 2025; 26:4078. [PMID: 40362317 PMCID: PMC12072091 DOI: 10.3390/ijms26094078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Retinal degeneration, characterized by the progressive loss of photoreceptors, retinal pigment epithelium cells, and/or ganglion cells, is a leading cause of vision impairment. These diseases are generally classified as inherited (e.g., retinitis pigmentosa, Stargardt disease) or acquired (e.g., age-related macular degeneration, diabetic retinopathy, glaucoma) ocular disorders that can lead to blindness. Available treatment options focus on managing symptoms or slowing disease progression and do not address the underlying causes of these diseases. However, recent advancements in regenerative medicine offer alternative solutions for repairing or protecting degenerated retinal tissue. Stem and progenitor cell therapies have shown great potential to differentiate into various retinal cell types and can be combined with gene editing, extracellular vesicles and exosomes, and bioactive molecules to modulate degenerative cellular pathways. Additionally, gene therapy and neuroprotective molecules play a crucial role in enhancing the efficacy of regenerative approaches. These innovative strategies hold the potential to halt the progression of retinal degenerative disorders, repair or replace damaged cells, and improve visual function, ultimately leading to a better quality of life for those affected.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan;
| | - Haroon Tayyab
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Nie J, Eom K, AlGhosain HM, Neifert A, Cherian A, Gerbaka GM, Ma KY, Liu T, Lee J. Intravitreally Injected Plasmonic Nanorods Activate Bipolar Cells with Patterned Near-Infrared Laser Projection. ACS NANO 2025; 19:11823-11840. [PMID: 40110744 PMCID: PMC12105531 DOI: 10.1021/acsnano.4c14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Retinal prostheses aim to restore vision in individuals affected by degenerative conditions, such as age-related macular degeneration and retinitis pigmentosa. Traditional approaches, including implantable electrode arrays and optogenetics, often require invasive surgery or genetic modification and face limitations in spatial resolution and visual field size. While emerging nanoparticle-based methods offer minimally invasive solutions, some of them rely on intense visible light, which may interfere with residual vision. Plasmonic gold nanorods (AuNRs), tuned to absorb near-infrared (NIR) light, provide a promising alternative by enabling photothermal neuromodulation without affecting the remaining sight. However, effectively utilizing photothermal stimulation with patterned laser projection for precise neural activation remains underexplored. In this study, we introduce a less invasive approach using intravitreally injected anti-Thy1 antibody-conjugated AuNRs to primarily activate bipolar cells─a target traditionally reached through more invasive subretinal injections. This technique allows for extensive retinal coverage and facilitates high-resolution visual restoration via patterned NIR stimulation. Following injection, a scanning NIR laser beam projected in a square pattern with a spot size of 20 μm consistently triggered highly localized neuronal activation, specifically stimulating bipolar cells through temperature-sensitive ion channels. In vivo, this patterned stimulation evoked electrocorticogram responses in the visual cortex of both wild-type and fully blind mouse models without inducing systemic toxicity or significant retinal damage. Our innovative approach promises significant advancements in spatial resolution and broad applicability, offering a precise, customizable, and less invasive method to restore vision.
Collapse
Affiliation(s)
- Jiarui Nie
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, 02906, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Kyungsik Eom
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Department of Electronics Engineering, Pusan National University, Busan, 43241, South Korea
| | - Hafithe M. AlGhosain
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Alexander Neifert
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Aaron Cherian
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Gaia Marie Gerbaka
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Kristine Y. Ma
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence, 02912 RI, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, 02912, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, 02906, RI, USA
- Institute for Biology, Engineering and Medicine, Brown University, Providence, 02912, RI, USA
- Center on the Biology of Aging, Brown University, Providence, 02912, RI, USA
- Center for Alternative to Animals in Testing, Brown University, Providence, 02912, RI, USA
| |
Collapse
|
6
|
Tsoplaktsoglou M, Spyratou E, Droulias A, Zachou ME, Efstathopoulos EP. The Contribution of Nanomedicine in Ocular Oncology. Cancers (Basel) 2025; 17:1186. [PMID: 40227824 PMCID: PMC11987995 DOI: 10.3390/cancers17071186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025] Open
Abstract
Nanomedicine is a novel and emerging field that has noted significant progress in both the fields of ophthalmology and cancer treatment. Expanding into ocular oncology, it holds the potential to overcome the limitations of conventional therapies, such as poor drug penetration due to anatomical and physiological ocular barriers and insufficient targeting, which can lead to collateral damage to healthy tissues. By reviewing a series of clinical and preclinical studies, we aim to outline the recent advancements, current trends and future perspectives in nanomedicine for ocular cancer treatment. Beyond improving the existing therapies, like chemotherapy, phototherapies and brachytherapy, nanomedicine enables multimodal applications by combining multiple treatments or integrating imaging for theranostic approaches. Additionally, it paves the way for experimental therapies, such as gene therapy, offering new possibilities for more effective and less invasive treatment strategies in ocular oncology.
Collapse
Affiliation(s)
- Margarita Tsoplaktsoglou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (A.D.)
| | - Ellas Spyratou
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| | - Andreas Droulias
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (A.D.)
| | - Maria-Eleni Zachou
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| | - Efstathios P. Efstathopoulos
- Department of Applied Medical Physics, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.S.); (M.-E.Z.)
| |
Collapse
|
7
|
Menezes Ferreira A, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa
dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 PMCID: PMC11815637 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
8
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
9
|
Nikolaidou A, Spyratou E, Sandali A, Gianni T, Platoni K, Lamprogiannis L, Efstathopoulos EP. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:162. [PMID: 40005976 PMCID: PMC11858808 DOI: 10.3390/ph18020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a predominant cause of vision loss, posing significant challenges in its management despite advancements such as anti-vascular endothelial growth factor (anti-VEGF) therapy. Nanomedicine, with its novel properties and capabilities, offers promising potential to transform the treatment paradigm for AMD. This review reports the significant advancements in the use of diverse nanoparticles (NPs) for AMD in vitro, in vivo, and ex vivo, including liposomes, lipid nanoparticles, nanoceria, nanofibers, magnetic nanoparticles, quantum dots, dendrimers, and polymer nanoparticles delivered in forms such as gels, eye drops, intravitreally, or intravenously. Drug delivery was the most common use of NPs for AMD, followed by photodynamic therapy dose enhancement, antioxidant function for nanoceria, biomimetic activity, and immune modulation. Innovative approaches arising included nanotechnology-based photodynamic therapy and light-responsive nanoparticles for controlled drug release, as well as gene therapy transfer. Nanomedicine offers a transformative approach to the treatment and management of AMD, with diverse applications. The integration of nanotechnology in AMD management not only provides innovative solutions to overcome current therapeutic limitations but also shows potential in enhancing outcomes and patient quality of life.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | - Athanasia Sandali
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Gianni
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | | | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| |
Collapse
|
10
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
11
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
12
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
13
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
14
|
Kwon YS, Han Z. Advanced nanomedicines for the treatment of age-related macular degeneration. NANOSCALE 2024; 16:16769-16790. [PMID: 39177654 DOI: 10.1039/d4nr01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The critical and unmet medical need for novel therapeutic advancements in the treatment of age-related macular degeneration (AMD) cannot be overstated, particularly given the aging global population and the increasing prevalence of this condition. Current AMD therapy involves intravitreal treatments that require monthly or bimonthly injections to maintain optimal efficacy. This underscores the necessity for improved approaches, prompting recent research into developing advanced drug delivery systems to prolong the intervals between treatments. Nanoparticle-based therapeutic approaches have enabled the controlled release of drugs, targeted delivery of therapeutic materials, and development of smart solutions for the harsh microenvironment of diseased tissues, offering a new perspective on ocular disease treatment. This review emphasizes the latest pre-clinical treatment options in ocular drug delivery to the retina and explores the advantages of nanoparticle-based therapeutic approaches, with a focus on AMD, the leading cause of irreversible blindness in the elderly.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - Zongchao Han
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Khan O, Bhawale R, Vasave R, Mehra NK. Ionic liquid-based formulation approaches for enhanced transmucosal drug delivery. Drug Discov Today 2024; 29:104109. [PMID: 39032809 DOI: 10.1016/j.drudis.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The utilization of ionic liquids (ILs) in pharmaceutical drug delivery applications has seen significant expansion in recent years, owing to their distinctive characteristics and inherent adjustability. These innovative compounds can be used to tackle challenges associated with traditional dosage forms, such as polymorphism, inadequate solubility, permeability, and efficacy in topical drug delivery systems. Here, we provide a brief classification of ILs, and their effectiveness in augmenting transmucosal drug delivery approaches by improving the solubility and permeability of active pharmaceutical ingredients (APIs) by temporary mucus modulation aiding the paracellular transport of APIs, prolonging drug retention, and, thus, aiding controlled drug release across various mucosal surfaces. We also highlight potential advances in, and future perspectives of, IL-based formulations in mucosal drug delivery.
Collapse
Affiliation(s)
- Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Palacka K, Hermankova B, Cervena T, Rossner P, Zajicova A, Uherkova E, Holan V, Javorkova E. The Immunomodulatory Effect of Silver Nanoparticles in a Retinal Inflammatory Environment. Inflammation 2024:10.1007/s10753-024-02128-w. [PMID: 39190103 DOI: 10.1007/s10753-024-02128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Activation of immune response plays an important role in the development of retinal diseases. One of the main populations of immune cells contributing to the retinal homeostasis are microglia, which represent a population of residential macrophages. However, under pathological conditions, microglia become activated and rather support a harmful inflammatory reaction and retinal angiogenesis. Therefore, targeting these cells could provide protection against retinal neuroinflammation and neovascularization. In the recent study, we analyzed effects of silver nanoparticles (AgNPs) on microglia in vitro and in vivo. We showed that the AgNPs interact in vitro with stimulated mouse CD45/CD11b positive cells (microglia/macrophages), decrease their secretion of nitric oxide and vascular endothelial growth factor, and regulate the expression of genes for Iba-1 and interleukin-1β (IL-1β). In our in vivo experimental mouse model, the intravitreal application of a mixture of proinflammatory cytokines tumor necrosis factor-α, IL-1β and interferon-γ induced local inflammation and increased local expression of genes for inducible nitric oxide synthase, IL-α, IL-1β and galectin-3 in the retina. This stimulation of local inflammatory reaction was significantly inhibited by intravitreal administration of AgNPs. The application of AgNPs also decreased the presence of CD11b/Galectin-3 positive cells in neuroinflammatory retina, but did not influence viability of cells and expression of gene for rhodopsin in the retinal tissue. These data indicate that AgNPs regulate reactivity of activated microglia in the diseased retina and thus could provide a beneficial effect for the treatment of several retinal diseases.
Collapse
Affiliation(s)
- Katerina Palacka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Barbora Hermankova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Tereza Cervena
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Alena Zajicova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Eva Uherkova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, 121 08, Prague 2, Czech Republic
| | - Vladimir Holan
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Eliska Javorkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| |
Collapse
|
17
|
Beirampour N, Bustos-Salgado P, Garrós N, Mohammadi-Meyabadi R, Domènech Ò, Suñer-Carbó J, Rodríguez-Lagunas MJ, Kapravelou G, Montes MJ, Calpena A, Mallandrich M. Formulation of Polymeric Nanoparticles Loading Baricitinib as a Topical Approach in Ocular Application. Pharmaceutics 2024; 16:1092. [PMID: 39204436 PMCID: PMC11360485 DOI: 10.3390/pharmaceutics16081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Topical ocular drug delivery faces several challenges due to the eye's unique anatomy and physiology. Physiological barriers, tear turnover, and blinking hinder the penetration of drugs through the ocular mucosa. In this context, nanoparticles offer several advantages over traditional eye drops. Notably, they can improve drug solubility and bioavailability, allow for controlled and sustained drug release, and can be designed to specifically target ocular tissues, thus minimizing systemic exposure. This study successfully designed and optimized PLGA and PCL nanoparticles for delivering baricitinib (BTB) to the eye using a factorial design, specifically a three-factor at five-levels central rotatable composite 23+ star design. The nanoparticles were small in size so that they would not cause discomfort when applied to the eye. They exhibited low polydispersity, had a negative surface charge, and showed high entrapment efficiency in most of the optimized formulations. The Challenge Test assessed the microbiological safety of the nanoparticle formulations. An ex vivo permeation study through porcine cornea demonstrated that the nanoparticles enhanced the permeability coefficient of the drug more than 15-fold compared to a plain solution, resulting in drug retention in the tissue and providing a depot effect. Finally, the in vitro ocular tolerance studies showed no signs of irritancy, which was further confirmed by HET-CAM testing.
Collapse
Affiliation(s)
- Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Òscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 08028 Barcelona, Spain;
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain;
| | - María Jesús Montes
- Department de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain;
| | - Ana Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
18
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Guo D, Sun Y, Wu J, Ding L, Jiang Y, Xue Y, Ma Y, Sun F. Photoreceptor-targeted extracellular vesicles-mediated delivery of Cul7 siRNA for retinal degeneration therapy. Theranostics 2024; 14:4916-4932. [PMID: 39267786 PMCID: PMC11388070 DOI: 10.7150/thno.99484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Photoreceptor loss is a primary pathological feature of retinal degeneration (RD) with limited treatment strategies. RNA interference (RNAi) has emerged as a promising method of gene therapy in regenerative medicine. However, the transfer of RNAi therapeutics to photoreceptors and the deficiency of effective therapeutic targets are still major challenges in the treatment of RD. Methods: In this study, photoreceptor-derived extracellular vesicles (PEVs) conjugated with photoreceptor-binding peptide MH42 (PEVsMH42) were prepared using the anchoring peptide CP05. Transcriptome sequencing was applied to investigate the potential therapeutic target of RD. We then engineered PEVsMH42 with specific small-interfering RNAs (siRNAs) through electroporation and evaluated their therapeutic efficacy in N-methyl-N-nitrosourea (MNU)-induced RD mice and Pde6βrd1/rd1 mutant mice. Results: PEVsMH42 were selectively accumulated in photoreceptors after intravitreal injection. Cullin-7 (Cul7) was identified as a novel therapeutic target of RD. Taking advantage of the established PEVsMH42, siRNAs targeting Cul7 (siCul7) were efficiently delivered to photoreceptors and consequently blocked the expression of Cul7. Moreover, suppression of Cul7 effectively protected photoreceptors to alleviate RD both in MNU-induced mouse model and Pde6βrd1/rd1 mutant mouse model. Mechanistically, PEVsMH42 loaded with siCul7 (PEVsMH42-siCul7)-induced Cul7 downregulation was responsible for preventing Cul7-mediated glutathione peroxidase 4 (Gpx4) ubiquitination and degradation, resulting in the inhibition of photoreceptor ferroptosis. Conclusions: In summary, PEVsMH42-siCul7 attenuate photoreceptor ferroptosis to treat RD by inhibiting Cul7-induced ubiquitination of Gpx4. Our study develops a PEVs-based platform for photoreceptor-targeted delivery and highlights the potential of PEVsMH42-siCul7 as effective therapeutics for RD.
Collapse
Affiliation(s)
- Dong Guo
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Yuntong Sun
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Junqi Wu
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Linchao Ding
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yiwen Jiang
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yadong Xue
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Yongjun Ma
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| | - Fengtian Sun
- Department of Clinical Laboratory, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Jinhua 321000, Zhejiang, China
| |
Collapse
|
20
|
Rajan PB, Koilpillai J, Narayanasamy D. Advancing Ocular Medication Delivery with Nano-Engineered Solutions: A Comprehensive Review of Innovations, Obstacles, and Clinical Impact. Cureus 2024; 16:e66476. [PMID: 39247042 PMCID: PMC11381103 DOI: 10.7759/cureus.66476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Recent advancements in ocular drug delivery have led to the introduction of a range of nanotechnology-based systems, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, inorganic nanoparticles, niosomes, liposomes, nanosuspensions, dendrimers, nanoemulsions, and microemulsions. These systems enhance drug retention, penetration, bioavailability, and targeted delivery, promising prolonged drug release, and improved patient compliance. However, their interactions with biological systems pose potential toxicity risks, necessitating a careful evaluation of nanoparticle size, shape, surface charge, and coating. Traditional ocular drug delivery methods, like topical applications and injections, face challenges due to anatomical and physiological barriers, leading to frequent dosing and systemic toxicity risks. Nanocarriers offer solutions by improving drug permeation and targeted delivery, yet translating these innovations from research to clinical practice involves overcoming hurdles related to manufacturing scale-up, quality control, regulatory approval, and cost-effectiveness. The quality by design (QbD) framework provides a systematic approach to optimize nanocarrier formulation and process design, ensuring safety and efficacy. Assessing the safety of nanocarriers through in vivo and in vitro studies is crucial for their clinical application. This review explores the use of various nanomedicines in ocular drug delivery, highlighting the current state of ocular medication delivery and considering critical aspects such as scaling up and clinical applications.
Collapse
|
21
|
Obaid Hasson S, Kamil Hasan H, Abdul Kadhem Salman S, Judi HK, Akrami S, Saki M, Adil Hasan M, Fares Hashem D. In vivo and in vitro efficacy of the ithmid kohl/zinc-oxide nanoparticles, ithmid kohl/Aloe vera, and zinc-oxide nanoparticles/Aloe vera for the treatment of bacterial endophthalmitis. Sci Rep 2024; 14:15746. [PMID: 38977762 PMCID: PMC11231241 DOI: 10.1038/s41598-024-66341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study was to investigate the efficacy of the ithmid kohl/zinc-oxide nanoparticles (ZnONPs), ithmid kohl/Aloe vera, and ZnONPs/Aloe vera in the treatment of bacterial endophthalmitis. The endophthalmitis model was prepared by contaminating both eyes of 24 healthy adult male albino rabbits with a clinical isolate of Klebsiella pneumoniae. The animals were randomly divided into eight groups (A-H) according to the treatment. Group A received 1 ml of ithmid kohl/ZnONPs ointment, group B received 1 ml of ithmid kohl/Aloe vera gel ointment, group C received 1 ml of ZnONPs/Aloe vera gel ointment, and groups D, E, and F were treated with 1 ml of ithmid kohl solution (0.5 g/ml in distilled water), 1 ml of ZnONPs (0.5 g/ml) colloidal dispersion, and 1 ml of Aloe vera gel, respectively. Group G received 100 μl of a tetracycline antibiotic solution (final concentration: 16 µg/ml), and group H received sterile distilled water (no treatment). In vitro antibacterial activity was evaluated against K. pneumoniae using the agar well diffusion. The combination of ithmid kohl/ZnONPs was the most effective formulation for treating endophthalmitis model in infected rabbits within 2 days. In vitro antibacterial assay confirmed the potential of the ithmid kohl/ZnONPs formulation, which had the largest zone of inhibition (31 mm) among the compounds tested. The preparation of the ithmid kohl/ZnONPs formulation and its in vivo experiment in albino rabbits for the treatment of bacterial endophthalmitis was an innovative approach that has shown promise and may potentially serve as a viable alternative in clinical practice.
Collapse
Affiliation(s)
- Shaimaa Obaid Hasson
- Medical Biotechnology Department, College of Biotechnology, Al-Qasim Green University, Babylon, 51013, Iraq
| | | | - Sumod Abdul Kadhem Salman
- Microbiology Department, College of Veterinary Medicine, Al-Qasim Green University, Babylon, 51013, Iraq
| | - Hawraa K Judi
- Department of Medical Physics, Hilla University College, Babylon, Iraq
| | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | | |
Collapse
|
22
|
Sanyal S, Ravula V. Mitigation of pesticide-mediated ocular toxicity via nanotechnology-based contact lenses: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46602-46624. [PMID: 37542697 DOI: 10.1007/s11356-023-28904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
The xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health including ocular health. Acute or prolonged exposure to these agricultural toxicants has been implicated in a number of pathological conditions of the eye such as irritation, epiphora or hyper-lacrimation, abrasions on the ocular surface, and decreased visual acuity. The issue is compounded by the fact that tissues of the eye absorb pesticides faster than other organs of the body and are more susceptible to damage as well. However, there is a lacuna in our knowledge regarding the ways by which pesticide exposure-mediated ocular insult might be counteracted. Topical instillation of drugs known to combat the pesticide induced toxicity has been explored to mitigate the detrimental impact of pesticide exposure. However, topical eye drop solutions exhibit very low bioavailability and limited drug residence duration in the tear film decreasing their efficacy. Contact lenses have been explored in this respect to increase bioavailability of ocular drugs, while nanoparticles have lately been utilized to increase drug bioavailability and increase drug residence duration in different tissues. The current review focuses on drug delivery and futuristic aspects of corneal protection from ocular toxicity using contact lenses.
Collapse
Affiliation(s)
- Shalini Sanyal
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India.
| | - Venkatesh Ravula
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
23
|
Mallareddy V, Daigavane S. Nanoparticle-Mediated Cell Delivery: Advancements in Corneal Endothelial Regeneration. Cureus 2024; 16:e56958. [PMID: 38665717 PMCID: PMC11044897 DOI: 10.7759/cureus.56958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal endothelial dysfunction poses significant challenges in ophthalmology, leading to corneal edema and vision loss. Traditional treatments, including corneal transplantation, are limited by donor scarcity and potential complications. Nanoparticle-mediated cell delivery emerges as a promising approach for corneal endothelial regeneration, offering targeted and minimally invasive solutions. This comprehensive review provides insights into the role of nanoparticles in enhancing cell survival, integration, and therapeutic efficacy. We discuss the current understanding of corneal endothelial dysfunction, emphasizing the importance of regeneration. Furthermore, we explore the potential implications of nanoparticle-mediated approaches in clinical practice, highlighting opportunities for personalized treatment strategies. Future directions are also discussed, including optimization of nanoparticle design and exploration of combination therapies. Overall, this review elucidates the promising advancements in nanoparticle-mediated cell delivery for corneal endothelial regeneration and underscores the importance of continued research efforts in this evolving field.
Collapse
Affiliation(s)
- Vijaya Mallareddy
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
24
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
25
|
Lv Z, Li S, Zeng G, Yao K, Han H. Recent progress of nanomedicine in managing dry eye disease. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:23-31. [PMID: 38356795 PMCID: PMC10864857 DOI: 10.1016/j.aopr.2024.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Background Dry eye disease (DED) is a commonly reported ocular complaint that has garnered significant attention in recent research. The global occurrence of DED ranges from 5% to 50%, impacting a substantial proportion of individuals worldwide with increasing frequency. Although topical administration remains the mainstream drug delivery method for ocular diseases, it suffers from drawbacks such as low bioavailability, rapid drug metabolism, and frequent administration requirements. Fortunately, the advancements in nanomedicine offer effective solutions to address the aforementioned issues and provide significant assistance in the treatment of DED. Main text DED is considered a multifactorial disease of the ocular surface and tear film, in which the integrity of tear film function and structure plays a crucial role in maintaining the homeostasis of the ocular surface. The conventional treatment for DED involves the utilization of artificial tear products, cyclosporin, corticosteroids, mucin secretagogues, and nonsteroidal anti-inflammatory drugs. Furthermore, nanomedicine is presently a significant field of study, with numerous clinical trials underway for various nanotherapeutics including nanoemulsions, nanosuspensions, liposomes, and micelles. Notably, some of these innovative nanoformulations have already received FDA approval as novel remedies for DED, and the advancement of nanomedicine is poised to offer enhanced prospects to solve the shortcomings of existing treatments for DED partially. Conclusions This article provides an overview of the latest advancements in nanomedicine for DED treatment, while the field of DED treatment is expected to witness a remarkable breakthrough shortly with the development of nanomedicine, bringing promising prospects for patients worldwide suffering conditions.
Collapse
Affiliation(s)
- Zeen Lv
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Guixiang Zeng
- Department of Pediatrics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310013, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| |
Collapse
|
26
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
27
|
Yang CJ, Anand A, Huang CC, Lai JY. Unveiling the Power of Gabapentin-Loaded Nanoceria with Multiple Therapeutic Capabilities for the Treatment of Dry Eye Disease. ACS NANO 2023; 17:25118-25135. [PMID: 38051575 DOI: 10.1021/acsnano.3c07817] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dry eye (DE) disease, which is primarily linked to aqueous deficiency, is an escalating health issue worldwide, mainly due to the widespread use of electronic devices. The major obstacles in DE pharmacotherapy include insufficient therapeutic efficacy and low ocular bioavailability. This study presents the development of a ceria-based nanosystem to carry gabapentin (GBT), aiming to offer comprehensive relief from DE symptoms. We prepared multifunctional nanoceria capped with thiolated gelatin followed by cross-linking with glutaraldehyde, yielding a nanocarrier with desirable biocompatibility and antioxidant, anti-inflammatory, antiangiogenic, antiapoptotic, and neuronal protective activities. Specifically, the highly abundant thiol groups on gelatin increased the cellular uptake of the nanocarrier by 2.3-fold and its mucin-binding efficiency by 10-fold, thereby extending ocular retention and amplifying therapeutic activity. Moderate cross-linking of the thiolated gelatin not only enhanced the ocular bioavailability of the nanoceria but also provided slow, degradation-controlled release of GBT to promote the lacrimal stimulation to restore the tear film. In a rabbit model of DE, topical administration of our GBT/nanoceria nanoformulation resulted in comprehensive alleviation of symptoms, including repairing corneal epithelial damage, preserving corneal nerve density, and stimulating tear secretion, demonstrating superior performance in comparison to the free drug. These results underscore the safety and potential of this innovative nanoformulation for DE pharmacotherapy.
Collapse
Affiliation(s)
- Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
28
|
Ho B, Phan CM, Garg P, Shokrollahi P, Jones L. A Rapid Screening Platform for Simultaneous Evaluation of Biodegradation and Therapeutic Release of an Ocular Hydrogel. Pharmaceutics 2023; 15:2625. [PMID: 38004603 PMCID: PMC10675325 DOI: 10.3390/pharmaceutics15112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study attempts to address the challenge of accurately measuring the degradation of biodegradable hydrogels, which are frequently employed in drug delivery for controlled and sustained release. The traditional method utilizes a mass-loss approach, which is cumbersome and time consuming. The aim of this study was to develop an innovative screening platform using a millifluidic device coupled with automated image analysis to measure the degradation of Gelatin methacrylate (GelMA) and the subsequent release of an entrapped wetting agent, polyvinyl alcohol (PVA). Gel samples were placed within circular wells on a custom millifluidic chip and stained with a red dye for enhanced visualization. A camera module captured time-lapse images of the gels throughout their degradation. An image-analysis algorithm was used to translate the image data into degradation rates. Simultaneously, the eluate from the chip was collected to quantify the amount of GelMA degraded and PVA released at various time points. The visual method was validated by comparing it with the mass-loss approach (R = 0.91), as well as the amount of GelMA eluted (R = 0.97). The degradation of the GelMA gels was also facilitated with matrix metalloproteinases 9. Notably, as the gels degraded, there was an increase in the amount of PVA released. Overall, these results support the use of the screening platform to assess hydrogel degradation and the subsequent release of entrapped therapeutic compounds.
Collapse
Affiliation(s)
- Brandon Ho
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Piyush Garg
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
| | - Parvin Shokrollahi
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (B.H.); (P.G.); (P.S.); (L.J.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
29
|
Lee H, Noh H. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023; 9:718. [PMID: 37754399 PMCID: PMC10529109 DOI: 10.3390/gels9090718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Nanomedicine in gel or particle formation holds considerable potential for enhancing passive and active targeting within ocular drug delivery systems. The complex barriers of the eye, exemplified by the intricate network of closely connected tissue structures, pose significant challenges for drug administration. Leveraging the capability of engineered nanomedicine offers a promising approach to enhance drug penetration, particularly through active targeting agents such as protein peptides and aptamers, which facilitate targeted release and heightened bioavailability. Simultaneously, DNA carriers have emerged as a cutting-edge class of active-targeting structures, connecting active targeting agents and illustrating their potential in ocular drug delivery applications. This review aims to consolidate recent findings regarding the optimization of various nanoparticles, i.e., hydrogel-based systems, incorporating both passive and active targeting agents for ocular drug delivery, thereby identifying novel mechanisms and strategies. Furthermore, the review delves into the potential application of DNA nanostructures, exploring their role in the development of targeted drug delivery approaches within the field of ocular therapy.
Collapse
Affiliation(s)
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
30
|
Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev 2023; 200:115004. [PMID: 37433372 DOI: 10.1016/j.addr.2023.115004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
The low bioavailability and side effects of conventional drugs for eye disease necessitate the development of efficient drug delivery systems. Accompanying the developments of nanofabrication techniques, nanomaterials have been recognized as promising tools to overcome these challenges due to their flexible and programmable properties. Given the advances achieved in material science, a broad spectrum of functional nanomaterials capable of overcoming various ocular anterior and posterior segment barriers have been explored to satisfy the demands for ocular drug delivery. In this review, we first highlight the unique functions of nanomaterials suitable for carrying and transporting ocular drugs. Then, various functionalization strategies are emphasized to endow nanomaterials with superior performance in enhanced ophthalmic drug delivery. The rational design of several affecting factors is essential for ideal nanomaterial candidates and is depicted as well. Lastly, we introduce the current applications of nanomaterial-based delivery systems in the therapy of different ocular anterior and posterior segment diseases. The limitations of these delivery systems as well as potential solutions are also discussed. This work will inspire innovative design thinking for the development of nanotechnology-mediated strategies for advanced drug delivery and treatment toward ocular diseases.
Collapse
Affiliation(s)
- Guocheng Xie
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
31
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
32
|
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers (Basel) 2023; 15:polym15061373. [PMID: 36987154 PMCID: PMC10054733 DOI: 10.3390/polym15061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The eye has anatomical structures that function as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of medications administered topically. The development of polymeric nano-based drug-delivery systems (DDS) could be the solution to these challenges: it can pass through ocular barriers, offering higher bioavailability of administered drugs to targeted tissues that are otherwise inaccessible; it can stay in ocular tissues for longer periods of time, requiring fewer drug administrations; and it can be made up of polymers that are biodegradable and nano-sized, minimizing the undesirable effects of the administered molecules. Therefore, therapeutic innovations in polymeric nano-based DDS have been widely explored for ophthalmic drug-delivery applications. In this review, we will give a comprehensive overview of polymeric nano-based drug-delivery systems (DDS) used in the treatment of ocular diseases. We will then examine the current therapeutic challenges of various ocular diseases and analyze how different types of biopolymers can potentially enhance our therapeutic options. A literature review of the preclinical and clinical studies published between 2017 and 2022 was conducted. Thanks to the advances in polymer science, the ocular DDS has rapidly evolved, showing great promise to help clinicians better manage patients.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Said Ashkar
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrieda Jain
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
33
|
Chen X, Yang R, Shen J, Huang Q, Wu Z. Research Progress of Bioinspired Nanostructured Systems for the Treatment of Ocular Disorders. Pharmaceuticals (Basel) 2023; 16:ph16010096. [PMID: 36678597 PMCID: PMC9865244 DOI: 10.3390/ph16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
How to enhance the bioavailability and prolong the residence time of drugs in the eye present the major barriers to traditional eye delivery. Nanotechnology has been widely used in ocular drug delivery systems because of its advantages of minimizing adverse reactions, decreasing the frequency of administration, prolonging the release time, and improving the bioavailability of the drug in the eye. As natural product-based nanostructured systems, bioinspired nanostructured systems have presented as less toxic, easy to prepare, and cost-effective and have potential application value in the field of nanotechnology. A systematic classification of bioinspired nanostructured systems based on their inspiration source and formulation and their brief applications in disease are presented here. A review of recent research progress of the bioinspired nanostructured systems for the treatment of the anterior and posterior segment of ocular disorders is then presented in detail. Finally, current challenges and future directions with regard to manufacturing bioinspired nanomaterials are provided.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| | - Jinyan Shen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Qingyu Huang
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Zhifeng Wu
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| |
Collapse
|