1
|
Xu X, Yi M, Xiao C, Yang J, Guo J, Zhou W, Zhou K, Hu L, Lan L, Fan Y. IGF-1 Provides Protective Role in Arteriosclerotic Cerebral Small Vessel Disease. Hypertension 2025. [PMID: 40248881 DOI: 10.1161/hypertensionaha.124.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Hypertension and advanced age are risk factors for arteriosclerotic cerebral small vessel disease (cSVD), a common cause of vascular dementia in elderly individuals. Circulating IGF-1 (insulin-like growth factor 1) levels decrease with age and are linked to age-related cognitive impairment. This study assessed the relationship between serum IGF-1 and arteriosclerotic cSVD severity in patients and the therapeutic effects and underlying mechanisms of exogenous IGF-1 supplementation in a cSVD rat model. METHODS Serum and MR images were collected from healthy subjects (n=26) and patients with arteriosclerotic cSVD (n=86). Stroke-prone renovascular hypertensive rats were used as cSVD animal models and subjected to the Morris water maze test, magnetic resonance imaging, immunohistochemistry, and biochemical analysis. hCMEC/D3 cells were utilized to validate the underlying mechanisms in vitro. RESULTS Serum IGF-1 concentration was significantly reduced in patients and rats with arteriosclerotic cSVD. Lower serum IGF-1 was associated with an increased cSVD burden and cognitive impairment. Compared with cSVD rats, IGF-1-treated rats had lighter white matter lesions, greater global cerebral blood flow, greater cerebrovascular density, less blood-brain barrier leakage, and better cognitive function. In vitro, IGF-1 administration promoted endothelial proliferation, migration, tube formation, and barrier function. Mechanistically, IGF-1 exerts neuroprotective effects by activating the IGF-1R (IGF-1 receptor)/Wnt7b/β-catenin pathway in vivo and in vitro. CONCLUSIONS Low serum IGF-1 was associated with greater arteriosclerotic cSVD severity. IGF-1 treatment improved cerebral perfusion, blood-brain barrier integrity, and cognitive function in cSVD rats by activating the IGF-1R/Wnt7b/β-catenin pathway, suggesting a potential therapeutic strategy for patients with arteriosclerotic cSVD, particularly those with low IGF-1 levels.
Collapse
Affiliation(s)
- Xiangming Xu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X.)
| | - Ming Yi
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Chi Xiao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Jing Yang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Jiayu Guo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Wenli Zhou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Kun Zhou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Liuting Hu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Linfang Lan
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Yuhua Fan
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| |
Collapse
|
2
|
Shen Y, Pang L, Wang H, Han Q, Wan W, Luo S, Song Z, Fang Y, Chen H, Qiu Y, Tan D, Zhou M, Hong D. Comprehensive Analysis of Uric Acid and Myasthenia Gravis: IGF1R as a Protective Factor and Potential Therapeutic Target. CNS Neurosci Ther 2025; 31:e70361. [PMID: 40152081 PMCID: PMC11950832 DOI: 10.1111/cns.70361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Previous studies have suggested that oxidative stress can significantly damage acetylcholine receptors (AChRs), which are implicated in the pathogenesis of myasthenia gravis (MG). Uric acid (UA), a scavenger of peroxynitrite and a natural antioxidant, plays a crucial role in eliminating free radicals in the bloodstream. However, the relationship between UA and MG, as well as the underlying mechanisms, remains insufficiently explored. METHODS A meta-analysis was conducted to evaluate the clinical correlation between UA and MG. Subsequently, Mendelian randomization (MR) and bioinformatics analyses were employed to identify the key protein IGF1R. Public datasets, such as TCGA and GEO, along with patient data from our clinical center, were used for a comprehensive analysis of the relationship between IGF1R and UA in MG patients. Additionally, virtual screening and molecular docking were performed to identify small molecules that target IGF1R as potential therapeutic agents for MG. RESULTS The meta-analysis revealed a significant association between low UA levels and MG (OR -48.46 [95% CI -63.26, -33.65], p < 0.00001). The two-sample MR analysis indicated a genetic relationship between UA and MG (p = 0.024; p = 0.036). The FUMA analysis and enrichment analysis identified IGF1R as a key protein likely involved in this relationship. Using the thymoma dataset from the TCGA database, we analyzed IGF1R expression in the MG and non-MG groups and found that IGF1R expression was lower in MG patients and was associated with a poor prognosis (p < 0.05). Single-cell RNA-seq data from the GEO database further supported the association between low IGF1R expression and MG, as well as the occurrence of crisis (p < 0.05). Additionally, data from MG patients treated at our center showed that IGF1R expression correlated with UA levels and that higher IGF1R expression was associated with milder clinical phenotypes (ocular phenotypes). Through a virtual screen and molecular docking of small molecules in the DrugBank database, we identified several potential small-molecule drugs that may target IGF1R to treat MG. CONCLUSIONS Our study revealed an association between low UA levels and MG and subsequently showed that low IGF1R expression is associated with the onset, severity, and poor prognosis of MG. We also explored the molecular mechanisms underlying the protective role of IGF1R in MG and identified potential drugs for treating MG.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Lijun Pang
- College of PharmacyGuangxi Medical UniversityNanningChina
| | - Han Wang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qili Han
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Wang Wan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Si Luo
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ziwei Song
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yaofeng Fang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Hao Chen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionNanchangChina
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionNanchangChina
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionNanchangChina
| |
Collapse
|
3
|
Asmaz ED, Tan M, Genç AI, Teker HT, Ceylani T. Rejuvenating the gut: young plasma therapy improves cell proliferation, IGF-I and IGF-IR expression, and immune defense in aged male rats jejunum. Biogerontology 2025; 26:62. [PMID: 39969630 PMCID: PMC11839702 DOI: 10.1007/s10522-025-10204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
It is well known that aging affects many systems in the body. The digestive system is one of the systems most affected by aging. In our study, we examined the effects of young plasma treatment on cell proliferation, growth factors, immune defense and histological parameters in the jejunum of aged male rats. For this purpose, aged male Sprague Dawley rats (24 months, n = 7) were treated with pooled plasma (0.5 ml/day, intravenously for 30 days) collected from young (5 weeks, n = 51) rats. Aged rats that received young plasma treatment were grouped as the experimental group, while aged rats formed the control group. At the end of the experiment, the jejunums of the groups were collected and histological parameters such as villus height, crypt depth, total mucosal thickness and surface absorption areas were measured and compared. In addition, cell proliferation index and proliferation intensity in the crypt glands of the jejunum were evaluated with proliferating cell nuclear antigen and expressions of growth factors such as insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) expression and effects of immunoglobulin A (IgA), which plays a role in the defense of the digestive system against microorganisms, were examined. In the experimental group, an increase in histological parameters, IGF-R and IGF-IR expression, proliferation density, proliferation index and IgA expression density and IgA cell count were observed compared to the control group. These results suggest that young plasma treatment has a positive effect on the digestive system and may be a potential therapeutic for tissue regeneration.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Faculty of Medicine, Department of Histology and Embryology, Ankara Medipol University, Ankara, Turkey.
- Department of Electrical&Computer Engineering, Boston University, Biomedical Engineering Graduate Medical Sciences, Boston, MA, 02215, USA.
| | - Murat Tan
- Department of General Surgery, Istanbul Demiroglu Bilim University, Istanbul, Turkey
| | - Aysun Inan Genç
- Faculty of Science, Department of Biology, Kastamonu University, Kastamonu, Turkey
| | - Hikmet Taner Teker
- Faculty of Medicine, Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | - Taha Ceylani
- Department of Food Processing, Muş Alparslan University, Muş, Turkey.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey.
| |
Collapse
|
4
|
Wang YC, Zhu HH, He LC, Yao YT, Zhang L, Xue XL, Li JY, Zhang L, Song B, Shi CH, Li YS, Gao Y, Yang JH, Xu YM. Proteome Profiling of Serum Reveals Pathological Mechanisms and Biomarker Candidates for Cerebral Small Vessel Disease. Transl Stroke Res 2025:10.1007/s12975-025-01332-6. [PMID: 39934548 DOI: 10.1007/s12975-025-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Cerebral small vessel disease (CSVD) is a global brain disorder that is characterized by a series of clinical, neuroimaging, and neuropathological manifestations. However, the molecular pathophysiological mechanisms of CSVD have not been thoroughly investigated. Liquid chromatography-tandem mass spectrometry-based proteomics has broad application prospects in biomedicine. It is used to elucidate disease-related molecular processes and pathophysiological pathways, thus providing an important opportunity to explore the pathophysiological mechanisms of CSVD. Serum samples were obtained from 96 participants (58 with CSVD and 38 controls) consecutively recruited from The First Affiliated Hospital of Zhengzhou University. After removing high-abundance proteins, the serum samples were analyzed using high-resolution mass spectrometry. Bioinformatics methods were used for in-depth analysis of the obtained proteomic data, and the results were verified experimentally. Compared with the control group, 52 proteins were differentially expressed in the sera of the CSVD group. Furthermore, analyses indicated the involvement of these differentially expressed proteins in CSVD through participation in the overactivation of complement and coagulation cascades and dysregulation of insulin-like growth factor-binding proteins. The proteomic biomarker panel identified by the machine learning model combined with clinical features is expected to facilitate the diagnosis of CSVD (AUC = 0.947, 95% CI = 0.895-0.978). The study is the most in-depth study on CSVD proteomics to date and suggests that the overactivation of the complement cascade and the dysregulation of IGFBP on- IGF may be closely correlated with the occurrence and progression of CSVD, offering the potential to develop peripheral blood biomarkers and providing new insights into the biological basis of CSVD.
Collapse
Affiliation(s)
- Yun-Chao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Hang-Hang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Liu-Chang He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Ya-Ting Yao
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Lei Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Xin-Li Xue
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Jing-Yi Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Li Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Stankovics L, Ungvari A, Fekete M, Nyul-Toth A, Mukli P, Patai R, Csik B, Gulej R, Conley S, Csiszar A, Toth P. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging. GeroScience 2025; 47:445-455. [PMID: 39271571 PMCID: PMC11872839 DOI: 10.1007/s11357-024-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is closely associated with various cerebrovascular pathologies that significantly impact brain function, with cerebral small vessel disease (CSVD) being a major contributor to cognitive decline in the elderly. Consequences of CSVD include cerebral microhemorrhages (CMH), which are small intracerebral bleeds resulting from the rupture of microvessels. CMHs are prevalent in aging populations, affecting approximately 50% of individuals over 80, and are linked to increased risks of vascular cognitive impairment and dementia (VCID). Hypertension is a primary risk factor for CMHs. Vascular smooth muscle cells (VSMCs) adapt to hypertension by undergoing hypertrophy and producing extracellular matrix (ECM) components, which reinforce vessel walls. Myogenic autoregulation, which involves pressure-induced constriction, helps prevent excessive pressure from damaging the vulnerable microvasculature. However, aging impairs these adaptive mechanisms, weakening vessel walls and increasing susceptibility to damage. Insulin-like Growth Factor 1 (IGF-1) is crucial for vascular health, promoting VSMC hypertrophy, ECM production, and maintaining normal myogenic protection. IGF-1 also prevents microvascular senescence, reduces reactive oxygen species (ROS) production, and regulates matrix metalloproteinase (MMP) activity, which is vital for ECM remodeling and stabilization. IGF-1 deficiency, common in aging, compromises these protective mechanisms, increasing the risk of CMHs. This review explores the vasoprotective role of IGF-1 signaling in the cerebral microcirculation and its implications for preventing hypertension-induced CMHs in aging. Understanding and addressing the decline in IGF-1 signaling with age are crucial for maintaining cerebrovascular health and preventing hypertension-related vascular injuries in the aging population.
Collapse
Affiliation(s)
- Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Azizan Z, Bazrgar M, Bazgir N, Moini SH, Ghaseminejad‐Kermani S, Safa K, Eshaghian‐dorcheh A, Harirchian MH. Osteopontin in Alzheimer's Disease: A Double-Edged Sword in Neurodegeneration and Neuroprotection-A Systematic Review. CNS Neurosci Ther 2025; 31:e70269. [PMID: 39957678 PMCID: PMC11831194 DOI: 10.1111/cns.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/27/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Osteopontin (OPN) has emerged as a pivotal molecule in Alzheimer's disease (AD), with studies indicating its potential to act as both a neuroprotective agent and a contributor to neurodegeneration. This systematic review aims to elucidate the roles of OPN in AD pathogenesis through inflammatory pathways. METHODS We conducted a comprehensive analysis of current literature on OPN's involvement in AD, focusing on its signaling pathways, cellular interactions, and regulatory mechanisms. We searched PubMed, EMBASE, and Scopus databases by the keyword of Alzheimer's Disease and Osteopontin. Our date search was in 1990 until July 1, 2024 with no language limitation. RESULTS In a review of 758 studies, a total of 15 reports met the eligibility criteria and were included. Among the findings, four studies provided evidence supporting the protective mechanism of OPN within the context of AD. Eleven studies explain the inflammatory role of OPN. OPN has been shown to play a role in synaptic pruning, microglial activation, and the inflammatory processes associated with AD. Additionally, OPN is implicated in facilitating cellular communication and serves as a chemotactic molecule. It is suggested that the protective effects of OPN are predominantly mediated by the c fragment of the protein and are most prominent in the early stages of AD progression. CONCLUSION OPN in AD has dual effects-protecting neurons and contributing to their degeneration. Future research should enhance its protective mechanisms, target specific signaling pathways, and develop therapies to slow AD progression.
Collapse
Affiliation(s)
- Zahra Azizan
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Bazrgar
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Narges Bazgir
- Hearing Disorders Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical ScienceTehranIran
| | - Sadra Habibi Moini
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | | | - Kamran Safa
- Emergency Medicine DepartmentShahid Beheshti University of Medical ScienceTehranIran
| | | | - Mohammad Hossein Harirchian
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
da C Pinaffi-Langley AC, Pinto CB, Mukli P, Peterfi A, Kaposzta Z, Owens CD, Szarvas Z, Muranyi M, Adams C, Shahriari A, Balasubramanian P, Ungvari Z, Csiszar A, Conley S, Hord NG, Anderson L, Tarantini S, Yabluchanskiy A. Energy metabolism dysregulation, cerebrovascular aging, and time-restricted eating: Current evidence and proof-of-concept findings. PNAS NEXUS 2024; 3:pgae505. [PMID: 39584020 PMCID: PMC11582367 DOI: 10.1093/pnasnexus/pgae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Dysregulated energy metabolism is a hallmark of aging, including brain aging; thus, strategies to restore normal metabolic regulation are at the forefront of aging research. Intermittent fasting, particularly time-restricted eating (TRE), is one of these strategies. Despite its well-established effectiveness in improving metabolic outcomes in older adults, the effect of TRE on preserving or improving cerebrovascular health during aging remains underexplored. We explored how aging itself affects energy metabolism and contextualized these age-related changes to cerebrovascular health. We also conducted a literature search on PubMed and Scopus to identify and summarize current studies on TRE in older adults. Finally, we provided preliminary data from our proof-of-concept pilot trial on the effect of 6-month TRE on cerebrovascular health in older adults. Current evidence shows the potential of TRE to improve energy metabolism and physiological outcomes in older adults. TRE may improve cerebrovascular function indirectly due to its effect on glucose homeostasis. However, to date, direct evidence of the effect of TRE on cerebrovascular parameters is lacking. TRE is a well-tolerated and promising dietary intervention for promoting and maintaining cerebrovascular health in older adults. Further studies on TRE in older adults must be better controlled for energy balance to elucidate its independent effects from those of caloric restriction.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Camila B Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Zalan Kaposzta
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Mihaly Muranyi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Cheryl Adams
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Ali Shahriari
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Leah Anderson
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
11
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Gulej R, Nyúl-Tóth Á, Csik B, Patai R, Petersen B, Negri S, Chandragiri SS, Shanmugarama S, Mukli P, Yabluchanskiy A, Conley S, Huffman D, Tarantini S, Csiszar A, Ungvari Z. Young blood-mediated cerebromicrovascular rejuvenation through heterochronic parabiosis: enhancing blood-brain barrier integrity and capillarization in the aged mouse brain. GeroScience 2024; 46:4415-4442. [PMID: 38727872 PMCID: PMC11336025 DOI: 10.1007/s11357-024-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
14
|
Miller LR, Bickel MA, Vance ML, Vaden H, Nagykaldi D, Nyul-Toth A, Bullen EC, Gautam T, Tarantini S, Yabluchanskiy A, Kiss T, Ungvari Z, Conley SM. Vascular smooth muscle cell-specific Igf1r deficiency exacerbates the development of hypertension-induced cerebral microhemorrhages and gait defects. GeroScience 2024; 46:3481-3501. [PMID: 38388918 PMCID: PMC11009188 DOI: 10.1007/s11357-024-01090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.
Collapse
Affiliation(s)
- Lauren R Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
- Currently at: Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
15
|
Magyar-Sumegi ZD, Stankovics L, Lendvai-Emmert D, Czigler A, Hegedus E, Csendes M, Toth L, Ungvari Z, Buki A, Toth P. Acute neuroendocrine changes after traumatic brain injury. BRAIN & SPINE 2024; 4:102830. [PMID: 38764890 PMCID: PMC11101905 DOI: 10.1016/j.bas.2024.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Introduction Post-traumatic hypopituitarism (PTHP) is a significant, but often neglected consequence of traumatic brain injury (TBI). Research question We aimed to provide a comprehensive overview of epidemiology, pathophysiology, clinical features and diagnostic approaches of PTHP. Materials and methods MEDLINE, EMBASE, Cochrane Library and Web of Science were searched. 45 articles of human studies evaluating acute endocrine changes following mild, moderate and severe TBI were selected. Results Severity of TBI seems to be the most important risk factor of PTHP. Adrenal insufficiency (AI) was present in 10% of TBI patients (prevalence can be as high as 50% after severe TBI), and hypocortisolemia is a predictor of mortality and long-term hypopituitarism. Suppression of the thyroid axis in 2-33% of TBI patients may be an independent predictor of adverse neurological outcome, as well. 9-36% of patients with severe TBI exhibit decreased function of the somatotrophic axis with a divergent effect on the central nervous system. Arginine-Vasopressin (AVP) deficiency is present in 15-51% of patients, associated with increased mortality and unfavorable outcome. Due to shear and injury of the stalk hyperprolactinemia is relatively common (2-50%), but it bears little clinical significance. Sex hormone levels remain within normal values. Discussion and conclusion PTHP occurs frequently after TBI, affecting various axis and determining patients' outcome. However, evidence is scarce regarding exact epidemiology, diagnosis, and effective clinical application of hormone substitution. Future studies are needed to identify patients at-risk, determine the optimal timing for endocrine testing, and refine diagnostic and treatment approaches to improve outcome.
Collapse
Affiliation(s)
- Zsofia Dina Magyar-Sumegi
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Psychiatry and Psychotherapy, Medical School, University of Pecs, Pecs, Hungary
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
| | - Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | | | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Mark Csendes
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
| | - Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Chin JY, Liu C, Lee IXY, Lin MTY, Cheng CY, Wong JHF, Teo CL, Mehta JS, Liu YC. Impact of Age on the Characteristics of Corneal Nerves and Corneal Epithelial Cells in Healthy Adults. Cornea 2024; 43:409-418. [PMID: 37643477 PMCID: PMC10906190 DOI: 10.1097/ico.0000000000003363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE The aim of this study was to investigate age-related changes in corneal nerves and corneal epithelial cell parameters and to establish age-adjusted reference values. METHODS A total of 7025 corneal nerve images and 4215 corneal epithelial images obtained using in vivo confocal microscopy from 281 eyes of 143 healthy participants were included. Seven corneal nerve parameters and 3 corneal epithelial cell parameters were quantified using 2 automatic analytic software and analyzed across 6 age groups ranging from 21 to 80 years. RESULTS There was a declining trend in all 7 nerve parameters with advancing age. In particular, corneal nerve fiber length and corneal nerve fiber density demonstrated a significant decrease in subjects aged 65 years or older compared with subjects younger than 65 years (10.8 ± 2.6 mm/mm 2 vs. 9.9 ± 2.0 mm/mm 2 , P = 0.011 in corneal nerve fiber length; 15.8 ± 5.2 fibers/mm 2 vs. 14.4 ± 4.3 fibers/mm 2 , P = 0.046 in corneal nerve fiber density), whereas corneal nerve fractal dimension demonstrated a borderline significant decrease ( P = 0.057). Similarly, there was a general declining trend in all epithelial cell parameters with advancing age. Corneal epithelial cell circularity was significantly lower in subjects aged 65 years and older as compared to subjects younger than 65 years (0.722 ± 0.021 μm 2 vs. 0.714 ± 0.021 μm 2 ; P = 0.011). CONCLUSIONS Advancing age results in reduced corneal nerve metrics and alteration of corneal cell morphology. Aging effects should be considered when evaluating patients with corneal neuropathy.
Collapse
Affiliation(s)
- Jia Ying Chin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Chang Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Molly Tzu Yu Lin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Ching-Yu Cheng
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Epidemiology Group, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jipson Hon Fai Wong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Cong Ling Teo
- Epidemiology Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; and
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; and
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Vanelderen F, Bruyninckx D, Depreitere B. Is age or cardiovascular comorbidity the main predictor of reduced cerebrovascular pressure reactivity in older patients with traumatic brain injury? BRAIN & SPINE 2024; 4:102799. [PMID: 38681173 PMCID: PMC11052909 DOI: 10.1016/j.bas.2024.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Introduction The Pressure Reactivity index (PRx) has been proposed as a surrogate measure for cerebrovascular autoregulation (CA) and it has been described that older age is associated with worse PRx. The etiology for this reduced capacity remains unknown. Research question To investigate the relation between age and PRx in a cohort of patients with traumatic brain injury (TBI) while correcting for cardiovascular comorbidities. Material and methods This is a retrospective analysis on prospectively collected data in 151 consecutive TBI patients between 2013 and 2023. PRx was averaged over 5 monitoring days and correlated with demographic, patient and injury data. A multiple regression analysis was performed with PRx as dependent variable and cardiovascular comorbidities, age, Glasgow motor score and pupillary reaction as independent variables. A similar model was constructed without age and compared. Results Age, sex, thromboembolic history, arterial hypertension, Glasgow motor score and pupillary reaction significantly correlated with PRx in univariate analysis. In multivariate analysis, age had a significant worsening effect on PRx (p = 0.01), while the cardiovascular risk factors and injury severity had no impact. The comparison of the models with and without age yielded a significant difference (p = 0.01), underpinning the independent effect of age. Discussion and conclusion In the present cohort study in TBI patients it was found that older age independently impaired cerebrovascular pressure reactivity regardless of cardiovascular comorbidity. Pathophysiology of TBI and physiology of ageing seem to line up to synergistically produce a negative effect on brain perfusion.
Collapse
|
18
|
Miller LR, Bickel MA, Tarantini S, Runion ME, Matacchiera Z, Vance ML, Hibbs C, Vaden H, Nagykaldi D, Martin T, Bullen EC, Pinckard J, Kiss T, Howard EW, Yabluchanskiy A, Conley SM. IGF1R deficiency in vascular smooth muscle cells impairs myogenic autoregulation and cognition in mice. Front Aging Neurosci 2024; 16:1320808. [PMID: 38425784 PMCID: PMC10902040 DOI: 10.3389/fnagi.2024.1320808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Cerebrovascular pathologies contribute to cognitive decline during aging, leading to vascular cognitive impairment and dementia (VCID). Levels of circulating insulin-like growth factor 1 (IGF-1), a vasoprotective hormone, decrease during aging. Decreased circulating IGF-1 in animal models leads to the development of VCID-like symptoms, but the cellular mechanisms underlying IGF-1-deficiency associated pathologies in the aged cerebrovasculature remain poorly understood. Here, we test the hypothesis that vascular smooth muscle cells (VSMCs) play an integral part in mediating the vasoprotective effects of IGF-1. Methods We used a hypertension-based model of cerebrovascular dysfunction in mice with VSMC-specific IGF-1 receptor (Igf1r) deficiency and evaluated the development of cerebrovascular pathologies and cognitive dysfunction. Results VSMC-specific Igf1r deficiency led to impaired cerebral myogenic autoregulation, independent of blood pressure changes, which was also associated with impaired spatial learning and memory function as measured by radial arm water maze and impaired motor learning measured by rotarod. In contrast, VSMC-specific IGF-1 receptor knockdown did not lead to cerebral microvascular rarefaction. Discussion These studies suggest that VSMCs are key targets for IGF-1 in the context of cerebrovascular health, playing a role in vessel stability alongside other cells in the neurovascular unit, and that VSMC dysfunction in aging likely contributes to VCID.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Megan E. Runion
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zoe Matacchiera
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michaela L. Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica Pinckard
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
19
|
Ungvari Z, Tabák AG, Adany R, Purebl G, Kaposvári C, Fazekas-Pongor V, Csípő T, Szarvas Z, Horváth K, Mukli P, Balog P, Bodizs R, Ujma P, Stauder A, Belsky DW, Kovács I, Yabluchanskiy A, Maier AB, Moizs M, Östlin P, Yon Y, Varga P, Vokó Z, Papp M, Takács I, Vásárhelyi B, Torzsa P, Ferdinandy P, Csiszar A, Benyó Z, Szabó AJ, Dörnyei G, Kivimäki M, Kellermayer M, Merkely B. The Semmelweis Study: a longitudinal occupational cohort study within the framework of the Semmelweis Caring University Model Program for supporting healthy aging. GeroScience 2024; 46:191-218. [PMID: 38060158 PMCID: PMC10828351 DOI: 10.1007/s11357-023-01018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
The Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases. An important goal of the Semmelweis Study is to identify groups of people who are aging unsuccessfully and therefore have an increased risk of developing age-associated diseases. To achieve this, the study takes a multidisciplinary approach, collecting economic, social, psychological, cognitive, health, and biological data. The Semmelweis Study comprises a baseline data collection with open healthcare data linkage, followed by repeated data collection waves every 5 years. Data are collected through computer-assisted self-completed questionnaires, followed by a physical health examination, physiological measurements, and the assessment of biomarkers. This article provides a comprehensive overview of the Semmelweis Study, including its origin, context, objectives, design, relevance, and expected contributions.
Collapse
Affiliation(s)
- Zoltan Ungvari
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Adam G Tabák
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Roza Adany
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Purebl
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Kaposvári
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Csípő
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Horváth
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Piroska Balog
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Robert Bodizs
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Ujma
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Adrienne Stauder
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Daniel W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Illés Kovács
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mariann Moizs
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Ministry of Interior of Hungary, Budapest, Hungary
| | | | - Yongjie Yon
- WHO Regional Office for Europe, Copenhagen, Denmark
| | - Péter Varga
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Clinical Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Vokó
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | - Magor Papp
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - István Takács
- UCL Brain Sciences, University College London, London, UK
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Torzsa
- Department of Family Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltán Benyó
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Attila J Szabó
- First Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, Semmelweis University, Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Gulej R, Nyúl-Tóth Á, Csik B, Petersen B, Faakye J, Negri S, Chandragiri SS, Mukli P, Yabluchanskiy A, Conley S, Huffman DM, Csiszar A, Tarantini S, Ungvari Z. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: insights into neurovascular coupling and the impact of young blood factors. GeroScience 2024; 46:327-347. [PMID: 38123890 PMCID: PMC10828280 DOI: 10.1007/s11357-023-01039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
21
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Bickel MA, Sherry DM, Bullen EC, Vance ML, Jones KL, Howard EW, Conley SM. Microvascular smooth muscle cells exhibit divergent phenotypic switching responses to platelet-derived growth factor and insulin-like growth factor 1. Microvasc Res 2024; 151:104609. [PMID: 37716411 PMCID: PMC10842624 DOI: 10.1016/j.mvr.2023.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-β (TGF-β) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-β and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.
Collapse
Affiliation(s)
- Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Ken L Jones
- Bioinformatic Solutions, LLC, Sheridan, WY 82801, United States of America
| | - Eric W Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America.
| |
Collapse
|
23
|
Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. GeroScience 2023; 45:3211-3239. [PMID: 37495893 PMCID: PMC10643563 DOI: 10.1007/s11357-023-00873-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Physical activity, including walking, has numerous health benefits in older adults, supported by a plethora of observational and interventional studies. Walking decreases the risk or severity of various health outcomes such as cardiovascular and cerebrovascular diseases, type 2 diabetes mellitus, cognitive impairment and dementia, while also improving mental well-being, sleep, and longevity. Dose-response relationships for walking duration and intensity are established for adverse cardiovascular outcomes. Walking's favorable effects on cardiovascular risk factors are attributed to its impact on circulatory, cardiopulmonary, and immune function. Meeting current physical activity guidelines by walking briskly for 30 min per day for 5 days can reduce the risk of several age-associated diseases. Additionally, low-intensity physical exercise, including walking, exerts anti-aging effects and helps prevent age-related diseases, making it a powerful tool for promoting healthy aging. This is exemplified by the lifestyles of individuals in Blue Zones, regions of the world with the highest concentration of centenarians. Walking and other low-intensity physical activities contribute significantly to the longevity of individuals in these regions, with walking being an integral part of their daily lives. Thus, incorporating walking into daily routines and encouraging walking-based physical activity interventions can be an effective strategy for promoting healthy aging and improving health outcomes in all populations. The goal of this review is to provide an overview of the vast and consistent evidence supporting the health benefits of physical activity, with a specific focus on walking, and to discuss the impact of walking on various health outcomes, including the prevention of age-related diseases. Furthermore, this review will delve into the evidence on the impact of walking and low-intensity physical activity on specific molecular and cellular mechanisms of aging, providing insights into the underlying biological mechanisms through which walking exerts its beneficial anti-aging effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| |
Collapse
|
24
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Wunram HL, Kasparbauer AM, Oberste M, Bender S. [Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2023; 52:77-93. [PMID: 37851436 DOI: 10.1024/1422-4917/a000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression Abstract: In the context of adolescent depression, physical activity is becoming increasingly recognized for its positive effects on neuropathology. Current scientific findings indicate that physical training affects the biological effects of depression during adolescence. Yet the pathophysiology of adolescent depression is not yet fully understood. Besides psychosocial and genetic influences, various neurobiological factors are being discussed. One explanation model describes a dysfunction of the hypothalamus-pituitary-adrenal axis (HPA axis) with a sustained elevation in cortisol concentration. Recent studies highlight neuroimmunological processes and a reduced concentration of growth factors as causative factors. These changes appear to lead to a dysregulation of the excitation and inhibition balance of the cerebral cortex as well as to cerebral morphological alterations. Regular physical training can potentially counteract the dysregulation of the HPA axis and normalize cortisol levels. The release of proinflammatory cytokines is inhibited, and the expression of growth factors involved in adult neurogenesis is stimulated. One should ensure the synergistic interaction of biological and psychosocial factors when designing the exercise schedule (endurance or strength training, group or individual sports, frequency, duration, and intensity). Addressing these open questions is essential when integrating physical activity into the guidelines for treating depressive disorders in children and adolescents.
Collapse
Affiliation(s)
- Heidrun Lioba Wunram
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Kinderklinik Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Anna-Maria Kasparbauer
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Max Oberste
- Institut für Medizinische Statistik und Bioinformatik, Universität zu Köln, Deutschland
| | - Stephan Bender
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
| |
Collapse
|
26
|
Tu X, Jain A, Parra Bueno P, Decker H, Liu X, Yasuda R. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. SCIENCE ADVANCES 2023; 9:eadg0666. [PMID: 37531435 PMCID: PMC10396292 DOI: 10.1126/sciadv.adg0666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.
Collapse
Affiliation(s)
- Xun Tu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA
| | - Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Paula Parra Bueno
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Helena Decker
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Xiaodan Liu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| |
Collapse
|
27
|
Du H, Xia J, Huang L, Zheng L, Gu W, Yi F. Relationship between insulin-like growth factor-1 and cerebral small vessel disease and its mechanisms: advances in the field. Front Aging Neurosci 2023; 15:1190869. [PMID: 37358957 PMCID: PMC10285072 DOI: 10.3389/fnagi.2023.1190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an active polypeptide protein that closely resembles the structural sequence of insulin and is involved in a variety of metabolic processes in the body. Decreased IGF-1 circulation levels are associated with an increased risk of stroke and a poorer prognosis, but the relationship with cerebral small vessel disease (cSVD) is unclear. Some studies found that the level of IGF-1 in patients with cSVD was significantly reduced, but the clinical significance and underlying mechanisms are unknown. This article reviews the correlation between IGF-1 and cerebrovascular disease and explores the potential relationship and mechanism between IGF-1 and cSVD.
Collapse
Affiliation(s)
- Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Huang
- Department of Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
29
|
Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, Yabluchanskiy A, Koller A, Orsi G, Perlaki G, Schwarcz A, Buki A, Ungvari Z, Toth PJ. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. GeroScience 2022; 44:2771-2783. [PMID: 35869380 PMCID: PMC9768079 DOI: 10.1007/s11357-022-00623-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023] Open
Abstract
Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Hedvig Komaromy
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Akos Koller
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gabor Perlaki
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter J Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Fazekas-Pongor V, Péterfi A, Major D, Szarvas Z, Fekete M, Tabak AG, Csiszar A, Sonntag WE, Austad SN, Ungvari ZI. Decreased lifespan in female "Munchkin" actors from the cast of the 1939 film version of The Wizard of Oz does not support the hypothesis linking hypopituitary dwarfism to longevity. GeroScience 2022; 44:2527-2539. [PMID: 36334178 PMCID: PMC9768075 DOI: 10.1007/s11357-022-00680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
In laboratory mice, pituitary dwarfism caused by genetic reduction or elimination of the activity of growth hormone (GH) significantly extends lifespan. The effects of congenital pituitary dwarfism on human longevity are not well documented. To analyse the effects of untreated pituitary dwarfism on human lifespan, the longevity of a diverse group of widely known little people, the 124 adults who played "Munchkins" in the 1939 movie The Wizard of Oz was investigated. Survival of "Munchkin" actors with those of controls defined as cast members of The Wizard of Oz and those of other contemporary Academy Award winning Hollywood movies was compared. According to the Kaplan-Meier survival curves, survival of female and male "Munchkin" actors was shorter than cast controls and Hollywood controls of respective sexes. Cox regression analyses showed that female "Munchkin" actors had significantly higher risk ratios compared to both female cast controls (RR, 1.70; 95% CI, 1.05 to 2.77) and female Hollywood controls (RR, 1.52; 95% CI, 1.03 to 2.24). Similar trends were also discernible for men, albeit point estimates were not significant. The lack of lifespan extension in "Munchkin" actors does not support the hypothesis that hereditary GH deficiency regulates longevity in humans.
Collapse
Affiliation(s)
| | - Anna Péterfi
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam G Tabak
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, UK
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan I Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
31
|
Kiss T, Nyúl-Tóth Á, Gulej R, Tarantini S, Csipo T, Mukli P, Ungvari A, Balasubramanian P, Yabluchanskiy A, Benyo Z, Conley SM, Wren JD, Garman L, Huffman DM, Csiszar A, Ungvari Z. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience 2022; 44:953-981. [PMID: 35124764 PMCID: PMC9135944 DOI: 10.1007/s11357-022-00519-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Zoltan Benyo
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
32
|
Miller LR, Tarantini S, Nyúl-Tóth Á, Johnston MP, Martin T, Bullen EC, Bickel MA, Sonntag WE, Yabluchanskiy A, Csiszar A, Ungvari ZI, Elliott MH, Conley SM. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci 2022; 14:788296. [PMID: 35356301 PMCID: PMC8959924 DOI: 10.3389/fnagi.2022.788296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Morgan P. Johnston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William E. Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
33
|
García-Magro N, Zegarra-Valdivia JA, Troyas-Martinez S, Torres-Aleman I, Nuñez A. Response Facilitation Induced by Insulin-Like Growth Factor-I in the Primary Somatosensory Cortex of Mice Was Reduced in Aging. Cells 2022; 11:cells11040717. [PMID: 35203366 PMCID: PMC8870291 DOI: 10.3390/cells11040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Aging is accompanied by a decline in cognition that can be due to a lower IGF-I level. We studied response facilitation induced in primary somatosensory (S1) cortical neurons by repetitive stimulation of whiskers in young and old mice. Layer 2/3 and 5/6 neurons were extracellularly recorded in young (≤ 6 months of age) and old (≥ 20 month of age) anesthetized mice. IGF-I injection in S1 cortex (10 nM; 0.2 μL) increased whisker responses in young and old animals. A stimulation train at 8 Hz induced a long-lasting response facilitation in only layer 2/3 neurons of young animals. However, all cortical neurons from young and old animals showed long-lasting response facilitation when IGF-I was applied in the S1 cortex. The reduction in response facilitation in old animals can be due to a reduction in the IGF-I receptors as was indicated by the immunohistochemistry study. Furthermore, a reduction in the performance of a whisker discrimination task was observed in old animals. In conclusion, our findings indicate that there is a reduction in the synaptic plasticity of S1 neurons during aging that can be recovered by IGF-I. Therefore, it opens the possibility of use IGF-I as a therapeutic tool to ameliorate the effects of heathy aging.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jonathan A. Zegarra-Valdivia
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Cajal Institute, Cibernet (CSIC), 28002 Madrid, Spain;
- Universidad Señor de Sipán, Chiclayo 02001, Peru
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Foundation for Science, 48009 Bilbao, Spain
| | - Sara Troyas-Martinez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
| | - Ignacio Torres-Aleman
- Cajal Institute, Cibernet (CSIC), 28002 Madrid, Spain;
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Foundation for Science, 48009 Bilbao, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Correspondence:
| |
Collapse
|
34
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
35
|
Hayes CA, Ashmore BG, Vijayasankar A, Marshall JP, Ashpole NM. Insulin-Like Growth Factor-1 Differentially Modulates Glutamate-Induced Toxicity and Stress in Cells of the Neurogliovascular Unit. Front Aging Neurosci 2021; 13:751304. [PMID: 34887742 PMCID: PMC8650493 DOI: 10.3389/fnagi.2021.751304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-1) is associated with increased risk of stroke and neurodegenerative diseases in advanced age. Numerous reports highlight behavioral and physiological deficits in blood-brain barrier function and neurovascular communication when IGF-1 levels are low. Administration of exogenous IGF-1 reduces the extent of tissue damage and sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the nervous system are often attributed to direct actions on neurons; however, glial cells and the cerebrovasculature are also modulated by IGF-1, and systemic reductions in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may also compromise neural function indirectly by altering the function of supporting glia and vasculature. In this study, we assess and compare the effects of IGF-1 signaling on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures. Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by acting directly on neurons and indirectly on astrocytes. Despite increased resistance to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute increases in glutamate-induced ROS production and mitochondrial dysfunction when IGFR is inhibited at the time of glutamate stimulation. Together these data highlight that each cell type within the neuro-glio-vascular unit differentially responds to stress when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1 observed in advanced age are likely detrimental to the health and function of the entire neuro-glio-vascular unit.
Collapse
Affiliation(s)
- Cellas A. Hayes
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Brandon G. Ashmore
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Akshaya Vijayasankar
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Jessica P. Marshall
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Nicole M. Ashpole
- Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
36
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
37
|
Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, Csiszar A. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021; 17:639-654. [PMID: 34127835 PMCID: PMC8202227 DOI: 10.1038/s41581-021-00430-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Hypertension affects two-thirds of people aged >60 years and significantly increases the risk of both vascular cognitive impairment and Alzheimer's disease. Hypertension compromises the structural and functional integrity of the cerebral microcirculation, promoting microvascular rarefaction, cerebromicrovascular endothelial dysfunction and neurovascular uncoupling, which impair cerebral blood supply. In addition, hypertension disrupts the blood-brain barrier, promoting neuroinflammation and exacerbation of amyloid pathologies. Ageing is characterized by multifaceted homeostatic dysfunction and impaired cellular stress resilience, which exacerbate the deleterious cerebromicrovascular effects of hypertension. Neuroradiological markers of hypertension-induced cerebral small vessel disease include white matter hyperintensities, lacunar infarcts and microhaemorrhages, all of which are associated with cognitive decline. Use of pharmaceutical and lifestyle interventions that reduce blood pressure, in combination with treatments that promote microvascular health, have the potential to prevent or delay the pathogenesis of vascular cognitive impairment and Alzheimer's disease in patients with hypertension.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
38
|
Zegarra-Valdivia JA, Chaves-Coira I, Fernandez de Sevilla ME, Martinez-Rachadell L, Esparza J, Torres-Aleman I, Nuñez A. Reduced Insulin-Like Growth Factor-I Effects in the Basal Forebrain of Aging Mouse. Front Aging Neurosci 2021; 13:682388. [PMID: 34539376 PMCID: PMC8442768 DOI: 10.3389/fnagi.2021.682388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Ignacio Torres-Aleman
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Yabluchanskiy A, Nyul-Toth A, Csiszar A, Gulej R, Saunders D, Towner R, Turner M, Zhao Y, Abdelkari D, Rypma B, Tarantini S. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology 2021; 58:e13718. [PMID: 33141436 PMCID: PMC9166153 DOI: 10.1111/psyp.13718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The present and future research efforts in cognitive neuroscience and psychophysiology rely on the measurement, understanding, and interpretation of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to effectively investigate brain function. Aging and age-associated pathophysiological processes change the structural and functional integrity of the cerebrovasculature which can significantly alter how the BOLD signal is recorded and interpreted. In order to gain an improved understanding of the benefits, drawbacks, and methodological implications for BOLD fMRI in the context of cognitive neuroscience, it is crucial to understand the cellular and molecular mechanism of age-related vascular pathologies. This review discusses the multifaceted effects of aging and the contributions of age-related pathologies on structural and functional integrity of the cerebral microcirculation as they has been investigated in animal models of aging, including age-related alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage, vascular rarefaction, blood-brain barrier disruption, senescence, humoral deficiencies as they relate to, and potentially introduce confounding factors in the interpretation of BOLD fMRI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Monroe Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkari
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
40
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
41
|
Honda K, Kuriyama S, Ichida K, Nakano T, Sugano N, Yokoo T. Association between polymorphism at IGF-1 rs35767 gene locus and long-term decline in renal function: a Japanese retrospective longitudinal cohort study. BMC Nephrol 2021; 22:207. [PMID: 34078313 PMCID: PMC8173978 DOI: 10.1186/s12882-021-02408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) acts on glucose and protein metabolism and human growth and also influences blood pressure and renal function. This study investigated whether the single-nucleotide polymorphism of IGF-1, rs35767, plays a role in metabolic syndrome indicators, including blood pressure, glucose metabolism, uric acid levels, and renal function. METHODS In this retrospective longitudinal cohort study, blood samples from 1506 Japanese individuals were collected and used for genotyping for variant rs35767: T > C in the IGF-1 upstream promoter. Data were analyzed to identify associations between IGF-1 genotypes and patient biochemical parameters, including the components of metabolic syndrome and the long-term change in renal function. RESULTS The cohort rs35767 genotypes included 650 CC carriers (43.2%), 687 TC carriers (45.6%), and 169 TT carriers (11.2%). Multiple regression analysis revealed no association between IGF-1 genotype and blood pressure, glycated hemoglobin level, and serum uric acid level. However, in females, blood pressure was negatively correlated with the TT genotype. Longitudinal observation revealed that the decline in eGFR over 10 years was greater in TT (- 18.51 ± 1.04 mL/min/1.73m2) than in CC carriers (- 16.38 ± 0.52 mL/min/1.73m2; P < 0.05). CONCLUSION The present study suggests that renal function declines faster in individuals with the TT genotype at the IGF-1 rs35767 locus than in those with the CC genotype, suggesting that the TT genotype is associated with the long-term chronological decline in renal function.
Collapse
Affiliation(s)
- Kosuke Honda
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Satoru Kuriyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Nephrology & Hypertension Research Unit, Miho Clinic, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoko Nakano
- Health Management Center of the Tokyo Regional Taxation Bureau Clinic, Tokyo, Japan
| | - Naoki Sugano
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Szarka N, Szellar D, Kiss S, Farkas N, Szakacs Z, Czigler A, Ungvari Z, Hegyi P, Buki A, Toth P. Effect of Growth Hormone on Neuropsychological Outcomes and Quality of Life of Patients with Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:1467-1483. [PMID: 33677992 PMCID: PMC8672110 DOI: 10.1089/neu.2020.7265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most devastating chronic consequences of traumatic brain injury (TBI) is cognitive impairment. One of the possible underlying causes is growth hormone deficiency (GHD) caused by TBI-induced hypopituitarism. Currently, TBI patients are not routinely screened for pituitary function, and there are no standard therapies when GHD is diagnosed. Further, the possible positive effects of GH replacement on cognitive function and quality of life after TBI are not well established. We aimed to assess the current knowledge regarding the effect of GH therapy on cognitive function and quality of life after TBI. We performed a literature search in PubMed, Embase, and Central® databases from inception to October 2019. We extracted data on each term of severity (mild-moderate-severe) of TBI with and without GHD, time since injury, parameters of growth hormone treatment (dosing, length), and cognitive outcomes in terms of verbal and non-verbal memory, and executive, emotional, and motor functions, and performed a meta-analysis on the results of a digit span test assessing working memory. We identified 12 studies (containing two randomized controlled trials) with 264 mild-to-moderate-to-severe TBI patients (Glasgow Coma Score [GCS] varied between 6 and 15) with (n = 255) or without (n = 9) GHD who received GH therapy. GH was administered subcutaneously in gradually increasing doses, monitoring serum insulin-like growth factor-I (IGF-I) level. After TBI, regardless of GCS, 6-12 months of GH therapy, started in the chronic phase post-TBI, induced a moderate improvement in processing speed and memory capacities, decreased the severity of depression, and led to a marked improvement in quality of life. Limitations include the relatively low number of patients involved and the divergent neuropsychological tests used. These results indicate the need for further multi-centric controlled studies to substantiate the use of GH replacement therapy as a potential tool to alleviate TBI-related cognitive impairment and improve quality of life.
Collapse
Affiliation(s)
- Nikolett Szarka
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Dora Szellar
- Department of Pediatrics, University of Pecs Medical School, Pecs, Hungary
| | - Szabolcs Kiss
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zsolt Szakacs
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Zoltan Ungvari
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Peter Toth
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| |
Collapse
|
43
|
Kang D, Waldvogel HJ, Wang A, Fan D, Faull RLM, Curtis MA, Shorten PR, Guan J. The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology 2021; 127:105191. [PMID: 33706042 DOI: 10.1016/j.psyneuen.2021.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Insulin-like growth factor (IGF) binding protein (IGFBP)-3 and cyclic Glycine-Proline (cGP) regulate circulating IGF-1 function that is associated with cognition. The association between IGF-1 function and Alzheimer's disease (AD) remains inconclusive. This study evaluated the changes of IGFBPs and cGP, and their effects on the bioavailability and function of IGF-1 in human brain of AD cases. METHODS Using biological and mathematic analysis we measured the concentrations of total, bound and unbound forms of IGF-1, IGFBPs and cGP in the inferior-frontal gyrus and middle-frontal gyrus of human AD (n = 15) and control cases (n = 15). The association between the changes of total concentration of these peptides and total protein concentration in brain tissues were also analyzed. RESULTS The unbound bioavailable IGF-1 was lower whereas the bound cGP and IGFBP-3 were higher in AD than the control cases. Total protein that was lower in AD than control cases, was negatively associated with cGP concentration of control cases and with IGFBP-3 concentration of AD cases. CONCLUSIONS The results provide direct evidence for IGF-1 deficiency in AD brain due to lower bioavailable IGF-1. The increase of bound IGFBP-3 impaired autocrine regulation. The increase of bound cGP is an autocrine response to improve the bioavailability and function of IGF-1 in AD brain. AVAILABILITY OF DATA AND MATERIAL All data generated or analysed during this study are included in this published article. Additional datasets analysed during the current study available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Dali Kang
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Ao Wang
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Dawei Fan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Paul R Shorten
- AgResearch Ltd, Ruakura Research Centre, Hamilton 3240, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| |
Collapse
|
44
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
46
|
Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 2021; 43:125-136. [PMID: 33011936 PMCID: PMC8050119 DOI: 10.1007/s11357-020-00280-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to lead to the development of cerebral microbleeds (CMBs), which are associated with long term cognitive decline and gait disturbances in patients. The elderly is one of the most vulnerable parts of the population to suffer TBI. Importantly, ageing is known to exacerbate microvascular fragility and to promote the formation of CMBs. In this overview, the effect of ageing is discussed on the development and characteristics of TBI-related CMBs, with special emphasis on CMBs associated with mild TBI. Four cases of TBI-related CMBs are described to illustrate the concept that ageing exacerbates the deleterious microvascular effects of TBI and that similar brain trauma may induce more CMBs in old patients than in young ones. Recommendations are made for future prospective studies to establish the mechanistic effects of ageing on the formation of CMBs after TBI, and to determine long-term consequences of CMBs on clinically relevant outcome measures including cognitive performance, gait and balance function.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Horvath
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Balint Kornyei
- Department of Radiology, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Peter Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
47
|
Wang B, Lin X, Zhou J, Xie C, Li C, Dong R, Zhang G, Sun X, Wang M, Bi Y. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats. Exp Ther Med 2021; 21:215. [PMID: 33574912 PMCID: PMC7818527 DOI: 10.3892/etm.2021.9647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/29/2020] [Indexed: 11/15/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a serious complication following anesthesia and operations in aged patients undergoing surgical intervention. It is characterized by temporary or permanent cognitive decline, memory impairment and deterioration in language comprehension and social adaption ability. Therefore, the development of POCD prevention and treatment tools has become an area of interest. The current study assessed the therapeutic effects of insulin-like growth factor-1 (IGF-1) on POCD in aged rats and explored the underlying mechanisms. Model rats underwent splenectomy under 1.5-2% isoflurane and mechanical ventilation. IGF-1 (50 µg/kg) was diluted in normal saline and administered by abdominal hypodermic injection daily from the operation to day 7 post-operation. Following splenectomy, the animals showed marked cognitive impairment as determined by the Morris water maze test. Hippocampal protein levels of amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 (BACE-1), amyloid-β (Aβ), capase3, Bax and Bcl-2 were assessed by immunoblotting. Neuronal apoptosis in the hippocampus was analyzed using a TUNEL assay. The results demonstrated that the levels of APP, BACE-1, Aβ, caspase3 and Bax were increased following splenectomy, while the levels of Bcl2 were reduced at days 1, 3 and 7 post-operation in aged rats. However, IGF-1 downregulated APP, BACE-1, Aβ, capase3 and Bax, and upregulated Bcl2 at these time points following splenectomy. TUNEL staining revealed that administration of IGF-1 significantly reduced neuronal apoptosis in the hippocampal CA1 region following splenectomy. These results indicated that IGF-1 decreased Aβ-protein production and inhibited neuronal apoptosis in the hippocampus following splenectomy, subsequently alleviating POCD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jiahui Zhou
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Chunhui Xie
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Chuan Li
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaopeng Sun
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
48
|
Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 2020; 64:101189. [PMID: 32998063 PMCID: PMC7710623 DOI: 10.1016/j.arr.2020.101189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the upcoming decades. Yet, there are no current preventative or therapeutic treatments available against the development and progression of VCI. Therefore, there is a pressing need to better understand the pathophysiology underlying these conditions, for the development of novel tools and interventions to improve cerebrovascular health and delay the onset of VCI. There is strong epidemiological and experimental evidence that lifestyle factors, including nutrition and dietary habits, significantly affect cerebrovascular health and thereby influence the pathogenesis of VCI. Here, recent evidence is presented discussing the effects of lifestyle interventions against age-related diseases which in turn, inspired novel research aimed at investigating the possible beneficial effects of dietary interventions for the prevention of cognitive decline in older adults.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nathan Price
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
49
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|