1
|
Lodge J, Kajtar L, Duxbury R, Hall D, Burley GA, Cordy J, Yates JW, Rattray Z. Quantifying antibody binding: techniques and therapeutic implications. MAbs 2025; 17:2459795. [PMID: 39957177 PMCID: PMC11834528 DOI: 10.1080/19420862.2025.2459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
The binding kinetics of an antibody for its target antigen represent key determinants of its biological function and success as a novel biotherapeutic. Defining these interactions and kinetics is critical for understanding the pharmacological and pharmacodynamic profiles of antibodies in therapeutic applications, with line of sight to clinical translation. In this review, we discuss the latest developments in approaches to measure and modulate antibody-antigen interactions, including antibody engineering, novel antibody formats, current, and emerging technologies for measuring antibody-antigen binding interactions, and emerging perspectives within the field. We also explore how emerging computational methods are set to become powerful tools for modeling antibody-binding interactions under physiologically relevant conditions. Finally, we consider the therapeutic implications of modulating target engagement in terms of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- James Lodge
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lewis Kajtar
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Duxbury
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Hall
- Large Molecule Discovery, GSK, Stevenage, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Verma V, Sinha N, Raja A. Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. MAbs 2025; 17:2486390. [PMID: 40201976 PMCID: PMC11988260 DOI: 10.1080/19420862.2025.2486390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Viral infections remain a significant global health threat, with emerging and reemerging viruses causing epidemics and pandemics. Despite advancements in antiviral therapies, the development of effective treatments is often hindered by challenges, such as viral resistance and the emergence of new strains. In this context, the development of novel therapeutic modalities is essential to combat notorious viruses. While traditional monoclonal antibodies are widely used for the treatment of several diseases, nanobodies derived from heavy chain-only antibodies have emerged as promising "nanoscale warriors" against viral infections. Nanobodies possess unique structural properties that enhance their ability to recognize diverse epitopes. Their small size also imparts properties, such as improved bioavailability, solubility, stability, and proteolytic resistance, making them an ideal class of therapeutics for viral infections. In this review, we discuss the role of nanobodies as antivirals against various viruses. Techniques used for developing nanobodies, delivery strategies are covered, and the challenges and opportunities associated with their use as antiviral therapies are discussed. We also offer insights into the future of nanobody-based antiviral research to support the development of new strategies for managing viral infections.
Collapse
Affiliation(s)
- Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Nimisha Sinha
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Department of Surgery and Cancer, Imperial College London, South, London, UK
| |
Collapse
|
3
|
Gunaratne GS, Gallant JP, Ott KL, Broome PL, Celada S, West JL, Mixdorf JC, Aluicio-Sarduy E, Engle JW, Boros E, Meimetis L, Lang JM, Zhao SG, Hernandez R, Kosoff D, LeBeau AM. Development of FAP-targeted theranostics discovered by next-generation sequencing-augmented mining of a novel immunized VNAR library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632555. [PMID: 39868181 PMCID: PMC11761682 DOI: 10.1101/2025.01.13.632555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies. As the smallest binding domain in nature, VNARs cleverage unique geometries and recognize epitopes conventional antibodies cannot. By directly immunizing a nurse shark with FAP, we created a large anti-FAP VNAR phage display library. This library allowed us to identify a suite of anti-FAP VNARs through traditional biopanning and also by an in silico approach that did not require any prior affinity-based enrichment in vitro. We investigated four VNAR-Fc fusion proteins for theranostic properties and found that all four recognized FAP with high affinity and were rapidly internalized by FAP-positive cells. As a result, the VNAR-Fc constructs were effective antibody-drug conjugates in vitro and were able to localize to FAP-positive xenografts in vivo. Our findings establish VNAR-Fc constructs as a versatile platform for theranostic development that could yield innovative cancer therapies targeting the TME.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joseph P. Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kendahl L. Ott
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Payson L. Broome
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sasha Celada
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cellular and Molecular Pathology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jayden L. West
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
4
|
Meng F, Zhou N, Hu G, Liu R, Zhang Y, Jing M, Hou Q. A comprehensive overview of recent advances in generative models for antibodies. Comput Struct Biotechnol J 2024; 23:2648-2660. [PMID: 39027650 PMCID: PMC11254834 DOI: 10.1016/j.csbj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Therapeutic antibodies are an important class of biopharmaceuticals. With the rapid development of deep learning methods and the increasing amount of antibody data, antibody generative models have made great progress recently. They aim to solve the antibody space searching problems and are widely incorporated into the antibody development process. Therefore, a comprehensive introduction to the development methods in this field is imperative. Here, we collected 34 representative antibody generative models published recently and all generative models can be divided into three categories: sequence-generating models, structure-generating models, and hybrid models, based on their principles and algorithms. We further studied their performance and contributions to antibody sequence prediction, structure optimization, and affinity enhancement. Our manuscript will provide a comprehensive overview of the status of antibody generative models and also offer guidance for selecting different approaches.
Collapse
Affiliation(s)
- Fanxu Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Zhou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Guangchun Hu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ruotong Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Yuanyuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Jing
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
6
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
7
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
8
|
Arras P, Zimmermann J, Lipinski B, Valldorf B, Evers A, Elter D, Krah S, Doerner A, Guarnera E, Siegmund V, Kolmar H, Pekar L, Zielonka S. Bovine ultralong CDR-H3 derived knob paratopes elicit potent TNF-α neutralization and enable the generation of novel adalimumab-based antibody architectures with augmented features. Biol Chem 2024; 405:461-470. [PMID: 38373142 DOI: 10.1515/hsz-2023-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In this work we have generated cattle-derived chimeric ultralong CDR-H3 antibodies targeting tumor necrosis factor α (TNF-α) via immunization and yeast surface display. We identified one particular ultralong CDR-H3 paratope that potently neutralized TNF-α. Interestingly, grafting of the knob architecture onto a peripheral loop of the CH3 domain of the Fc part of an IgG1 resulted in the generation of a TNF-α neutralizing Fc (Fcknob) that did not show any potency loss compared with the parental chimeric IgG format. Eventually, grafting this knob onto the CH3 region of adalimumab enabled the engineering of a novel TNF-α targeting antibody architecture displaying augmented TNF-α inhibition.
Collapse
Affiliation(s)
- Paul Arras
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Jasmin Zimmermann
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Bernhard Valldorf
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Evers
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Desislava Elter
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Enrico Guarnera
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Vanessa Siegmund
- Early Protein Supply & Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
9
|
Gordon GL, Raybould MIJ, Wong A, Deane CM. Prospects for the computational humanization of antibodies and nanobodies. Front Immunol 2024; 15:1399438. [PMID: 38812514 PMCID: PMC11133524 DOI: 10.3389/fimmu.2024.1399438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To be viable therapeutics, antibodies must be tolerated by the human immune system. Rational approaches to reduce the risk of unwanted immunogenicity involve maximizing the 'humanness' of the candidate drug. However, despite the emergence of new discovery technologies, many of which start from entirely human gene fragments, most antibody therapeutics continue to be derived from non-human sources with concomitant humanization to increase their human compatibility. Early experimental humanization strategies that focus on CDR loop grafting onto human frameworks have been critical to the dominance of this discovery route but do not consider the context of each antibody sequence, impacting their success rate. Other challenges include the simultaneous optimization of other drug-like properties alongside humanness and the humanization of fundamentally non-human modalities such as nanobodies. Significant efforts have been made to develop in silico methodologies able to address these issues, most recently incorporating machine learning techniques. Here, we outline these recent advancements in antibody and nanobody humanization, focusing on computational strategies that make use of the increasing volume of sequence and structural data available and the validation of these tools. We highlight that structural distinctions between antibodies and nanobodies make the application of antibody-focused in silico tools to nanobody humanization non-trivial. Furthermore, we discuss the effects of humanizing mutations on other essential drug-like properties such as binding affinity and developability, and methods that aim to tackle this multi-parameter optimization problem.
Collapse
Affiliation(s)
| | | | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Pekar L, Krah S, Zielonka S. Taming the beast: engineering strategies and biomedical potential of antibody-based cytokine mimetics. Expert Opin Biol Ther 2024:1-4. [PMID: 38385844 DOI: 10.1080/14712598.2024.2322062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|