1
|
Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P, Tabecka-Lonczynska A, Stachowicz K. Time-dependent dual mode of action of COX-2 inhibition on mouse serum corticosterone levels. Steroids 2024; 207:109438. [PMID: 38723842 DOI: 10.1016/j.steroids.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Magdalena Sowa-Kućma
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Paulina Misztak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Tabecka-Lonczynska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Katarzyna Stachowicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
2
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
3
|
Gritton HJ, Booth V, Howe WM. Special issue on cholinergic signalling. Eur J Neurosci 2024; 59:2131-2137. [PMID: 38679811 DOI: 10.1111/ejn.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Howard J Gritton
- Department of Comparative Biosciences, Bioengineering, and Psychology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - William M Howe
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Kim R, Ananth MR, Desai NS, Role LW, Talmage DA. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli. Cell Rep 2024; 43:114009. [PMID: 38536818 PMCID: PMC11080946 DOI: 10.1016/j.celrep.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
To better understand the function of cholinergic projection neurons in the ventral pallidum (VP), we examined behavioral responses to appetitive (APP) and aversive (AV) odors that elicited approach or avoidance, respectively. Exposure to each odor increased cFos expression and calcium signaling in VP cholinergic neurons. Activity and Cre-dependent viral vectors selectively labeled VP cholinergic neurons that were activated and reactivated in response to either APP or AV odors, but not both, identifying two non-overlapping populations of VP cholinergic neurons differentially activated by the valence of olfactory stimuli. These two subpopulations showed differences in electrophysiological properties, morphology, and projections to the basolateral amygdala. Although VP neurons are engaged in both approach and avoidance behavioral responses, cholinergic signaling is only required for approach behavior. Thus, two distinct subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play distinct roles in approach and avoidance behaviors.
Collapse
Affiliation(s)
- Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mala R Ananth
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niraj S Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lorna W Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Mu R, Hou X, Liu Q, Wang W, Qin C, Li H. Up-regulation of GPR139 in the medial septum ameliorates cognitive impairment in two mouse models of Alzheimer's disease. Int Immunopharmacol 2024; 130:111786. [PMID: 38447415 DOI: 10.1016/j.intimp.2024.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aβ1-42). RNA-sequencing data analysis showed that Aβ1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aβ1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aβ1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China; Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoying Hou
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Liu
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wan Wang
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chi Qin
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixian Li
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
7
|
Kim R, Ananth M, Desai NS, Role LW, Talmage DA. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561261. [PMID: 37986753 PMCID: PMC10659428 DOI: 10.1101/2023.10.06.561261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The ventral pallidum (VP) mediates motivated behaviors largely via the action of VP GABA and glutamatergic neurons. In addition to these neuronal subtypes, there is a population of cholinergic projection neurons in the VP, whose functional significance remains unclear. To understand the functional role of VP cholinergic neurons, we first examined behavioral responses to an appetitive (APP) odor that elicited approach, and an aversive (AV) odor that led to avoidance. To examine how VP cholinergic neurons were engaged in APP vs. AV responses, we used an immediate early gene marker and in-vivo fiber photometry, examining the activation profile of VP cholinergic neurons in response to each odor. Exposure to each odor led to an increase in the number of cFos counts and increased calcium signaling of VP cholinergic neurons. Activity and cre-dependent viral vectors were designed to label engaged VP cholinergic neurons in two distinct contexts: (1) exposure to the APP odor, (2) followed by subsequent exposure to the AV odor, and vice versa. These studies revealed two distinct, non-overlapping subpopulations of VP cholinergic neurons: one activated in response to the APP odor, and a second distinct population activated in response to the AV odor. These two subpopulations of VP cholinergic neurons are spatially intermingled within the VP, but show differences in electrophysiological properties, neuronal morphology, and projections to the basolateral amygdala. Although VP cholinergic neurons are engaged in behavioral responses to each odor, VP cholinergic signaling is only required for approach behavior. Indeed, inhibition of VP cholinergic neurons not only blocks approach to the APP odor, but reverses the behavior, leading to active avoidance. Our results highlight the functional heterogeneity of cholinergic projection neurons within the VP. These two subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play unique roles in approach and avoidance behaviors.
Collapse
Affiliation(s)
- Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mala Ananth
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Niraj S. Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lorna W. Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David A. Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Zheng Y, Tao S, Liu Y, Liu J, Sun L, Zheng Y, Tian Y, Su P, Zhu X, Xu F. Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning. Int J Mol Sci 2022; 23:ijms23158472. [PMID: 35955605 PMCID: PMC9368792 DOI: 10.3390/ijms23158472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Sijue Tao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Jingjing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yawen Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yu Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Peng Su
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
| | - Xutao Zhu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- Correspondence: (X.Z.); (F.X.)
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (X.Z.); (F.X.)
| |
Collapse
|
10
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Karunakaran KB, Thiyagaraj A, Santhakumar K. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:6. [PMID: 35212831 PMCID: PMC8881542 DOI: 10.1007/s13659-022-00332-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors increase the retention of acetylcholine (ACh) in synapses. Although they alleviate cognitive deficits in Alzheimer's disease, their limited benefits warrant investigations of plant extracts with similar properties. We studied the anti-AChE activity of Convolvulus pluricaulis (CP) in a zebrafish model of cognitive impairment induced by scopolamine (SCOP). CP is a perennial herb with anti-amnesiac and anxiolytic properties. It contains alkaloid, anthocyanin, coumarin, flavonoid, phytosterol and triterpenoid components. Isoxazole (ISOX) was used as a positive control for AChE inhibition. CP-treated 168 hpf larvae showed a similar pattern of AChE inhibition (in the myelencephalon and somites) as that of ISOX-treated larvae. CP was superior to ISOX as evidenced by the retention of avoidance response behavior in adult zebrafish. Molecular docking studies indicated that ISOX binds Ser203 of the catalytic triad on the human AChE. The active components of CP-scopoletin and kaempferol-were bound by His447 of the catalytic triad, the anionic subsite of the catalytic center, and the peripheral anionic site. This suggested the ability of CP to mediate both competitive and non-competitive modes of inhibition. Surprisingly, SCOP showed AChE inhibition in larvae, possibly mediated via the choline-binding sites. CP + SCOP induced a concentration-dependent increase in AChE inhibition and ACh depletion. Abnormal motor responses were observed with ISOX, CP, ISOX + SCOP, and CP + SCOP, indicative of undesirable effects on the peripheral cholinergic system. Our study proposes the examination of CP, SCOP, and CP + SCOP as potential AChE inhibitors for their ability to modulate cognitive deficits.
Collapse
Affiliation(s)
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| |
Collapse
|
12
|
Viho EMG, Buurstede JC, Berkhout JB, Mahfouz A, Meijer OC. Cell type specificity of glucocorticoid signaling in the adult mouse hippocampus. J Neuroendocrinol 2022; 34:e13072. [PMID: 34939259 PMCID: PMC9286676 DOI: 10.1111/jne.13072] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Glucocorticoid stress hormones are powerful modulators of brain function and can affect mood and cognitive processes. The hippocampus is a prominent glucocorticoid target and expresses both the glucocorticoid receptor (GR: Nr3c1) and the mineralocorticoid receptor (MR: Nr3c2). These nuclear steroid receptors act as ligand-dependent transcription factors. Transcriptional effects of glucocorticoids have often been deduced from bulk mRNA measurements or spatially informed individual gene expression. However, only sparse data exists allowing insights on glucocorticoid-driven gene transcription at the cell type level. Here, we used publicly available single-cell RNA sequencing data to assess the cell-type specificity of GR and MR signaling in the adult mouse hippocampus. The data confirmed that Nr3c1 and Nr3c2 expression differs across neuronal and non-neuronal cell populations. We analyzed co-expression with sex hormones receptors, transcriptional coregulators, and receptors for neurotransmitters and neuropeptides. Our results provide insights in the cellular basis of previous bulk mRNA results and allow the formulation of more defined hypotheses on the effects of glucocorticoids on hippocampal function.
Collapse
Affiliation(s)
- Eva M. G. Viho
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jacobus C. Buurstede
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jari B. Berkhout
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Ahmed Mahfouz
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Delft Bioinformatics LaboratoryDelft University of TechnologyDelftThe Netherlands
- Leiden Computational Biology CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Onno C. Meijer
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
13
|
Nosjean A, Granon S. Brain Adaptation to Acute Stress: Effect of Time, Social Buffering, and Nicotinic Cholinergic System. Cereb Cortex 2021; 32:3990-4011. [PMID: 34905774 DOI: 10.1093/cercor/bhab461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Both social behavior and stress responses rely on the activity of the prefrontal cortex (PFC) and basolateral nucleus of the amygdala (BLA) and on cholinergic transmission. We previously showed in adult C57BL/6J (B6) mice that social interaction has a buffering effect on stress-related prefrontal activity, depending on the β2-/- cholinergic nicotinic receptors (nAChRs, β2-/- mice). The latency for this buffer to emerge being short, we question here whether the associated brain plasticity, as reflected by regional c-fos protein quantification and PFC-BLA functional connectivity, is modulated by time. Overall, we show that time normalized the stress-induced PFC hyperactivation in B6 mice and PFC hypo-activation in β2-/- mice, with no effect on BLA. It also triggered a multitude of functional links between PFC subareas, and between PFC and BLA in B6 mice but not β2-/- mice, showing a central role of nAChRs in this plasticity. Coupled with social interaction and time, stress led to novel and drastic diminution of functional connectivity within the PFC in both genotypes. Thus, time, emotional state, and social behavior induced dissociated effects on PFC and BLA activity and important cortico-cortical reorganizations. Both activity and plasticity were under the control of the β2-nAChRs.
Collapse
Affiliation(s)
- Anne Nosjean
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France
| | - Sylvie Granon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France
| |
Collapse
|
14
|
The role of maternal nutrition during pregnancy in the intergenerational transmission of childhood adversity. Psychoneuroendocrinology 2021; 130:105283. [PMID: 34082275 DOI: 10.1016/j.psyneuen.2021.105283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/30/2023]
Abstract
Adverse childhood experiences (ACEs) of a woman can lead to dysregulated hypothalamus-pituitary-adrenal (HPA) axis during pregnancy, which can in turn adversely affect her offspring HPA axis function. Choline and docosahexaenoic acid (DHA) are dietary factors with the potential to favorably modify the stress response system. The current study aimed to investigate whether maternal choline intake and DHA status moderate the effects of maternal ACEs exposure on maternal and infant HPA axes function. Participants were a sub-sample of the prospective longitudinal Alberta Pregnancy Outcomes and Nutrition (APrON) study consisting of 340 mothers and 238 infants. We collected data on maternal ACEs, maternal choline intake (24-hour dietary recall) and serum phospholipid DHA concentrations (at each trimester). Women self-collected saliva samples on two consecutive days (at waking, +30 min, 1100 h, and 2100 h) in each trimester to calculate the cortisol awakening response (CAR) and total daytime cortisol. Infants' salivary cortisol was measured before and after (20, and 40 min) exposure to a blood draw stressor 3 months postpartum. During pregnancy, choline intake moderated (reduced) the association between maternal ACEs and CAR (β = -0.003; 95% CI -0.006, -0.003), but not total daytime cortisol. DHA status did not moderate the association between ACEs and CAR or total daytime cortisol. Choline intake also moderated (reduced) the association between maternal CAR and infant cortisol during a stress task (β = -0.0001; 95% CI -0.0002, -0.00003). Maternal DHA status revealed no modifying effects on these associations. Our findings suggest that maternal choline intake, but not DHA status, can buffer the associations between ACEs and maternal HPA axis, as well as maternal and infant HPA axes function.
Collapse
|
15
|
Amalric M, Pattij T, Sotiropoulos I, Silva JM, Sousa N, Ztaou S, Chiamulera C, Wahlberg LU, Emerich DF, Paolone G. Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders. Front Behav Neurosci 2021; 15:661973. [PMID: 34366802 PMCID: PMC8340002 DOI: 10.3389/fnbeh.2021.661973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.
Collapse
Affiliation(s)
- Marianne Amalric
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
| | - Tommy Pattij
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Joana M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Samira Ztaou
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
- Department of Molecular Therapeutics, New York State Psychiatric Institute, Department of Psychiatry, Columbia University, New York, NY, United States
| | - Cristiano Chiamulera
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Patel S, Howard D, Chowdhury N, Derieux C, Wellslager B, Yilmaz Ö, French L. Characterization of Human Genes Modulated by Porphyromonas gingivalis Highlights the Ribosome, Hypothalamus, and Cholinergic Neurons. Front Immunol 2021; 12:646259. [PMID: 34194426 PMCID: PMC8236716 DOI: 10.3389/fimmu.2021.646259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, a bacterium associated with periodontal disease, is a suspected cause of Alzheimer's disease. This bacterium is reliant on gingipain proteases, which cleave host proteins after arginine and lysine residues. To characterize gingipain susceptibility, we performed enrichment analyses of arginine and lysine proportion proteome-wide. Genes differentially expressed in brain samples with detected P. gingivalis reads were also examined. Genes from these analyses were tested for functional enrichment and specific neuroanatomical expression patterns. Proteins in the SRP-dependent cotranslational protein targeting to membrane pathway were enriched for these residues and previously associated with periodontal and Alzheimer's disease. These ribosomal genes are up-regulated in prefrontal cortex samples with detected P. gingivalis sequences. Other differentially expressed genes have been previously associated with dementia (ITM2B, MAPT, ZNF267, and DHX37). For an anatomical perspective, we characterized the expression of the P. gingivalis associated genes in the mouse and human brain. This analysis highlighted the hypothalamus, cholinergic neurons, and the basal forebrain. Our results suggest markers of neural P. gingivalis infection and link the cholinergic and gingipain hypotheses of Alzheimer's disease.
Collapse
Affiliation(s)
- Sejal Patel
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Casey Derieux
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bridgette Wellslager
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic Targeting of Histone Deacetylases in Diagnostics and Treatment of Depression. Int J Mol Sci 2021; 22:5398. [PMID: 34065586 PMCID: PMC8160658 DOI: 10.3390/ijms22105398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is a highly prevalent, disabling, and often chronic illness that places substantial burdens on patients, families, healthcare systems, and the economy. A substantial minority of patients are unresponsive to current therapies, so there is an urgent need to develop more broadly effective, accessible, and tolerable therapies. Pharmacological regulation of histone acetylation level has been investigated as one potential clinical strategy. Histone acetylation status is considered a potential diagnostic biomarker for depression, while inhibitors of histone deacetylases (HDACs) have garnered interest as novel therapeutics. This review describes recent advances in our knowledge of histone acetylation status in depression and the therapeutic potential of HDAC inhibitors.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Korea;
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Sharma VK, Singh TG. Navigating Alzheimer's Disease via Chronic Stress: The Role of Glucocorticoids. Curr Drug Targets 2021; 21:433-444. [PMID: 31625472 DOI: 10.2174/1389450120666191017114735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic intensifying incurable progressive disease leading to neurological deterioration manifested as impairment of memory and executive brain functioning affecting the physical ability like intellectual brilliance, common sense in patients. The recent therapeutic approach in Alzheimer's disease is only the symptomatic relief further emerging the need for therapeutic strategies to be targeted in managing the underlying silent killing progression of dreaded pathology. Therefore, the current research direction is focused on identifying the molecular mechanisms leading to the evolution of the understanding of the neuropathology of Alzheimer's disease. The resultant saturation in the area of current targets (amyloid β, τ Protein, oxidative stress etc.) has led the scientific community to rethink of the mechanistic neurodegenerative pathways and reprogram the current research directions. Although, the role of stress has been recognized for many years and contributing to the development of cognitive impairment, the area of stress has got the much-needed impetus recently and is being recognized as a modifiable menace for AD. Stress is an unavoidable human experience that can be resolved and normalized but chronic activation of stress pathways unsettle the physiological status. Chronic stress mediated activation of neuroendocrine stimulation is generally linked to a high risk of developing AD. Chronic stress-driven physiological dysregulation and hypercortisolemia intermingle at the neuronal level and leads to functional (hypometabolism, excitotoxicity, inflammation) and anatomical remodeling of the brain architecture (senile plaques, τ tangles, hippocampal atrophy, retraction of spines) ending with severe cognitive deterioration. The present review is an effort to collect the most pertinent evidence that support chronic stress as a realistic and modifiable therapeutic earmark for AD and to advocate glucocorticoid receptors as therapeutic interventions.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India.,Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| |
Collapse
|
19
|
Balietti M, Pugliese A, Conti F. In aged rats, differences in spatial learning and memory influence the response to late-life Environmental Enrichment. Exp Gerontol 2020; 146:111225. [PMID: 33388381 DOI: 10.1016/j.exger.2020.111225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
It has clearly been demonstrated that cognitive stimulation, physical exercise, and social engagement help counteract age-related cognitive decline. However, several important issues remain to be addressed. Given the wide differences in cognitive impairment found among individuals of the same age, identifying the subjects who will benefit most from late-life interventions is one such issue. Environmental Enrichment (EE) is a particularly valuable approach to do this. In this study, aged (21-month-old) rats were assigned to a better (BL) or a worse (WL) learner group (training phase) and to a non-impaired (NI) or an impaired (I) group (probe phase) by their performance on the Morris Water Maze, using the test performances of adult (12-month-old) rats as the cut-offs. The aged rats were retested after a 12-week EE or standard housing (SH) protocol. After 12 weeks, the performances of SH rats had deteriorated, whereas all rats benefited from EE, albeit in different ways. In particular, the animals assigned to the BL and the NI groups prior to EE still performed as well as the adult rats (performance preservation) whereas, critically, the animals assigned to the WL and the I groups before EE showed such improved performances that they reached the level of the adult rats (performance improvement), despite having aged further. EE seems to induce the preservation in BLs and the improvement in WLs of spatial search strategies and the preservation in NIs and the increase in Is of a focused and protract research of the escape point. Our findings suggest that late-life EE prevents spatial learning and memory decline in still cognitively preserved animals and stimulates residual functional reserve in already cognitively compromised animals. Future research should focus on individually tailored stimulation protocols to improve their effect and afford a better understanding of the underlying processes.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
20
|
Meyer-Arndt L, Hetzer S, Asseyer S, Bellmann-Strobl J, Scheel M, Stellmann JP, Heesen C, Engel AK, Brandt AU, Haynes JD, Paul F, Gold SM, Weygandt M. Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiol Stress 2020; 13:100244. [PMID: 33344700 PMCID: PMC7739031 DOI: 10.1016/j.ynstr.2020.100244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by two neuropathological key aspects: inflammation and neurodegeneration. Clinical studies support a prospective link between psychological stress and subsequent inflammatory disease activity. However, it is unknown if a similar link exists for grey matter (GM) degeneration as the key driver of irreversible disability. METHODS We tested whether neural network activity triggered in a psychological fMRI stress paradigm (a mental arithmetic task including social evaluation) conducted at a baseline time point predicts future GM atrophy in 25 persons with MS (14 females). Atrophy was determined between the baseline and a follow-up time point with a median delay of 1012 (Rg: 717-1439) days. Additionally, atrophy was assessed in 22 healthy subjects (13 females; median delay 771 [Rg: 740-908] days between baseline and follow-up) for comparison. RESULTS An analysis of longitudinal atrophy in patients revealed GM loss in frontal, parietal, and cerebellar areas. Cerebellar atrophy was more pronounced in patients than controls. Future parietal and cerebellar atrophy could be predicted based on activity of two networks. Perceived psychological stress was negatively related to future parietal atrophy in patients and activity of the network predictive of parietal atrophy was positively linked to perceived stress. CONCLUSIONS We have shown that blunted neural and psychological stress processing have a detrimental effect on the course of MS and are interrelated. Together with research showing that psychological and neural stress processing can be altered through interventions, our findings suggest that stress processing might constitute an important modifiable disease factor.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Experimental and Clinical Research Center, 13125, Berlin, Germany
| | - Michael Scheel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Aix-Marseille Univ, CNRS, CRMBM, UMR, 7339, Marseille Cedex, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Experimental and Clinical Research Center, 13125, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Neurology, 10117, Berlin, Germany
| | - Stefan M. Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Psychosomatic Medicine, 10117, Berlin, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
| |
Collapse
|
21
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
22
|
Klausing AD, Fukuwatari T, Bucci DJ, Schwarcz R. Stress-induced impairment in fear discrimination is causally related to increased kynurenic acid formation in the prefrontal cortex. Psychopharmacology (Berl) 2020; 237:1931-1941. [PMID: 32215686 PMCID: PMC7308198 DOI: 10.1007/s00213-020-05507-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Stress is related to cognitive impairments which are observed in most major brain diseases. Prior studies showed that the brain concentration of the tryptophan metabolite kynurenic acid (KYNA) is modulated by stress, and that changes in cerebral KYNA levels impact cognition. However, the link between these phenomena has not been tested directly so far. OBJECTIVES To investigate a possible causal relationship between acute stress, KYNA, and fear discrimination. METHODS Adult rats were exposed to one of three acute stressors-predator odor, restraint, or inescapable foot shocks (ISS)-and KYNA in the prefrontal cortex was measured using microdialysis. Corticosterone was analyzed in a subset of rats. Another cohort underwent a fear discrimination procedure immediately after experiencing stress. Different auditory conditioned stimuli (CSs) were either paired with foot shock (CS+) or were non-reinforced (CS-). One week later, fear was assessed by re-exposing rats to each CS. Finally, to test whether stress-induced changes in KYNA causally impacted fear discrimination, a group of rats that received ISS were pre-treated with the selective KYNA synthesis inhibitor PF-04859989. RESULTS ISS caused the greatest increase in circulating corticosterone levels and raised extracellular KYNA levels by ~ 85%. The two other stressors affected KYNA much less (< 25% increase). Moreover, only rats that received ISS were unable to discriminate between CS+ and CS-. PF-04859989 abolished the stress-induced KYNA increase and also prevented the impairment in fear discrimination in animals that experienced ISS. CONCLUSIONS These findings demonstrate a causal connection between stress-induced KYNA increases and cognitive deficits. Pharmacological manipulation of KYNA synthesis therefore offers a novel approach to modulate cognitive processes in stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA.
| |
Collapse
|
23
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
24
|
Mineur YS, Ernstsen C, Islam A, Lefoli Maibom K, Picciotto MR. Hippocampal knockdown of α2 nicotinic or M1 muscarinic acetylcholine receptors in C57BL/6J male mice impairs cued fear conditioning. GENES BRAIN AND BEHAVIOR 2020; 19:e12677. [PMID: 32447811 DOI: 10.1111/gbb.12677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
Acetylcholine (ACh) signaling in the hippocampus is important for behaviors related to learning, memory and stress. In this study, we investigated the role of two ACh receptor subtypes previously shown to be involved in fear and anxiety, the M1 mAChR and the α2 nAChR, in mediating the effects of hippocampal ACh on stress-related behaviors. Adeno-associated viral vectors containing short-hairpin RNAs targeting M1 or α2 were infused into the hippocampus of male C57BL/6J mice, and behavior in a number of paradigms related to stress responses and fear learning was evaluated. There were no robust effects of hippocampal M1 mAChR or α2 nAChR knockdown (KD) in the light/dark box, tail suspension, forced swim or novelty-suppressed feeding tests. However, effects on fear learning were observed in both KD groups. Short term learning was intact immediately after training in all groups of mice, but both the M1 and α2 hippocampal knock down resulted in impaired cued fear conditioning 24 h after training. In addition, there was a trend for a deficit in contextual memory the M1 mAChR KD group 24 h after training. These results suggest that α2 nicotinic and M1 muscarinic ACh receptors in the hippocampus contribute to fear learning and could be relevant targets to modify brain circuits involved in stress-induced reactivity to associated cues.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charlotte Ernstsen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ashraful Islam
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathrine Lefoli Maibom
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Cumulative use of therapeutic bladder anticholinergics and the risk of dementia in patients with lower urinary tract symptoms: a nationwide 12-year cohort study. BMC Geriatr 2019; 19:380. [PMID: 31888519 PMCID: PMC6937838 DOI: 10.1186/s12877-019-1401-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Studies have shown an association between lower urinary tract symptoms (LUTS) and an increased risk of dementia. Whether anticholinergic use contributes to the development of dementia in patients with LUTS remains unknown, especially in Asian populations. This study aims to investigate the association between anticholinergic use and dementia in patients with LUTS. Methods This study included patients aged 50 years and over with newly diagnosed LUTS (January 2001 to December 2005), divided into four groups according to their cumulative defined daily doses (cDDDs) of anticholinergics: < 28 cDDDs, 28–84 cDDDs, 85–336 cDDDs, ≥337 cDDDs. Patients were followed up until dementia developed or until the end of 2012. Results We recruited a total of 16,412 patients. The incidence of dementia was 10% in the < 28 cDDD group, 8.9% in the 28–84 cDDD group, 11.5% in the 85–336 cDDD group, and 14.4% in the ≥337 cDDD group (p = .005). In a Cox proportional hazards analysis, the adjusted hazard ratio of dementia was 1.15 (95% CI = 0.97–1.37) in the 85–336 cDDD group, and 1.40 (95% CI = 1.12–1.75) in the ≥337 cDDD group after adjusting for covariates. Conclusions Our study indicates that higher cumulative anticholinergic exposure is associated with an increase in the risk of incident dementia in patients with LUTS aged 50 years of age and over. Either using one anticholinergic agent or switching anticholinergic agents cumulatively increases this risk. Therapeutic risks and benefits of using anticholinergics in LUTS treatment should be clinically reviewed and weighed.
Collapse
|
26
|
Mantanona CP, Alsiö J, Elson JL, Fisher BM, Dalley JW, Bussey T, Pienaar IS. Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats. Brain Struct Funct 2019; 224:3095-3116. [PMID: 31506825 PMCID: PMC6875150 DOI: 10.1007/s00429-019-01957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic-pituitary-adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.
Collapse
Affiliation(s)
- Craig P Mantanona
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Johan Alsiö
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Beth M Fisher
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Timothy Bussey
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
27
|
Dougherty SE, Kajstura TJ, Jin Y, Chan-Cortés MH, Kota A, Linden DJ. Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. Exp Neurol 2019; 323:113089. [PMID: 31697941 DOI: 10.1016/j.expneurol.2019.113089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Serotonin axons in the adult rodent brain can regrow and recover their function following several forms of injury including controlled cortical impact (CCI), a neocortical stab wound, or systemic amphetamine toxicity. To assess whether this capacity for regrowth is unique to serotonergic fibers, we used CCI and stab injury models to assess whether fibers from other neuromodulatory systems can also regrow following injury. Using tyrosine-hydoxylase (TH) immunohistochemistry we measured the density of catecholaminergic axons before and at various time points after injury. One week after CCI injury we observed a pronounced loss, across cortical layers, of TH+ axons posterior to the site of injury. One month after CCI injury the same was true of TH+ axons both anterior and posterior to the site of injury. This loss was followed by significant recovery of TH+ fiber density across cortical layers, both anterior and posterior to the site of injury, measured three months after injury. TH+ axon loss and recovery over weeks to months was also observed throughout cortical layers using the stab injury model. Double label immunohistochemistry revealed that nearly all TH+ axons in neocortical layer 1/2 are also dopamine-beta-hyroxylase+ (DBH+; presumed norepinephrine), while TH+ axons in layer 5 are a mixture of DBH+ and dopamine transporter+ types. This suggests that noradrenergic axons can regrow following CCI or stab injury in the adult mouse neocortex and leaves open the question of whether dopaminergic axons can do the same.
Collapse
Affiliation(s)
- Sarah E Dougherty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Tymoteusz J Kajstura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Yunju Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA; Department of Neurobiology and Anatomy, University of Utah, School of Medicine, 20 South 2030 East, Room 320 BPRB, Salt Lake City, UT, USA
| | - Michelle H Chan-Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Akhil Kota
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - David J Linden
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA.
| |
Collapse
|
28
|
Talwar P, Kushwaha S, Gupta R, Agarwal R. Systemic Immune Dyshomeostasis Model and Pathways in Alzheimer's Disease. Front Aging Neurosci 2019; 11:290. [PMID: 31736740 PMCID: PMC6838686 DOI: 10.3389/fnagi.2019.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) still remains an enigma for researchers and clinicians. The onset of AD is insidious, gradually progressive and multifactorial. The recent accumulated scientific evidences suggests that the pathological changes resemble the autoimmune-driven self-sustaining inflammatory process as a result of prolonged oxidative stress and immune dyshomeostasis. Apart from aging, during life span various other factors-mainly environmental, lifestyle, chronic stress, polymicrobial infections and neuroendocrine functions-affect the immune system. Here, we provide crosstalk among "trigger insults/inflammatory stimulus" i.e., polymicrobial infection, chronic stress, pro-inflammatory diet and cholinergic signaling to put forward a "Systemic Immune Dyshomeostasis" model as to connect the events leading to AD development and progression. Our model implicates altered cholinergic signaling and suggests pathological stages with various modifiable risk factors and triggers at different chronological age and stage of cognitive decline. The search of specific autoantibodies for AD which may serve as the suitable blood/CSF biomarkers should be actively pursued for the early diagnosis of AD. The preventive and therapeutic strategies should be directed towards maintaining the normal functioning of the immune system throughout the life span and specific modulation of the immune responses in the brain depending on the stage of changes in brain.
Collapse
Affiliation(s)
- Puneet Talwar
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), University of Delhi, Delhi, India
| | - Suman Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), University of Delhi, Delhi, India
| | - Renu Gupta
- Department of Microbiology, Institute of Human Behaviour and Allied Sciences (IHBAS), University of Delhi, Delhi, India
| | - Rachna Agarwal
- Department of Neurochemistry, Institute of Human Behaviour and Allied Sciences (IHBAS), University of Delhi, Delhi, India
| |
Collapse
|
29
|
Konijnenberg C, Melinder A. Salivary cortisol levels relate to cognitive performance in children prenatally exposed to methadone or buprenorphine. Dev Psychobiol 2019; 62:409-418. [PMID: 31564069 DOI: 10.1002/dev.21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/24/2019] [Accepted: 08/25/2019] [Indexed: 11/11/2022]
Abstract
Opioid maintenance therapy (OMT) is generally recommended for pregnant opioid-dependent women. However, much is still unknown about the potential long-term effects of prenatal methadone and buprenorphine exposure. This study explored the long-term effects of prenatal methadone and buprenorphine exposure in a cohort (n = 41) of children, aged 9-11 years, using the Wechsler Abbreviated Scale of Intelligence (WASI) to measure cognitive development and salivary cortisol samples to measure HPA-axis activity. Prenatally exposed children scored significantly lower on all four subtests of WASI (vocabulary, similarities, block design, and matrix reasoning), compared to a comparison group (all p < .05). No group differences were found for salivary cortisol levels or cortisol reactivity levels (all p > .05). Cortisol levels significantly predicted matrix reasoning scores for the OMT group, β = -65.58, t(20) = 15.70, p = .02. Findings suggest that prenatal exposure to methadone or buprenorphine does not have long-term effects on children's HPA-axis functioning. However, since children of women in OMT scored significantly lower on tasks of cognitive function, careful follow-up throughout the school years and across adolescence is recommended.
Collapse
Affiliation(s)
- Carolien Konijnenberg
- Department of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Cognitive Developmental Research Unit, Department of Psychology, University of Oslo, Oslo, Norway
| | - Annika Melinder
- Cognitive Developmental Research Unit, Department of Psychology, University of Oslo, Oslo, Norway.,Oslo University Hospital, Child- and Adolescents Mental Health, Oslo, Norway
| |
Collapse
|
30
|
Bondar NP, Reshetnikov VV, Burdeeva KV, Merkulova TI. Effect of neonatal dexamethasone treatment on cognitive abilities of adult male mice and gene expression in the hypothalamus. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The early postnatal period is critical for the development of the nervous system. Stress during this period causes negative long-term effects, which are manifested at both behavioral and molecular levels. To simulate the elevated glucocorticoid levels characteristic of early-life stress, in our study we used the administration of dexamethasone, an agonist of glucocorticoid receptors, at decreasing doses at the first three days of life (0.5, 0.3, 0.1 mg/kg, s.c.). In adult male mice with neonatal dexamethasone treatment, an increase in the relative weight of the adrenal glands and a decrease in body weight were observed, while the basal level of corticosterone remained unchanged. Dexamethasone treatment in early life had a negative impact on the learning and spatial memory of adult mice in the Morris water maze. We analyzed the effect of elevated glucocorticoid levels in early life on the expression of the Crh, Avp, Gr, and Mr genes involved in the regulation of the HPA axis in the hypothalami of adult mice. The expression level of the mineralocorticoid receptor gene (Mr) was significantly downregulated, and the glucocorticoid receptor gene (Gr) showed a tendency towards decreased expression (p = 0.058) in male mice neonatally treated with dexamethasone, as compared with saline administration. The expression level of the Crh gene encoding corticotropin-releasing hormone was unchanged, while the expression of the vasopressin gene (Avp) was increased in response to neonatal administration of dexamethasone. The obtained results demonstrate a disruption of negative feedback regulation of the HPA axis, which involves glucocorticoid and mineralocorticoid receptors, at the level of the hypothalamus. Malfunction of the HPA axis as a result of activation of the glucocorticoid system in early life may cause the development of cognitive impairment in the adult mice.
Collapse
Affiliation(s)
- N. P. Bondar
- Institute of Cytology and Genetics, SB RAS;
Novosibirsk State University
| | | | | | - T. I. Merkulova
- Institute of Cytology and Genetics, SB RAS;
Novosibirsk State University
| |
Collapse
|
31
|
Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer's Disease Studies. Mol Neurobiol 2019; 56:7355-7367. [PMID: 31037648 DOI: 10.1007/s12035-019-1605-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Cholinergic transmission is critical to high-order brain functions such as memory, learning, and attention. Alzheimer's disease (AD) is characterized by cognitive decline associated with a specific degeneration of cholinergic neurons. No effective treatment to prevent or reverse the symptoms is known. Part of this might be due to the lack of in vitro models that effectively mimic the relevant features of AD. Here, we describe the characterization of an AD in vitro model using the SH-SY5Y cell line. Exponentially growing cells were maintained in DMEM/F12 medium and differentiation was triggered by the combination of retinoic acid (RA) and BDNF. Both acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) enzymatic activities and immunocontent were determined. For mimicking tau and amyloid-β pathology, RA + BDNF-differentiated cells were challenged with okadaic acid (OA) or soluble oligomers of amyloid-β (AβOs) and neurotoxicity was evaluated. RA + BDNF-induced differentiation resulted in remarkable neuronal morphology alterations characterized by increased neurite density. Enhanced expression and enzymatic activities of cholinergic markers were observed compared to RA-differentiation only. Combination of sublethal doses of AβOs and OA resulted in decreased neurite densities, an in vitro marker of synaptopathy. Challenging RA + BDNF-differentiated SH-SY5Y cells with the combination of sublethal doses of OA and AβO, without causing considerable decrease of cell viability, provides an in vitro model which mimics the early-stage pathophysiology of cholinergic neurons affected by AD.
Collapse
|
32
|
Yang D, Günter R, Qi G, Radnikow G, Feldmeyer D. Muscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. Cereb Cortex 2019; 30:3528-3542. [PMID: 32026946 PMCID: PMC7233001 DOI: 10.1093/cercor/bhz324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4β2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4β2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.
Collapse
Affiliation(s)
- Danqing Yang
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Robert Günter
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Gabriele Radnikow
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine (INM-10), Function of Neuronal Microcircuits, Research Centre Jülich, D-52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany.,Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), D-52074 Aachen, Germany
| |
Collapse
|
33
|
T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS One 2018; 13:e0206986. [PMID: 30571684 PMCID: PMC6301769 DOI: 10.1371/journal.pone.0206986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
T-type calcium channels in the brain mediate the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel therapeutic candidate, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a] pyridine]-2-ene-3-carboxylate), for Alzheimer's disease (AD). The cognitive improvement by SAK3 is closely associated with enhanced acetylcholine (ACh) release in the hippocampus. Since monoamines such as dopamine (DA), noradrenaline (NA), and serotonin (5-HT) are also involved in hippocampus-dependent learning and psychomotor behaviors in mice, we investigated the effects of SAK3 on these monoamine releases in the mouse brain. Oral administration of SAK3 (0.5 mg/kg, p.o.) significantly promoted DA and 5-HT releases in the naive mouse hippocampal CA1 region but not in the medial prefrontal cortex (mPFC), while SAK3 did not affect NA release in either brain region. The T-type calcium channel-specific inhibitor, NNC 55-0396 (1 μM) significantly antagonized SAK3-enhanced DA and 5-HT releases in the hippocampus. Interestingly, the α7 nicotinic ACh receptor (nAChR) antagonist, methyllycaconitine (1 nM) significantly inhibited DA release, and the α4 nAChR antagonist, dihydro-β-erythroidine (100 μM) significantly blocked both DA and 5-HT releases following SAK3 (0.5 mg/kg, p.o.) administration in the hippocampus. SAK3 did not alter basal monoamine contents both in the mPFC and hippocampus. SAK3 (0.5 mg/kg, p.o.) administration also significantly elevated DA and 5-HT releases in the hippocampal CA1 region of amyloid-precursor protein (APP)NL-GF knock-in (KI) mice. Moreover, hippocampal DA and 5-HT contents were significantly decreased in APPNL-GF KI mice. Taken together, our data suggest that SAK3 promotes monoamine DA and 5-HT releases by enhancing the T-type calcium channel and nAChR in the mouse hippocampus.
Collapse
|
34
|
Hargis K, Buechel HM, Popovic J, Blalock EM. Acute psychosocial stress in mid-aged male rats causes hyperthermia, cognitive decline, and increased deep sleep power, but does not alter deep sleep duration. Neurobiol Aging 2018; 70:78-85. [PMID: 30007167 PMCID: PMC6119089 DOI: 10.1016/j.neurobiolaging.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Aging is associated with altered sleep architecture and worsened hippocampus-dependent cognition, highly prevalent clinical conditions that detract from quality of life for the elderly. Interestingly, exposure to psychosocial stress causes similar responses in young subjects, suggesting that age itself may act as a stressor. In prior work, we demonstrated that young animals show loss of deep sleep, deficits in cognition, and elevated body temperature after acute stress exposure, whereas aged animals are hyporesponsive on these measures. However, it is unclear if these age-altered stress responses occur in parallel over the course of aging. To address this, here we repeated the experiment in mid-aged animals. We hypothesized that mid-aged stress responses would be intermediate between those of young and aged subjects. Sixteen mid-aged (12 months) male F344 rats were implanted with EEG/EMG emitters to monitor sleep architecture and body temperature, and were trained on the Morris water maze for 3 days. On the fourth day, half of the subjects were restrained for 3 hours immediately before the water maze probe trial. Sleep architecture and body temperature were measured during the ensuing inactive period, and on the following day, endpoint measures were taken. Restrained mid-aged animals showed resistance to deep sleep loss, but demonstrated stress-induced water maze probe trial performance deficits as well as postrestraint hyperthermia. Taken in the context of prior work, these data suggest that age-related loss of sleep architecture stress sensitivity may precede both cognitive and body temperature-related stress insensitivity.
Collapse
Affiliation(s)
- Kendra Hargis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Heather M Buechel
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jelena Popovic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
35
|
Chang YS, Wu YH, Wang CJ, Tang SH, Chen HL. Higher levels of thyroxine may predict a favorable response to donepezil treatment in patients with Alzheimer disease: a prospective, case-control study. BMC Neurosci 2018; 19:36. [PMID: 29929471 PMCID: PMC6013955 DOI: 10.1186/s12868-018-0436-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Cholinergic hypothesis has been advanced as an etiology of Alzheimer disease (AD) on the basis of the presynaptic deficit found in the diseased brains, and cholinesterase inhibitors (ChEIs) are the treatment of choice for these patients. However, only about half of treatment efficacy was found. Because increasing evidence supports an extensive interrelationship between thyroid hormones (THs), cortisol level and the cholinergic system, the aim of the present study was to evaluate thyroid function and cortisol level in patients with mild to moderate AD before and after ChEIs treatment, and to identify possible variations in response. This was a prospective, case–control, follow-up study. Levels of cortisol and THs were evaluated in 21 outpatients with mild to moderate AD and 20 normal controls. All patients were treated with 5 mg/day of donepezil (DPZ) and were reevaluated after 24–26 weeks of treatment.
Results The patients had worse cognitive function, higher cortisol level, and lower levels of triiodothyronine (T3) and its free fraction than the controls. There were no significant differences in global cognitive function or cortisol level after treatment, however, significant reductions in T3 and thyroxin (T4) levels were observed. Responders had higher levels of T4 than non-responders, followed by a significant reduction after treatment.
Conclusions These results suggest that relatively higher levels of T4 may predict a favorable response to DPZ treatment. Further studies are warranted to confirm the relationship between THs and ChEIs therapy in AD and to explore new therapeutic strategies. On the other hand, cortisol levels are more likely to respond to interventions for stress-related neuropsychiatric symptoms in patients with AD rather than ChEIs treatment. Further studies are warranted to investigate the association between cortisol level and the severity of stress-related neuropsychiatric symptoms in patients with AD.
Collapse
Affiliation(s)
- Yu San Chang
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, No. 130, Kai-Syuan, 2nd Road, Ling-Ya District, Kaohsiung, 802, Taiwan. .,Faculty of Nursing Department, Meiho University, No. 23, Pingguang Road, Neipu, Pingtung, Taiwan.
| | - Yu Hsuan Wu
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, No. 130, Kai-Syuan, 2nd Road, Ling-Ya District, Kaohsiung, 802, Taiwan
| | - Chin Jen Wang
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, No. 130, Kai-Syuan, 2nd Road, Ling-Ya District, Kaohsiung, 802, Taiwan
| | - Shu Hui Tang
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, No. 130, Kai-Syuan, 2nd Road, Ling-Ya District, Kaohsiung, 802, Taiwan
| | - Hsiang Lan Chen
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, No. 130, Kai-Syuan, 2nd Road, Ling-Ya District, Kaohsiung, 802, Taiwan
| |
Collapse
|
36
|
Spiegel R, Kalla R, Mantokoudis G, Maire R, Mueller H, Hoerr R, Ihl R. Ginkgo biloba extract EGb 761 ® alleviates neurosensory symptoms in patients with dementia: a meta-analysis of treatment effects on tinnitus and dizziness in randomized, placebo-controlled trials. Clin Interv Aging 2018; 13:1121-1127. [PMID: 29942120 PMCID: PMC6005330 DOI: 10.2147/cia.s157877] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Tinnitus and dizziness are frequent in old age and often seen as concomitant symptoms in patients with dementia. In earlier clinical trials, Ginkgo biloba extract EGb 761® was found to alleviate tinnitus and dizziness in elderly patients. Consequently, a meta-analysis was conducted to evaluate the effects of EGb 761® at a daily dose of 240 mg on tinnitus and dizziness associated with dementia. Methods Randomized, placebo-controlled clinical trials of G. biloba extract EGb 761® identified by a systematic database search were included in a meta-analysis if they met all of the following selection criteria: 1) diagnosis of dementia according to generally accepted criteria, 2) treatment period of at least 20 weeks, 3) outcome measures covering at least two of the three conventional domains of assessment, 4) presence and severity of dizziness and tinnitus were assessed, and 5) assessment was done before and after randomized treatment. Results Five trials that met the inclusion criteria were included in the meta-analysis. The risk of bias was judged as low, with Jadad scores of 3 and 5. In all trials, 11-point box scales were used to assess the severity of tinnitus and dizziness. Overall, EGb 761® was superior to placebo, with weighted mean differences for change from baseline, calculated in meta-analyses using random effects models, of -1.06 (95% CI: -1.77, -0.36) for tinnitus (p = 0.003) and -0.77 (95% CI: -1.44, -0.09) for dizziness (p = 0.03). Conclusion Our findings support the notion that EGb 761® is also effective in alleviating concomitant neurosensory symptoms in patients with dementia.
Collapse
Affiliation(s)
- Rainer Spiegel
- Division of Internal Medicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Roger Kalla
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Heiko Mueller
- Clinical Research Department, Dr Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Robert Hoerr
- Clinical Research Department, Dr Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Ralf Ihl
- Department of Psychiatry, University of Duesseldorf, Alexian Research Center Krefeld, Krefeld, Germany
| |
Collapse
|
37
|
Nawaz A, Batool Z, Shazad S, Rafiq S, Afzal A, Haider S. Physical enrichment enhances memory function by regulating stress hormone and brain acetylcholinesterase activity in rats exposed to restraint stress. Life Sci 2018; 207:42-49. [PMID: 29852186 DOI: 10.1016/j.lfs.2018.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
To study the effects of stress on mental health activity is of great importance in neuropsychological studies as it may affect the lifelong performance related to brain and overall health and wellbeing of an individual. It is observed very often that exposure to stress during early life can alter the brain function which may reflect as cognitive disability. Impairment of memory is associated with increased oxidative stress which is due to enhanced production of free radicals that may lead to lipid peroxidation and disintegration of cell structure and functions. Exposure to enriched environment has shown to enhance spatial learning and memory, although the underlying mechanism covering the regulation of antioxidant capacity is limited. Here we investigated short and long term memory using Morris water maze before and after giving restraint stress procedure in rats exposed to social and physically enriched environment. Levels of malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) in brain tissue were estimated. Plasma corticosterone was also determined after decapitation. Results demonstrated that rats pre-exposed to physical along with social enrichment showed improved short and long term memory as compared to control group. However, restraint stress exerted differential effects in socially and physically enriched groups. Reduced lipid peroxidation and decreased activity of SOD, GPx and AChE were observed in physically enriched rats subjected to stress as compared to stressed rats kept in social environment. Levels of corticosterone were also found to be significantly reduced in rats kept in physically enriched environment. This study shows the beneficial effects of environmental enrichment on learning and spatial memory by reducing oxidative stress via reducing lipid peroxidation and regulation of antioxidant enzymes in rats.
Collapse
Affiliation(s)
- Amber Nawaz
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Zehra Batool
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sidrah Shazad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sahar Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Asia Afzal
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
38
|
Holgate JY, Tarren JR, Bartlett SE. Sex Specific Alterations in α4*Nicotinic Receptor Expression in the Nucleus Accumbens. Brain Sci 2018; 8:brainsci8040070. [PMID: 29671814 PMCID: PMC5924406 DOI: 10.3390/brainsci8040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background: The mechanisms leading from traumatic stress to social, emotional and cognitive impairment and the development of mental illnesses are still undetermined and consequently there remains a critical need to develop therapies for preventing the adverse consequences of traumatic stress. Research indicates nicotinic acetylcholine receptors containing α4 subunits (α4*nAChRs) are both impacted by stress and capable of modulating the stress response. In this study, we investigated whether varenicline, a partial α4β2*nAChR agonist which reduces nicotine, alcohol and sucrose consumption, can reduce stress, a driving factor in substance use disorders. We also examined the effect of stress on nucleus accumbens (NAc) α4*nAChR expression. Methods: Transgenic mice with fluorescent tags attached to α4*nAChRs were administered varenicline and/or yohimbine (a pharmacological stressor) and plasma corticosterone and NAc α4*nAChR expression were measured. A separated group of mice were exposed to maternal separation (MS) during post-natal day (P) 2–14, then restraint stressed (30 min) at six weeks of age. Body weight, anxiety-like behaviours (elevated plus maze), plasma corticosterone and NAc α4*nAChR levels were measured. Results: Varenicline attenuated yohimbine-induced plasma corticosterone increases with no effect on NAc α4*nAChR expression. MS reduced unrestrained plasma corticosterone levels in both sexes. In females, MS increased body weight and NAc α4*nAChR expression, whereas, in males, MS and restraint caused a greater change in anxiety-like behaviours and plasma corticosterone levels. Restraint altered NAc α4*nAChR expression in both male and female MS mice. Conclusions: The effects of stress on NAc α4*nAChR are sex-dependent. While varenicline attenuated acute stress-induced rises in corticosterone levels, future studies are required to determine whether varenicline is effective for relieving the effects of stress.
Collapse
Affiliation(s)
- Joan Y Holgate
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Josephine R Tarren
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Selena E Bartlett
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
39
|
Jiang YY, Zhang Y, Cui S, Liu FY, Yi M, Wan Y. Cholinergic neurons in medial septum maintain anxiety-like behaviors induced by chronic inflammatory pain. Neurosci Lett 2018; 671:7-12. [DOI: 10.1016/j.neulet.2018.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
|
40
|
Visualization of Altered Hippocampal Connectivity in an Animal Model of Alzheimer's Disease. Mol Neurobiol 2018; 55:7886-7899. [PMID: 29488134 PMCID: PMC6132739 DOI: 10.1007/s12035-018-0918-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neurodegeneration in the hippocampus. Despite the pathological importance of the hippocampal degeneration in AD, little topographical evidence exists of impaired hippocampal connectivity in patients with AD. To investigate the anatomical connections of the hippocampus, we injected the neurotracer 1,1′-dioctadecyl-3,3,3′3,3′-tetramethyl-indocarbocyanine perchlorate (DiI) into the hippocampi of 5XFAD mice, which were used as an animal model of AD. In wild-type controls, DiI-containing cells were found in the entorhinal cortex, medial septum, locus coeruleus, dorsal raphe, substantia nigra pars compacta, and olfactory bulb. Hippocampal inputs were decreased in multiple brain regions in the 5XFAD mice compared to wild-type littermate mice. These results are the first to reveal alterations at the cellular level in hippocampal connectivity in the brains of 5XFAD mice. These results suggest that anatomical mapping of hippocampal connectivity will elucidate new pathogenic mechanisms and therapeutic targets for AD treatment.
Collapse
|
41
|
Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 2018; 98:297-307. [DOI: 10.1016/j.biopha.2017.12.053] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 01/24/2023] Open
|
42
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 PMCID: PMC11482036 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
43
|
Ferreira Neto DC, Alencar Lima J, Sobreiro Francisco Diz de Almeida J, Costa França TC, Jorge do Nascimento C, Figueroa Villar JD. New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer's disease: Synthesis, molecular modeling, NMR, and biological evaluation. J Biomol Struct Dyn 2017; 36:4099-4113. [PMID: 29198175 DOI: 10.1080/07391102.2017.1407676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two new compounds (E)-2-(5,7-dibromo-3,3-dimethyl-3,4-dihydroacridin-1(2H)-ylidene)hydrazinecarbothiomide (3) and (E)-2-(5,7-dibromo-3,3-dimethyl-3,4-dhihydroacridin-1(2H)-ylidene)hydrazinecarboxamide (4) were synthesized and evaluated for their anticholinesterase activities. In vitro tests performed by NMR and Ellman's tests, pointed to a mixed kinetic mechanism for the inhibition of acetylcholinesterase (AChE). This result was corroborated through further docking and molecular dynamics studies, suggesting that the new compounds can work as gorge-spanning ligands by interacting with two different binding sites inside AChE. Also, in silico toxicity evaluation suggested that these new compounds can be less toxic than tacrine.
Collapse
Affiliation(s)
- Denise Cristian Ferreira Neto
- a Medicinal Chemistry Group , Military Institute of Engineering , Praia Vermelha, Rio de Janeiro 22290-270 , Brazil.,b Department of Chemistry , Federal University of Roraima , Boa Vista, Roraima 69310-000 , Brazil
| | - Josélia Alencar Lima
- c Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Praia Vermelha, Rio de Janeiro 22290-270 , Brazil
| | - Joyce Sobreiro Francisco Diz de Almeida
- c Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Praia Vermelha, Rio de Janeiro 22290-270 , Brazil
| | - Tanos Celmar Costa França
- c Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Praia Vermelha, Rio de Janeiro 22290-270 , Brazil.,d Center for Basic and Applied Research, Faculty of Informatics and Management , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Claudia Jorge do Nascimento
- e Institute of Biosciences , Federal University of the State of Rio de Janeiro , Urca, Rio de Janeiro 22290-240 , Brazil
| | - José Daniel Figueroa Villar
- a Medicinal Chemistry Group , Military Institute of Engineering , Praia Vermelha, Rio de Janeiro 22290-270 , Brazil
| |
Collapse
|
44
|
Maurer SV, Williams CL. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front Immunol 2017; 8:1489. [PMID: 29167670 PMCID: PMC5682336 DOI: 10.3389/fimmu.2017.01489] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer's disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh) receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the "cholinergic anti-inflammatory pathway" to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.
Collapse
Affiliation(s)
- Sara V. Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Christina L. Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
45
|
Ramagiri S, Taliyan R. Protective effect of remote limb post conditioning via upregulation of heme oxygenase-1/BDNF pathway in rat model of cerebral ischemic reperfusion injury. Brain Res 2017; 1669:44-54. [DOI: 10.1016/j.brainres.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
|
46
|
Lee SY, Cho WH, Lee YS, Han JS. Impact of Chronic Stress on the Spatial Learning and GR-PKAc-NF-κB Signaling in the Hippocampus and Cortex in Rats Following Cholinergic Depletion. Mol Neurobiol 2017; 55:3976-3989. [PMID: 28551869 DOI: 10.1007/s12035-017-0620-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Studies have shown that the removal of the cholinergic innervation to the hippocampus induces dysfunction of the hypothalamic-pituitary-adrenocortical axis and decreases the number of glucocorticoid receptors (GRs). Subsequent studies have revealed that the loss of cholinergic input to the hippocampus reduces the expression of GRs and activates nuclear factor-kappa B (NF-κB) signaling through interactions with the cytoplasmic catalytic subunit of protein kinase A (PKAc). We examined the effects of chronic stress on cognitive status and GR-PKAc-NF-κB signaling in rats with a loss of cholinergic input to the hippocampus and cortex. Male Sprague-Dawley rats received 192 IgG-saporin injections to selectively eliminate cholinergic neurons in their basal forebrain. Two weeks later, rats were subjected to 1 h of restraint stress per day for 14 days. Rats subjected to both chronic stress and cholinergic depletion showed more severe memory impairments compared to those that received either treatment alone. The reduction in nuclear GR levels induced by cholinergic depletion was unaffected by chronic stress. The activation of NF-κB signaling in the hippocampus and the cerebral cortex induced by cholinergic depletion was augmented by chronic stress, resulting in the increased expression of pro-inflammatory markers, such as inducible nitric oxide synthase and cyclooxygenase-2. The activation of NF-κB induced by cholinergic depletion appears to be aggravated by chronic stress, and this might explain the increased susceptibility of patients with Alzheimer's disease to stress since activation of NF-κB is associated with stress.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Woo-Hyun Cho
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yo-Seob Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
47
|
Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, Gao S, Boustani M, Crane PK, Petersen RC, Jack CR, Jagust WJ, Aisen PS, Weiner MW, Saykin AJ. Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults. JAMA Neurol 2017; 73:721-32. [PMID: 27088965 DOI: 10.1001/jamaneurol.2016.0580] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. OBJECTIVE To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). DESIGN, SETTING, AND PARTICIPANTS The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. MAIN OUTCOMES AND MEASURES Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression. RESULTS The 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed lower mean scores on Weschler Memory Scale-Revised Logical Memory Immediate Recall (raw mean scores: 13.27 for AC+ participants and 14.16 for AC- participants; P = .04) and the Trail Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for AC- participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC- participants; P = .04) than the 350 AC- participants (mean [SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in the AC+ participants relative to the AC- participants. CONCLUSIONS AND RELEVANCE The use of AC medication was associated with increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among older adults should likely be discouraged if alternative therapies are available.
Collapse
Affiliation(s)
- Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Health Neuroscience Center, Indianapolis2Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Health Neuroscience Center, Indianapolis2Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis
| | - Eileen F Tallman
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Health Neuroscience Center, Indianapolis2Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis
| | - John D West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Health Neuroscience Center, Indianapolis2Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis3Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - Fredrick W Unverzagt
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis4Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis5Department of Biostatistics, Indiana University School of Medicine, Indianapolis
| | - Malaz Boustani
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis6Indiana University Center for Aging Research, Indianapolis7Regenstrief Institute Inc, Indianapolis, Indiana8Eskenzai Health, Indianapolis, Indiana
| | - Paul K Crane
- Department of Internal Medicine, University of Washington, Seattle
| | | | | | - William J Jagust
- Department of Neurology, University of California-Berkeley, Berkeley
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco15Department of Veterans Affairs Medical Center, San Francisco, California
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Health Neuroscience Center, Indianapolis2Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis
| | | |
Collapse
|
48
|
Karrow NA, Lee AV, Quinton M, McBride BW, Fisher-Heffernan RE. Ovine hippocampal mRNA expression in offspring from dams supplemented with fishmeal and stress challenged in late pregnancy with endotoxin. ACTA ACUST UNITED AC 2017; 3:39-45. [PMID: 29767075 PMCID: PMC5941082 DOI: 10.1016/j.aninu.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/13/2016] [Indexed: 11/06/2022]
Abstract
Previous research has shown that adulthood disease can be attributed to stress events that occur during gestation. The objective of the present study was to determine whether maternal stress during late pregnancy, using a bacterial endotoxemia model, causes changes in hippocampal mRNA expression of candidate genes related to hypothalamic-pituitary-adrenal axis (HPAA) regulation in sheep. This study also sought to investigate whether maternal diets supplemented with fishmeal (FM) rich in omega-3 polyunsaturated fatty acids (PUFAs) offer protection to the fetus when subjected to maternal endotoxin stress. Using RT-qPCR, relative mRNA expression was assessed in both fetal lambs and 6-month-old lambs from dams supplemented with soybean meal (SM) or FM and challenged with either endotoxin or saline. From this it was found that fetal mineralocorticoid receptor (MR) gene expression had a tendency to be altered during endotoxin challenge, however, in the 6-month-old offspring, MR and glucocorticoid receptor (GR) gene expression were differently altered across treatment groups. These results suggest that gene regulation within the hippocampus is altered into adulthood by maternal endotoxin stress and that dietary supplementation affects outcome.
Collapse
Affiliation(s)
- Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph N1G2W1, Canada
| | - Alison V Lee
- Department of Animal Biosciences, University of Guelph, Guelph N1G2W1, Canada
| | - Margaret Quinton
- Department of Animal Biosciences, University of Guelph, Guelph N1G2W1, Canada
| | - Brian W McBride
- Department of Animal Biosciences, University of Guelph, Guelph N1G2W1, Canada
| | | |
Collapse
|
49
|
Choi JG, Kim N, Huh E, Lee H, Oh MH, Park JD, Pyo MK, Oh MS. White Ginseng Protects Mouse Hippocampal Cells Against Amyloid-Beta Oligomer Toxicity. Phytother Res 2017; 31:497-506. [PMID: 28112442 DOI: 10.1002/ptr.5776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Amyloid-beta oligomer (AβO) is a soluble oligomer form of the Aβ peptide and the most potent amyloid-beta form that induces neuronal damage in Alzheimer's disease. We investigated the effect of dried white ginseng extract (WGE) on neuronal cell damage and memory impairment in intrahippocampal AβO (10 μM)-injected mice. Mice were treated with WGE (100 and 500 mg/kg/day, p.o.) for 12 days after surgery. WGE improved memory impairment by inhibiting hippocampal cell death caused by AβO. In addition, AβO-injected mice treated with WGE showed restoration of reduced synaptophysin and choline acetyltransferase intensity and lower levels of ionized calcium-binding adaptor molecule 1 in the hippocampus compared with those of vehicle-treated controls. These results suggest that WGE reverses memory impairment in Alzheimer's disease by attenuating neuronal damage and neuroinflammation in the AβO-injected mouse hippocampus. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Eugene Huh
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hwan Lee
- International Ginseng and Herb Research Institute, Geumsan, 32724, Korea
| | - Myeong Hwan Oh
- International Ginseng and Herb Research Institute, Geumsan, 32724, Korea
| | - Jong Dae Park
- International Ginseng and Herb Research Institute, Geumsan, 32724, Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, 32724, Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
50
|
Yabuki Y, Matsuo K, Izumi H, Haga H, Yoshida T, Wakamori M, Kakei A, Sakimura K, Fukuda T, Fukunaga K. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca 2+ channel enhancer. Neuropharmacology 2017; 117:1-13. [PMID: 28093211 DOI: 10.1016/j.neuropharm.2017.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
T-type voltage-gated Ca2+ channels (T-VGCCs) function in the pathophysiology of epilepsy, pain and sleep. However, their role in cognitive function remains unclear. We previously reported that the cognitive enhancer ST101, which stimulates T-VGCCs in rat cortical slices, was a potential Alzheimer's disease therapeutic. Here, we introduce a more potent T-VGCC enhancer, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate), and characterize its pharmacological properties in brain. Based on whole cell patch-clamp analysis, SAK3 (0.01-10 nM) significantly enhanced Cav3.1 currents in neuro2A cells ectopically expressing Cav3.1. SAK3 (0.1-10 nM nM) also enhanced Cav3.3 but not Cav3.2 currents in the transfected cells. Notably, Cav3.1 and Cav3.3 T-VGCCs were localized in cholinergic neurve systems in hippocampus and in the medial septum. Indeed, acute oral administration of SAK3 (0.5 mg/kg, p.o.), but not ST101 (0.5 mg/kg, p.o.) significantly enhanced acetylcholine (ACh) release in the hippocampal CA1 region of naïve mice. Moreover, acute SAK3 (0.5 mg/kg, p.o.) administration significantly enhanced hippocampal ACh levels in olfactory-bulbectomized (OBX) mice, rescuing impaired memory-related behaviors. Treatment of OBX mice with the T-VGCC-specific blocker NNC 55-0396 (12.5 mg/kg, i.p.) antagonized both enhanced ACh release and memory improvements elicited by SAK3 administration. We also observed that SAK3-induced ACh releases were significantly blocked in the hippocampus from Cav3.1 knockout (KO) mice. These findings suggest overall that T-VGCCs play a key role in cognition by enhancing hippocampal ACh release and that the cognitive enhancer SAK3 could be a candidate therapeutic in Alzheimer's disease.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Yoshida
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Akikazu Kakei
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|