1
|
Mohallem R, Schaser AJ, Aryal UK. Molecular Signatures of Neurodegenerative Diseases Identified by Proteomic and Phosphoproteomic Analyses in Aging Mouse Brain. Mol Cell Proteomics 2024; 23:100819. [PMID: 39069073 PMCID: PMC11381985 DOI: 10.1016/j.mcpro.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
A central hallmark of neurodegenerative diseases is the irreversible accumulation of misfolded proteins in the brain by aberrant phosphorylation. Understanding the mechanisms underlying protein phosphorylation and its role in pathological protein aggregation within the context of aging is crucial for developing therapeutic strategies aimed at preventing or reversing such diseases. Here, we applied multi-protease digestion and quantitative mass spectrometry to compare and characterize dysregulated proteins and phosphosites in the mouse brain proteome using three different age groups: young-adult (3-4 months), middle-age (10 months), and old mice (19-21 months). Proteins associated with senescence, neurodegeneration, inflammation, cell cycle regulation, the p53 hallmark pathway, and cytokine signaling showed significant age-dependent changes in abundances and level of phosphorylation. Several proteins implicated in Alzheimer's disease (AD) and Parkinson's disease (PD) including tau (Mapt), Nefh, and Dpysl2 (also known as Crmp2) were hyperphosphorylated in old mice brain suggesting their susceptibility to the diseases. Cdk5 and Gsk3b, which are known to phosphorylate Dpysl2 at multiple specific sites, had also increased phosphorylation levels in old mice suggesting a potential crosstalk between them to contribute to AD. Hapln2, which promotes α-synuclein aggregation in patients with PD, was one of the proteins with highest abundance in old mice. CD9, which regulates senescence through the PI3K-AKT-mTOR-p53 signaling was upregulated in old mice and its regulation was correlated with the activation of phosphorylated AKT1. Overall, the findings identify a significant association between aging and the dysregulation of proteins involved in various pathways linked to neurodegenerative diseases with potential therapeutic implications.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Li M, Wang H, Bai Y, Xiong F, Wu S, Bi Q, Qiao Y, Zhang Y, Li X, Feng L, Guo DA. Pharmacodynamical research of extracts and compounds in traditional Chinese medicines for Parkinson's disease. Fitoterapia 2024; 177:106086. [PMID: 38897243 DOI: 10.1016/j.fitote.2024.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease (AD). Currently, there is no cure for PD, and medications can only control the progression of the disease. Various experimental studies have shown the significant efficacy of TCM in treating PD, and combination with western medicine can enhance the effects and reduce toxicity. Thus, exploring effective anti-PD compounds from TCM has become a popular research fields. This review summarizes commonly used TCM extracts and natural products for the treatment of PD, both domestically and internationally. Furthermore, it delves into various mechanisms of TCM in treating PD, such as anti-oxidative stress, anti-inflammatory, anti-apoptotic, improve mitochondrial dysfunction, inhibits α-synuclein (α-Syn) misfolding and aggregation, regulating neurotransmitters, regulates intestinal flora, enhances immunity, and so on. The results reveal that most TCMs exert their neuroprotective effects through anti-inflammatory and anti-oxidative stress actions, thereby slowing down the progression of the disease. These TCM may hold the key to improving PD therapy and have tremendous potential to be developed as novel anti-PD drugs.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fuyu Xiong
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yajun Qiao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaolan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Feng
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
3
|
Gonzalez-Ferrer J, Lehrer J, O'Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. CELL GENOMICS 2024; 4:100581. [PMID: 38823397 PMCID: PMC11228957 DOI: 10.1016/j.xgen.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ash O'Farrell
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
4
|
Zhang C, Dong K, Aihara K, Chen L, Zhang S. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning. Nucleic Acids Res 2023; 51:e103. [PMID: 37811885 PMCID: PMC10639070 DOI: 10.1093/nar/gkad801] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Spatial transcriptomics characterizes gene expression profiles while retaining the information of the spatial context, providing an unprecedented opportunity to understand cellular systems. One of the essential tasks in such data analysis is to determine spatially variable genes (SVGs), which demonstrate spatial expression patterns. Existing methods only consider genes individually and fail to model the inter-dependence of genes. To this end, we present an analytic tool STAMarker for robustly determining spatial domain-specific SVGs with saliency maps in deep learning. STAMarker is a three-stage ensemble framework consisting of graph-attention autoencoders, multilayer perceptron (MLP) classifiers, and saliency map computation by the backpropagated gradient. We illustrate the effectiveness of STAMarker and compare it with serveral commonly used competing methods on various spatial transcriptomic data generated by different platforms. STAMarker considers all genes at once and is more robust when the dataset is very sparse. STAMarker could identify spatial domain-specific SVGs for characterizing spatial domains and enable in-depth analysis of the region of interest in the tissue section.
Collapse
Affiliation(s)
- Chihao Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangning Dong
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Khan AH, Lee LK, Smith DJ. Single-cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson's disease. Transl Neurosci 2022; 13:255-269. [PMID: 36117858 PMCID: PMC9438968 DOI: 10.1515/tnsci-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to pesticides in humans increases the risk of Parkinson’s disease (PD), but the mechanisms remain poorly understood. To elucidate these pathways, we dosed C57BL/6J mice with a combination of the pesticides maneb and paraquat. Behavioral analysis revealed motor deficits consistent with PD. Single-cell RNA sequencing of substantia nigra pars compacta revealed both cell-type-specific genes and genes expressed differentially between pesticide and control, including Fam241b, Emx2os, Bivm, Gm1439, Prdm15, and Rai2. Neurons had the largest number of significant differentially expressed genes, but comparable numbers were found in astrocytes and less so in oligodendrocytes. In addition, network analysis revealed enrichment in functions related to the extracellular matrix. These findings emphasize the importance of support cells in pesticide-induced PD and refocus our attention away from neurons as the sole agent of this disorder.
Collapse
Affiliation(s)
- Arshad H. Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| | - Lydia K. Lee
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-6928, United States of America
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| |
Collapse
|
7
|
Tiwari D, Jakhmola S, Pathak DK, Kumar R, Jha HC. Temporal In Vitro Raman Spectroscopy for Monitoring Replication Kinetics of Epstein-Barr Virus Infection in Glial Cells. ACS OMEGA 2020; 5:29547-29560. [PMID: 33225186 PMCID: PMC7676301 DOI: 10.1021/acsomega.0c04525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 05/17/2023]
Abstract
Raman spectroscopy can be used as a tool to study virus entry and pathogen-driven manipulation of the host efficiently. To date, Epstein-Barr virus (EBV) entry and altered biochemistry of the glial cell upon infection are elusive. In this study, we detected biomolecular changes in human glial cells, namely, HMC-3 (microglia) and U-87 MG (astrocytes), at two variable cellular locations (nucleus and periphery) by Raman spectroscopy post-EBV infection at different time points. Two possible phenomena, one attributed to the response of the cell to viral attachment and invasion and the other involved in duplication of the virus followed by egress from the host cell, are investigated. These changes corresponded to unique Raman spectra associated with specific biomolecules in the infected and the uninfected cells. The Raman signals from the nucleus and periphery of the cell also varied, indicating differential biochemistry and signaling processes involved in infection progression at these locations. Molecules such as cholesterol, glucose, hyaluronan, phenylalanine, phosphoinositide, etc. are associated with the alterations in the cellular biochemical homeostasis. These molecules are mainly responsible for cellular processes such as lipid transport, cell proliferation, differentiation, and apoptosis in the cells. Raman signatures of these molecules at distinct time points of infection indicated their periodic involvement, depending on the stage of virus infection. Therefore, it is possible to discern the details of variability in EBV infection progression in glial cells at the biomolecular level using time-dependent in vitro Raman scattering.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Shweta Jakhmola
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Devesh K. Pathak
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
| | - Rajesh Kumar
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
- Centre
for Advanced Electronics, Indian Institute
of Technology Indore, Simrol, 453552 Indore, India
| | - Hem Chandra Jha
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| |
Collapse
|
8
|
The function of bacterial HtrA is evolutionally conserved in mammalian HtrA2/Omi. Sci Rep 2020; 10:5284. [PMID: 32210343 PMCID: PMC7093540 DOI: 10.1038/s41598-020-62309-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/20/2020] [Indexed: 01/09/2023] Open
Abstract
Although the malfunction of HtrA2/Omi leads to Parkinson's disease (PD), the underlying mechanism has remained unknown. Here, we showed that HtrA2/Omi specifically removed oligomeric α-Syn but not monomeric α-Syn to protect oligomeric α-Syn-induced neurodegeneration. Experiments using mnd2 mice indicated that HtrA2/Omi degraded oligomeric α-Syn specifically without affecting monomers. Transgenic Drosophila melanogaster experiments of the co-expression α-Syn and HtrA2/Omi and expression of genes individually also confirmed that pan-neuronal expression of HtrA2/Omi completely rescued Parkinsonism in the α-Syn-induced PD Drosophila model by specifically removing oligomeric α-Syn. HtrA2/Omi maintained the health and integrity of the brain and extended the life span of transgenic flies. Because HtrA2/Omi specifically degraded oligomeric α-Syn, co-expression of HtrA2/Omi and α-Syn in Drosophila eye maintained a healthy retina, while the expression of α-Syn induced retinal degeneration. This work showed that the bacterial function of HtrA to degrade toxic misfolded proteins is evolutionarily conserved in mammalian brains as HtrA2/Omi.
Collapse
|
9
|
Wang Q, Wang C, Ji B, Zhou J, Yang C, Chen J. Hapln2 in Neurological Diseases and Its Potential as Therapeutic Target. Front Aging Neurosci 2019; 11:60. [PMID: 30949044 PMCID: PMC6437066 DOI: 10.3389/fnagi.2019.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Hyaluronan and proteoglycan link protein 2 (Hapln2) is important for the binding of chondroitin sulfate proteoglycans to hyaluronan. Hapln2 deficiency leads to the abnormal expression of extracellular matrix (ECM) proteins and dysfunctional neuronal conductivity, demonstrating the vital role of Hapln2 in these processes. Studies have revealed that Hapln2 promotes the aggregation of α-synuclein, thereby contributing to neurodegeneration in Parkinson’s disease (PD), and it was recently suggested to be in intracellular neurofibrillary tangles (NFTs). Additionally, the expression levels of Hapln2 showed lower in the anterior temporal lobes of individuals with schizophrenia than those of healthy subjects. Together, these studies implicate the involvement of Hapln2 in the pathological processes of neurological diseases. A better understanding of the function of Hapln2 in the central nervous system (CNS) will provide new insights into the molecular mechanisms of these diseases and help to establish promising therapeutic strategies. Herein, we review the recent progress in defining the role of Hapln2 in brain physiology and pathology.
Collapse
Affiliation(s)
- Qinqin Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jiawei Zhou
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunqing Yang
- Neurobiology Key Laboratory, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Wang QQ, Wang CM, Cheng BH, Yang CQ, Bai B, Chen J. Signaling transduction regulated by 5-hydroxytryptamine 1A receptor and orexin receptor 2 heterodimers. Cell Signal 2018; 54:46-58. [PMID: 30481562 DOI: 10.1016/j.cellsig.2018.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
As G-protein-coupled receptors (GPCRs), 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 2 (OX2R) regulate the levels of the cellular downstream molecules. The heterodimers of different GPCRs play important roles in various of neurological diseases. Moreover, 5-HT1AR and OX2R are involved in the pathogenesis of neurological diseases such as depression with deficiency of hippocampus plasticity. However, the direct interaction of the two receptors remains elusive. In the present study, we firstly demonstrated the heterodimer formation of 5-HT1AR and OX2R. Exchange protein directly activated by cAMP (Epac) cAMP bioluminescence resonance energy transfer (BRET) biosensor analysis revealed that the expression levels of cellular cAMP significantly increased in HEK293T cells transfected with the two receptors compared with the 5-HT1AR group. Additionally, the cellular level of calcium was upregulated robustly in HEK293T cells co-transfected with 5-HT1AR and OX2R group after agonist treatment. Furthermore, western blotting data showed that 5-HT1AR and OX2R heterodimer decreased the levels of phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element-binding protein (CREB). These results not only unraveled the formation of 5-HT1AR and OX2R heterodimer but also suggested that the heterodimer affected the downstream signaling pathway, which will provide new insights into the function of the two receptors in the brain.
Collapse
Affiliation(s)
- Qin-Qin Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Mei Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bao-Hua Cheng
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Qing Yang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bo Bai
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China.
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
11
|
Liu W, Geng L, Chen Y. MiR-19b alleviates MPP +-induced neuronal cytotoxicity via targeting the HAPLN4/MAPK pathway in SH-SY5Y cells. RSC Adv 2018; 8:10706-10714. [PMID: 35540477 PMCID: PMC9078925 DOI: 10.1039/c7ra13406a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background: miR-19b has been reported to be involved in nervous system disease including Parkinson's disease (PD). However its molecular basis has not been exhaustively elucidated. Materials and Methods: SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to construct PD model in vitro. RT-qPCR was performed to detect the expression of miR-19b and proteoglycan link protein 4 (HAPLN4) mRNA. Western blot analysis was used to measure the level of HAPLN4 and mitogen activated protein kinase (MAPK)-related protein. Cell viability and apoptosis were determined by MTT and flow cytometry. Commercial ELISA kits were applied to quantify caspase-3 activity, lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β). Dual-luciferase reporter assay was applied to assess the relationship between miR-19b and HAPLN4. Results: miR-19b was downregulated in MPP+-induced SH-SY5Y cells. miR-19b overexpression reversed MPP+-induced suppression of cell viability and promotion of cell apoptosis in SH-SY5Y cells. Moreover, miR-19b alleviated MPP+-induced cytotoxicity of SH-SY5Y cells, embodied by the decrease of LDH release, caspase-3 activity, ROS expression, TNF-α and IL-1β secretion, as well as the increase of SOD level. HAPLN4 was identified as a direct target of miR-19b and miR-19b repressed HAPLN4 expression in a post-transcriptional manner. In addition, miR-19b-mediated anti-apoptosis effect was abated following HAPLN4 expression restoration in MPP+-induced SH-SY5Y cells. Furthermore, MAPK signaling participated in miR-19b/HAPLN4-mediated regulation in MPP+-treated SH-SY5Y cells. Conclusion: the neuroprotective effect of miR-19b might be mediated by HAPLN4/MAPK pathway in SH-SY5Y cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University Kaifeng 475000 China
| | - Lijiao Geng
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| | - Yong Chen
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| |
Collapse
|