1
|
Zhang Z, Riley E, Chen S, Zhao L, Anderson AK, DeRosa E, Dai W. Age and gender-related patterns of arterial transit time and cerebral blood flow in healthy adults. Neuroimage 2025; 309:121098. [PMID: 39988291 DOI: 10.1016/j.neuroimage.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
Normal aging has been associated with increased arterial transit time (ATT) and reduced cerebral blood flow (CBF). However, age-related patterns of ATT and CBF and their relationship remain unclear. This is partly due to the lengthy scan times required for ATT measurements, which caused previous age-related CBF studies to not fully account for transit time. In this work, we aimed to elucidate age-related ATT and ATT-corrected CBF patterns. We examined 131 healthy subjects aged 19 to 82 years old using two pseudo-continuous arterial spin labeling (PCASL) MRI scans: one to measure fast low-resolution ATT maps with five post-labeling delays and the other to measure high-resolution perfusion-weighted maps with a single post-labeling delay. Both ATT and perfusion-weighed maps were applied with vessel suppression. We found that ATT increases with age in the frontal, temporoparietal, and occipital regions, with a more pronounced elongation in males compared to females in the middle temporal gyrus. ATT-corrected CBF decreases with age in several brain regions, including the anterior cingulate, insula, posterior cingulate, angular, precuneus, supramarginal, frontal, parietal, superior and middle temporal, occipital, and cerebellar regions, while remaining stable in the inferior temporal and subcortical regions. In contrast, without ATT correction, we detected artifactual decreases in the inferior temporal and precentral regions. These findings suggest that ATT provides valuable and independent insights into microvascular deficits and should be incorporated into CBF measurements for studies involving aging populations.
Collapse
Affiliation(s)
- Zongpai Zhang
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Shichun Chen
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Adam K Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Eve DeRosa
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Weiying Dai
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
2
|
Hu J, Craig MS, Knight SP, De Looze C, Meaney JF, Kenny RA, Chen X, Chappell MA. Regional changes in cerebral perfusion with age when accounting for changes in gray-matter volume. Magn Reson Med 2025; 93:1807-1820. [PMID: 39568213 PMCID: PMC11782718 DOI: 10.1002/mrm.30376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE One possible contributing factor for cerebral blood flow (CBF) decline in normal aging is the increase in partial volume effects due to brain atrophy, as cortical thinning can exacerbate the contamination of gray-matter (GM) voxels by other tissue types. This work investigates CBF changes in normal aging of a large elderly cohort aged 54 to 84 and how correction for partial volume effects that would accommodate potential changes in GM might affect this. METHODS The study cohort consisted of 474 participants aged 54 to 84 years using pseudo-continuous arterial spin labeling MRI. A volumetric pipeline and a surface-based pipeline were applied to measure global and regional perfusion. Volumetric regions of interest (ROIs) included GM, cerebral white matter, vascular territories, and the brain atlas from the UK Biobank. The cortical parcellation was using Desikan-Killiany atlas. Non-partial volume effect correction (PVEc) and PVEc GM-CBF changes with aging were modeled using linear regressions. RESULTS Global GM CBF decreased by 0.17 mL/100 g/min per year with aging before PVEc (p < 0.05) and was 0.18 mL/100 g/min after PVEc (p < 0.05). All cortical parcels exhibited CBF decreases with age before PVEc. After PVEc, seven parcels retained decreasing trends. However, GM CBF demonstrated increase with age after PVEc in three parcels. CONCLUSION Although decreases in global perfusion are observed with aging before PVEc, perfusion variations appear to be more regionally selective after PVEc. This supports the understanding that variation in cerebral perfusion with age observed with imaging is influenced by regional changes in anatomy that can be accommodated with PVEc, but perfusion variation is still observable even after PVE is accounted for.
Collapse
Affiliation(s)
- Jian Hu
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Martin S. Craig
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Silvin P. Knight
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - Celine De Looze
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - James F. Meaney
- School of MedicineTrinity College DublinDublinIreland
- The National Center for Advanced Medical ImagingSt. James's HospitalDublinIreland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
- The Global Brain Health InstituteTrinity College DublinDublinIreland
- Mercer's Institute for Successful AgeingSt. James's HospitalDublinIreland
| | - Xin Chen
- Intelligent Modelling & Analysis GroupSchool of Computer Science, University of NottinghamNottinghamUK
| | - Michael A. Chappell
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| |
Collapse
|
3
|
Dutt S, Bachman SL, Dahl MJ, Li Y, Yew B, Jang JY, Ho JK, Nashiro K, Min J, Yoo HJ, Gaubert A, Nguyen A, Blanken AE, Sible IJ, Marshall AJ, Kapoor A, Alitin JPM, Hoang K, Rouanet J, Sordo L, Head E, Shao X, Wang DJJ, Mather M, Nation DA. Locus coeruleus MRI contrast, cerebral perfusion, and plasma Alzheimer's disease biomarkers in older adults. Neurobiol Aging 2025; 147:12-21. [PMID: 39637519 PMCID: PMC11781958 DOI: 10.1016/j.neurobiolaging.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The locus coeruleus (LC) is among the first brain structures impacted by Alzheimer's disease (AD), and noradrenergic denervation may contribute to early neurovascular dysfunction in AD. Mechanistic links between the LC and cerebral perfusion have been demonstrated in rodents, but there have been no similar studies in aging humans. Community-dwelling older adults with no history of stroke or dementia (N=66) underwent structural (T1-MPRAGE; T1-FSE) and perfusion (resting pCASL) MRI. Plasma AD biomarkers levels were evaluated for Aβ42/40 ratio (n=56) and pTau181 (n=60). Higher rostral LC structural MRI contrast was associated with lower perfusion in entorhinal and limbic regions but higher perfusion in lateral and medial orbitofrontal cortices. Relationships between LC structure and regional cerebral perfusion were attenuated in older adults with higher plasma pTau levels and lower plasma Aβ42/40 ratios. Previously unstudied links between LC structure and cerebral perfusion are detectible in older adults using MRI and are attenuated in those showing greater AD pathophysiologic change, suggesting an uncoupling of LC-cerebral perfusion relationships in older adults with aggregating AD-related pathophysiology.
Collapse
Affiliation(s)
- Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kaoru Nashiro
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jungwon Min
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna E Blanken
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kim Hoang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jeremy Rouanet
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA.
| |
Collapse
|
4
|
Zeng X, Li Y, Hua L, Lu R, Franco LL, Kochunov P, Chen S, Detre JA, Wang Z. Normative Cerebral Perfusion Across the Lifespan. ARXIV 2025:arXiv:2502.08070v1. [PMID: 39990798 PMCID: PMC11844630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cerebral perfusion plays a crucial role in maintaining brain function and is tightly coupled with neuronal activity. While previous studies have examined cerebral perfusion trajectories across development and aging, precise characterization of its lifespan dynamics has been limited by small sample sizes and methodological inconsistencies. In this study, we construct the first comprehensive normative model of cerebral perfusion across the human lifespan (birth to 85 years) using a large multi-site dataset of over 12,000 high-quality arterial spin labeling (ASL) MRI scans. Leveraging generalized additive models for location, scale, and shape (GAMLSS), we mapped nonlinear growth trajectories of cerebral perfusion at global, network, and regional levels. We observed a rapid postnatal increase in cerebral perfusion, peaking at approximately 7.1 years, followed by a gradual decline into adulthood. Sex differences were evident, with distinct regional maturation patterns rather than uniform differences across all brain regions. Beyond normative modeling, we quantified individual deviations from expected CBF patterns in neurodegenerative and psychiatric conditions, identifying disease-specific perfusion abnormalities across four brain disorders. Using longitudinal data, we established typical and atypical cerebral perfusion trajectories, highlighting the prognostic value of perfusion-based biomarkers for detecting disease progression. Our findings provide a robust normative framework for cerebral perfusion, facilitating precise characterization of brain health across the lifespan and enhancing the early identification of neurovascular dysfunction in clinical populations.
Collapse
Affiliation(s)
- Xinglin Zeng
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Yiran Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lin Hua
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Ruoxi Lu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lucas Lemos Franco
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, University of Texas Health Science, SanAntonio, Texas, USA
| | - Shuo Chen
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Cao W, Niu J, Liang Y, Cui D, Jiao Q, Ouyang Z, Yu G, Dong L, Luo C. Disturbances of thalamus and prefrontal cortex contribute to cognitive aging: A structure-function coupling analysis based on KL divergence. Neuroscience 2024; 559:263-271. [PMID: 39236803 DOI: 10.1016/j.neuroscience.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Normal aging is accompanied by changes in brain structure and function associated with cognitive decline. Structural and functional abnormalities, particularly the prefrontal cortex (PFC) and subcortical regions, contributed to cognitive aging. However, it remains unclear how the synchronized changes in structure and function of individual brain regions affect the cognition in aging. Using 3D T1-weighted structural data and movie watching functional magnetic resonance imaging data in a sample of 422 healthy individuals (ages from 18 to 87 years), we constructed regional structure-function coupling (SFC) of cortical and subcortical regions by quantifying the distribution similarity of gray matter volume (GMV) and amplitude of low-frequency fluctuation (ALFF). Further, we investigated age-related changes in SFC and its relationship with cognition. With aging, increased SFC localized in PFC, thalamus and caudate nucleus, decreased SFC in temporal cortex, lateral occipital cortex and putamen. Moreover, the SFC in the PFC was associated with executive function and thalamus was associated with the fluid intelligence, and partially mediated age-related cognitive decline. Collectively, our results highlight that tighter structure-function synchron of the PFC and thalamus might contribute to age-related cognitive decline, and provide insight into the substrate of the thalamo-prefrontal pathway with cognitive aging.
Collapse
Affiliation(s)
- Weifang Cao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Institute of Electronic and Information Engineering of Guangdong, University of Electronic Science and Technology of China, Dongguan 523000, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jinpeng Niu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yong Liang
- Institute of Electronic and Information Engineering of Guangdong, University of Electronic Science and Technology of China, Dongguan 523000, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhen Ouyang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Guanghui Yu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Luo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
6
|
Liu X, Yin Y, Shan Y, Chao W, Li J, Zhang Y, Li Q, Liu J, Lu J. Oxygen extraction fraction mapping based combining quantitative susceptibility mapping and quantitative blood oxygenation level-dependent imaging model using multi-delay PCASL. Brain Res 2024; 1846:149259. [PMID: 39368592 DOI: 10.1016/j.brainres.2024.149259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND AND PURPOSE The oxygen extraction fraction is an essential biomarker for the assessment of brain metabolism. A recently proposed method combined with quantitative susceptibility mapping and quantitative blood oxygen level-dependent magnitude enables noninvasive mapping of the oxygen extraction fraction. Our study investigated the oxygen extraction fraction mapping variations of single-delay and multi-delay arterial spin-labeling. MATERIALS AND METHODS A total of twenty healthy participants were enrolled. The multi-echo spoiled gradient-echo, multi-delay arterial spin-labeling, and magnetization-prepared rapid gradient echo sequences were acquired at 3.0 T. The mean oxygen extraction fraction was generated under a single delay time of 1780 ms, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume. The results were compared via paired t tests and the Wilcoxon test. Linear regression analyses were used to investigate the relationships among the oxygen extraction fraction, cerebral blood flow, and venous cerebral blood volume. RESULTS The oxygen extraction fraction estimate with multi-delay arterial spin-labeling yielded a significantly lower value than that with single-delay arterial spin-labeling. The average values for the whole brain under single-delay arterial spin-labeling, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume were 41.5 ± 1.7 % (P < 0.05), 41.3 ± 1.9 % (P < 0.001), and 40.9 ± 1.9 % (N = 20), respectively. The oxygen extraction fraction also showed a significant inverse correlation with the venous cerebral blood volume under steady-state conditions when multi-delay arterial spin-labeling was used (r = 0.5834, p = 0.0069). CONCLUSION These findings suggest that the oxygen extraction fraction is significantly impacted by the arterial spin-labeling methods used in the quantitative susceptibility mapping plus the quantitative blood oxygen level-dependent model, indicating that the differences should be accounted for when employing oxygen extraction fraction mapping based on this model in diseases.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Yayan Yin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Wang Chao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Jingkai Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Yue Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Qiongge Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Jing Liu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.
| |
Collapse
|
7
|
Pasternak M, Mirza SS, Luciw N, Mutsaerts HJMM, Petr J, Thomas D, Cash D, Bocchetta M, Tartaglia MC, Mitchell SB, Black SE, Freedman M, Tang‐Wai D, Rogaeva E, Russell LL, Bouzigues A, van Swieten JC, Jiskoot LC, Seelaar H, Laforce R, Tiraboschi P, Borroni B, Galimberti D, Rowe JB, Graff C, Finger E, Sorbi S, de Mendonça A, Butler C, Gerhard A, Sanchez‐Valle R, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Levin J, Otto M, Santana I, Strafella AP, MacIntosh BJ, Rohrer JD, Masellis M. Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results. Alzheimers Dement 2024; 20:3525-3542. [PMID: 38623902 PMCID: PMC11095434 DOI: 10.1002/alz.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.
Collapse
|
8
|
Karimpoor M, Georgiadis M, Zhao MY, Goubran M, Moein Taghavi H, Mills BD, Tran D, Mouchawar N, Sami S, Wintermark M, Grant G, Camarillo DB, Moseley ME, Zaharchuk G, Zeineh MM. Longitudinal Alterations of Cerebral Blood Flow in High-Contact Sports. Ann Neurol 2023; 94:457-469. [PMID: 37306544 DOI: 10.1002/ana.26718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.
Collapse
Affiliation(s)
| | | | - Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform & Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | | | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA
| | - Dean Tran
- Department of Radiology, Stanford University, Stanford, CA
| | | | - Sohrab Sami
- Department of Radiology, Stanford University, Stanford, CA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA
| | | |
Collapse
|
9
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
10
|
Chatha G, Dhaliwal T, Castle-Kirszbaum MD, Amukotuwa S, Lai L, Kwan E. The utility of arterial spin labelled perfusion-weighted magnetic resonance imaging in measuring the vascularity of high grade gliomas - A prospective study. Heliyon 2023; 9:e17615. [PMID: 37519684 PMCID: PMC10372548 DOI: 10.1016/j.heliyon.2023.e17615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Background Dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) currently remains the gold standard technique for measuring cerebral perfusion in glioma diagnosis and surveillance. Arterial spin labelling (ASL) PWI is a non-invasive alternative that does not require gadolinium contrast administration, although it is yet to be applied in widespread clinical practice. This study aims to assess the utility of measuring signal intensity in ASL PWI in predicting glioma vascularity by measuring maximal tumour signal intensity in patients based on pre-operative imaging and comparing this to maximal vessel density on histopathology. Methods Pseudocontinuous ASL (pCASL) and DSC images were acquired pre-operatively in 21 patients with high grade gliomas. The maximal signal intensity within the gliomas over a region of interest of 100 mm2 was measured and also normalised to the contralateral cerebral cortex (nTBF-C), and cerebellum (nTBF-Cb). Maximal vessel density per 1 mm2 was determined on histopathology using CD31 and CD34 immunostaining on all participants. Results Using ASL, statistically significant correlation was observed between maximal signal intensity (p < 0.05) and nTBF-C (p < 0.05) to maximal vessel density based on histopathology. Although a positive trend was also observed nTBF-Cb, this did not reach statistical significance. Using DSC, no statistically significant correlation was found between signal intensity, nTBF-C and nTBF-Cb. There was no correlation between maximal signal intensity between ASL and DSC. Average vessel density did not correlate with age, sex, previous treatment, or IDH status. Conclusions ASL PWI imaging is a reliable marker of evaluating the vascularity of high grade gliomas and may be used as an adjunct to DSC PWI.
Collapse
Affiliation(s)
- Gurkirat Chatha
- Department of Neurosurgery, Monash Health, Melbourne, Australia
| | | | - Mendel David Castle-Kirszbaum
- Department of Neurosurgery, Monash Health, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | | | - Leon Lai
- Department of Neurosurgery, Monash Health, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | - Edward Kwan
- Department of Pathology, Monash Health, Melbourne, Australia
| |
Collapse
|
11
|
Domingos C, Fouto AR, Nunes RG, Ruiz-Tagle A, Esteves I, Silva NA, Vilela P, Gil-Gouveia R, Figueiredo P. Impact of susceptibility-induced distortion correction on perfusion imaging by pCASL with a segmented 3D GRASE readout. Magn Reson Imaging 2023:S0730-725X(23)00104-2. [PMID: 37343905 DOI: 10.1016/j.mri.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE The consensus for the clinical implementation of arterial spin labeling (ASL) perfusion imaging recommends a segmented 3D Gradient and Spin-Echo (GRASE) readout for optimal signal-to-noise-ratio(SNR). The correction of the associated susceptibility-induced geometric distortions has been shown to improve diagnostic precision, but its impact on ASL data has not been systematically assessed and it is not consistently part of pre-processing pipelines. Here, we investigate the effects of susceptibility-induced distortion correction on perfusion imaging by pseudo-continuous ASL (pCASL) with a segmented 3D GRASE readout. METHODS Data acquired from 28 women using pCASL with 3D GRASE at 3T was analyzed using three pre-processing options: without distortion correction, with distortion correction, and with spatial smoothing (without distortion correction) matched to control for blurring effects induced by distortion correction. Maps of temporal SNR (tSNR) and relative perfusion were analyzed in eight regions-of-interest (ROIs) across the brain. RESULTS Distortion correction significantly affected tSNR and relative perfusion across the brain. Increases in tSNR were like those produced by matched spatial smoothing in most ROIs, indicating that they were likely due to blurring effects. However, that was not the case in the frontal and temporal lobes, where we also found increased relative perfusion with distortion correction even compared with matched spatial smoothing. These effects were found in both controls and patients, with no interactions with the participant group. CONCLUSION Correction of Susceptibility-induced distortions significantly impacts ASL perfusion imaging using a segmented 3D GRASE readout, and this step should therefore be considered in ASL pre-processing pipelines. This is of special importance in clinical studies, reporting perfusion across ROIs defined on relatively undistorted images and when conducting group analyses requiring the alignment of images across different subjects.
Collapse
Affiliation(s)
- Catarina Domingos
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal.
| | - Ana R Fouto
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Vilela
- Neurology Department, Hospital da Luz, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon, Portugal.; Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Wang H, Chai C, Wu G, Li J, Zhao C, Fu D, Zhang S, Wang H, Wang B, Zhu J, Shen W, Xia S. Cerebral blood flow regulates iron overload in the cerebral nuclei of hemodialysis patients with anemia. J Cereb Blood Flow Metab 2023; 43:749-762. [PMID: 36545834 PMCID: PMC10108183 DOI: 10.1177/0271678x221147363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Hemodialysis patients exhibit anemia-related cerebral hyperperfusion and iron deposition (ID). However, the mechanisms underlying the pathology of cerebral ID are not clear. We investigated the role of cerebral blood flow (CBF) in the pathophysiology of cerebral ID in hemodialysis patients with anemia. This study recruited 33 hemodialysis patients with anemia and thirty-three healthy controls (HCs). All the subjects underwent quantitative susceptibility mapping (QSM) and arterial spin labeling (ASL) to measure ID and CBF in the cerebral nuclei. Furthermore, we evaluated lacunar infarction (LI), cerebral microbleeds, and total white matter hyperintensity volume (TWMHV). Hemodialysis patients with anemia showed significantly higher ID and CBF in some nuclei compared to the HCs after adjusting for age, sex, and total intracranial volume (TIV) [P < 0.05, false discovery rate (FDR) corrected]. CBF showed a positive correlation with ID in both patients and HCs after adjustments for age, gender, and TIV (P < 0.05, FDR corrected). Serum phosphorus, calcium, TWMHV, hypertension, and dialysis duration were independently associated with ID (P < 0.05). Hemoglobin, serum phosphorus, and LI were independently associated with CBF (P < 0.05). Mediation analysis demonstrated that CBF mediated the effects between hemoglobin and ID. Our study demonstrated that CBF mediated aberrant cerebral ID in hemodialysis patients with anemia.
Collapse
Affiliation(s)
- Huiying Wang
- The School of Medicine, Nankai
University, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| | - Gemuer Wu
- The School of Medicine, Nankai
University, Tianjin, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
| | - Chenxi Zhao
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Dingwei Fu
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | | | - Huapeng Wang
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Beini Wang
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jinxia Zhu
- MR Collaboration, Siemens
Healthcare, Northeast Asia, Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| |
Collapse
|
13
|
Dijsselhof MBJ, Barboure M, Stritt M, Nordhøy W, Wink AM, Beck D, Westlye LT, Cole JH, Barkhof F, Mutsaerts HJMM, Petr J. The value of arterial spin labelling perfusion MRI in brain age prediction. Hum Brain Mapp 2023; 44:2754-2766. [PMID: 36852443 PMCID: PMC10089088 DOI: 10.1002/hbm.26242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 ± 14.8 years) were scanned at baseline and after 1.7 ± 0.5 years follow-up (n = 248, mean age 62.4 ± 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 ± 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 ± 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 ± 6.3 and - 1.1 ± 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.
Collapse
Affiliation(s)
- Mathijs B. J. Dijsselhof
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Michelle Barboure
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | | | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
| | - Alle Meije Wink
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - James H. Cole
- Dementia Research CentreQueen Square Institute of Neurology, UCLLondonUK
- Centre for Medical Imaging ComputingComputer Science, UCLLondonUK
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUCLLondonUK
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Jan Petr
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| |
Collapse
|
14
|
Cabrera JÁ, Urmeneta Ulloa J, Jímenez de la Peña M, Rubio Alonso M, López Gavilán M, Bayona Horta S, Pizarro G, Simon K, Migoya T, Martínez de Vega V. White-Matter Lesions and Cortical Cerebral Blood Flow Evaluation by 3D Arterial Spin-Labeled Perfusion MRI in Asymptomatic Divers: Correlation with Patent Foramen Ovale Ocurrence. J Clin Med 2023; 12:jcm12082866. [PMID: 37109204 PMCID: PMC10141148 DOI: 10.3390/jcm12082866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral white-matter lesions (cWML) can be caused by dilation of Virchow-Robin spaces or may correspond to true lacunar ischemic lesions. The aim of our study was to evaluate in asymptomatic divers the relationship between the presence of patent foramen ovale (PFO) and cWML, as well as their possible effects on cortical cerebral blood flow (CBF) by magnetic resonance (MRI) through the arterial spin labeling (ASL) sequence. Transthoracic echocardiography was performed for the identification of PFO, and cerebral magnetic resonance including the 3D-ASL sequence for CBF quantification. Thirty-eight divers, with a mean age 45.8 ± 8.6 years, were included. Nineteen healthy volunteers, mean age 41 ± 15.2 years, served as the control group. A total of 28.9% of divers had completed more than 1000 dives. It was found that 26.3% of divers presented with PFO in the echocardiographic study. cWML was evidenced in 10.5% of diver MRI studies. There was no statistically significant relationship between the presence of PFO and cWML (p = 0.95). We observed a lower blood flow in all brain areas assessed by the 3D-ASL sequence in the group of divers, compared with the control group. We did not find statistical differences in CBF as a function of the presence or absence of PFO, number of dives, or cWML evidence.
Collapse
Affiliation(s)
- José Ángel Cabrera
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain
| | - Javier Urmeneta Ulloa
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain
- Radiology Department, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain
| | | | - Margarita Rubio Alonso
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | | | - Silvia Bayona Horta
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain
| | - Gonzalo Pizarro
- Cardiology Department, Hospital Ruber Juan Bravo, Grupo Quirónsalud, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Meng M, Liu F, Ma Y, Qin W, Guo L, Peng S, Gordon ML, Wang Y, Zhang N. The identification and cognitive correlation of perfusion patterns measured with arterial spin labeling MRI in Alzheimer's disease. Alzheimers Res Ther 2023; 15:75. [PMID: 37038198 PMCID: PMC10088108 DOI: 10.1186/s13195-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Vascular dysfunction, including cerebral hypoperfusion, plays an important role in the pathogenesis and progression of Alzheimer's disease (AD), independent of amyloid and tau pathology. We established an AD-related perfusion pattern (ADRP) measured with arterial spin labeling (ASL) MRI using multivariate spatial covariance analysis. METHODS We obtained multimodal MRI including pseudo-continuous ASL and neurocognitive testing in a total of 55 patients with a diagnosis of mild to moderate AD supported by amyloid PET and 46 normal controls (NCs). An ADRP was established from an identification cohort of 32 patients with AD and 32 NCs using a multivariate analysis method based on scaled subprofile model/principal component analysis, and pattern expression in individual subjects was quantified for both the identification cohort and a validation cohort (23 patients with AD and 14 NCs). Subject expression score of the ADRP was then used to assess diagnostic accuracy and cognitive correlations in AD patients and compared with global and regional cerebral blood flow (CBF) in specific areas identified from voxel-based univariate analysis. RESULTS The ADRP featured negative loading in the bilateral middle and posterior cingulate and precuneus, inferior parietal lobule, and frontal areas, and positive loading in the right cerebellum and bilateral basal areas. Subject expression score of the ADRP was significantly elevated in AD patients compared with NCs (P < 0.001) and showed good diagnostic accuracy for AD with area under receiver-operator curve of 0.87 [95% CI (0.78-0.96)] in the identification cohort and 0.85 in the validation cohort. Moreover, there were negative correlations between subject expression score and global cognitive function and performance in various cognitive domains in patients with AD. The characteristics of the ADRP topography and subject expression scores were supported by analogous findings obtained with regional CBF. CONCLUSIONS We have reported a characteristic perfusion pattern associated with AD using ASL MRI. Subject expression score of this spatial covariance pattern is a promising MRI biomarker for the identification and monitoring of AD.
Collapse
Affiliation(s)
- Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, USA
| | - Yue Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
16
|
Xu J, Xia Y, Meng M, Liu F, Che P, Zhang Y, Wang Y, Cai L, Qin W, Zhang N. Clinical features and biomarkers of semantic variant primary progressive aphasia with MAPT mutation. Alzheimers Res Ther 2023; 15:21. [PMID: 36707904 PMCID: PMC9881263 DOI: 10.1186/s13195-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) is generally sporadic, with very few reports of tau pathology caused by MAPT mutations. METHODS A 64-year-old man was diagnosed with svPPA with MAPT P301L mutation. Clinical information, cognitive and language functions, multimodal magnetic resonance imaging (MRI), blood biomarkers, fluorodeoxyglucose (FDG) imaging and tau positron emission tomography (PET) were obtained. RESULTS Semantic memory impairment was the earliest and most prominent symptom in this family. Tau accumulation and hypometabolism were observed prior to brain atrophy in mutation carriers. Plasma NfL and GFAP concentrations were elevated in the two svPPA patients. Some relative decreases and some relative increases in regional cerebral blood flow (CBF) as measured by arterial spin labelling (ASL) were observed in mutation carriers compared to noncarriers. CONCLUSIONS This study describes a large svPPA-affected family with the MAPT P301L mutation and provides an ideal model for inferring underlying pathology and pathophysiological processes in svPPA caused by tauopathies.
Collapse
Affiliation(s)
- Jing Xu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanmin Xia
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China ,grid.459324.dDepartment of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei China
| | - Meng Meng
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ping Che
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanxin Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ying Wang
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Li Cai
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Wen Qin
- grid.412645.00000 0004 1757 9434Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| |
Collapse
|
17
|
Wu S, Tyler LK, Henson RNA, Rowe JB, Cam-Can, Tsvetanov KA. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol Aging 2023; 121:1-14. [PMID: 36306687 PMCID: PMC7613814 DOI: 10.1016/j.neurobiolaging.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The preservation of cognitive function in old age is a public health priority. Cerebral hypoperfusion is a hallmark of dementia but its impact on maintaining cognitive ability across the lifespan is less clear. We investigated the relationship between baseline cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) response during a fluid reasoning task in a population-based adult lifespan cohort. As age differences in CBF could lead to non-neuronal contributions to the BOLD signal, we introduced commonality analysis to neuroimaging to dissociate performance-related CBF effects from the physiological confounding effects of CBF on the BOLD response. Accounting for CBF, we confirmed that performance- and age-related differences in BOLD responses in the multiple-demand network were implicated in fluid reasoning. Age differences in CBF explained not only performance-related BOLD responses but also performance-independent BOLD responses. Our results suggest that CBF is important for maintaining cognitive function, while its non-neuronal contributions to BOLD signals reflect an age-related confound. Maintaining perfusion into old age may serve to support brain function and preserve cognitive performance.
Collapse
Affiliation(s)
- Shuyi Wu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Richard N A Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Han H, Lin Z, Soldan A, Pettigrew C, Betz JF, Oishi K, Li Y, Liu P, Albert M, Lu H. Longitudinal Changes in Global Cerebral Blood Flow in Cognitively Normal Older Adults: A Phase-Contrast MRI Study. J Magn Reson Imaging 2022; 56:1538-1545. [PMID: 35218111 PMCID: PMC9411265 DOI: 10.1002/jmri.28133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Characterization of blood supply changes in older individuals is important in understanding brain aging and diseases. However, prior studies largely focused on cross-sectional design, thus change in cerebral blood flow (CBF) could not be assessed on an individual level. PURPOSE To evaluate longitudinal short-term changes in global CBF in cognitively normal older adults. STUDY TYPE Prospective, longitudinal, and cohort. POPULATION One-hundred twenty-seven cognitive-normal participants (mean age 69 ± 7 years, 47 males) underwent serial MRI with an average follow-up time of 2.1 years. FIELD STRENGTH/SEQUENCE 3 T phase-contrast (PC), three-dimensional magnetization-prepared-rapid-acquisition-of-gradient-echo (MPRAGE) and fluid-attenuated inversion recovery (FLAIR) MRI. ASSESSMENT Total CBF was measured with PC MRI allowing assessment of quantitative flow in four major feeding arteries by a trained radiologist with >3 years' experience (O.K.). Brain volume was obtained from MPRAGE MRI and measured by T1-MultiAtlas MRICloud tool. The ratio between total CBF and brain volume yielded global CBF in mL/100 g/min. White matter hyperintensity (WMH) was measured automatically using a Bayesian probability approach on FLAIR. STATISTICAL TESTS Linear mixed effect model was used to simultaneously assess cross-sectional age-differences and longitudinal age-changes in CBF. Spearman rank correlation was used to evaluate the relationship between CBF change and WMH progression. A P-value of <0.05 (two-tailed) was considered significant. RESULTS Global CBF decreased with age at a longitudinal rate of -0.56 mL/100 g/min/year (95% confidence interval [CI]: -1.09, -0.03), compared to a cross-sectional rate of -0.26 mL/100 g/min/year (95% CI: -0.41, -0.11). Changes in CBF were significantly associated with progression of WMH (Spearman rank correlation r = -0.25), as those participants who had a more rapid CBF reduction had greater increases in WMH volumes and the relationship remained significant when adjusting for baseline vascular risk scores. Additionally, age-related changes in whole-brain volume were found to be -0.151%/year (95% CI: -0.186, -0.116). DATA CONCLUSION These findings suggest that brain aging in older adults is accompanied by a rapid longitudinal reduction in CBF, the rate of which is associated with white matter damage. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua F. Betz
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, United States
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
19
|
Zhang N, Gordon ML. Editorial: Extracellular vesicles in age-related neurodegenerative disease: Biological mechanisms, diagnostics, and therapeutics. Front Aging Neurosci 2022; 14:1015985. [PMID: 36147704 PMCID: PMC9486311 DOI: 10.3389/fnagi.2022.1015985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Nan Zhang
| | - Marc L. Gordon
- The Litwin-Zucker Research Center, Northwell Health, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
20
|
Lou F, Yang G, Cai L, Yu L, Zhang Y, Shi C, Zhang N. Effects of age, sex, and education on California Verbal Learning Test-II performance in a Chinese-speaking population. Front Psychol 2022; 13:935875. [PMID: 36092060 PMCID: PMC9454604 DOI: 10.3389/fpsyg.2022.935875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The California Verbal Learning Test-Second Edition (CVLT-II), is a commonly used tool to assess episodic memory. This study analyzed learning and memory characteristics in a cognitively healthy Chinese population, as well as the effects of age, sex and education on CVLT-II factors. In total, 246 healthy people aged 20–80 years and 29 persons with multiple sclerosis (MS) were included in this study and completed the CVLT-II. Factors including total learning, learning strategy, serial position effects, short-delay free and cued recall, long-delay free and cued recall, repetitions and intrusions during recall, hits and false positives of recognition, and total recognition discriminability were calculated. The effects of age, sex and education on these factors were analyzed using ANCOVA or independent two-sample t-tests and further confirmed by multiple regression analysis. The regression-based normative data were then computed by the equivalent scores method. Moreover, differences in learning and memory were compared between persons with MS and age-, sex- and education-matched healthy individuals. Most CVLT-II factors significantly differed between different age and education groups; in particular, better performance in total learning, recall, semantic clustering and recognition was observed in the younger and more educated groups than in the older and less educated groups. Male participants showed higher recency effect scores, more repetitions and fewer hits than female participants. Compared with healthy individuals, persons with MS showed extensive impairments in memory processes, such as learning, recall, learning strategy and recognition (p < 0.05). These findings indicated that verbal learning and memory were highly dependent on age and educational level but not strongly affected by sex. The CVLT-II effectively assesses episodic memory impairment in the Chinese-speaking population.
Collapse
Affiliation(s)
- Fanghua Lou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Huang He Hospital, Tianjin, China
| | - Guotao Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lechang Yu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Chuan Shi
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- *Correspondence: Chuan Shi,
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Nan Zhang,
| |
Collapse
|
21
|
Jiang J, Sheng C, Chen G, Liu C, Jin S, Li L, Jiang X, Han Y. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. GeroScience 2022; 44:2319-2336. [PMID: 35581512 PMCID: PMC9616982 DOI: 10.1007/s11357-022-00588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Exploring individual hallmarks of brain ageing is important. Here, we propose the age-related glucose metabolism pattern (ARGMP) as a potential index to characterize brain ageing in cognitively normal (CN) elderly people. We collected 18F-fluorodeoxyglucose (18F-FDG) PET brain images from two independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 127) and the Xuanwu Hospital of Capital Medical University, Beijing, China (N = 84). During follow-up (mean 80.60 months), 23 participants in the ADNI cohort converted to cognitive impairment. ARGMPs were identified using the scaled subprofile model/principal component analysis method, and cross-validations were conducted in both independent cohorts. A survival analysis was further conducted to calculate the predictive effect of conversion risk by using ARGMPs. The results showed that ARGMPs were characterized by hypometabolism with increasing age primarily in the bilateral medial superior frontal gyrus, anterior cingulate and paracingulate gyri, caudate nucleus, and left supplementary motor area and hypermetabolism in part of the left inferior cerebellum. The expression network scores of ARGMPs were significantly associated with chronological age (R = 0.808, p < 0.001), which was validated in both the ADNI and Xuanwu cohorts. Individuals with higher network scores exhibited a better predictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068). These findings indicate that ARGMPs derived from CN participants may represent a novel index for characterizing brain ageing and predicting high conversion risk into cognitive impairment.
Collapse
Affiliation(s)
- Jiehui Jiang
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China.
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Guanqun Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunhua Liu
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Shichen Jin
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Lanlan Li
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueyan Jiang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- German Centre for Neurodegenerative Disease, Clinical Research Group, Venusberg Campus 1, 53121, Bonn, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Clinical Research Centre for Geriatric Disorders, Beijing, 100053, China.
| |
Collapse
|
22
|
Lee SY, Brothers RO, Turrentine KB, Quadri A, Sathialingam E, Cowdrick KR, Gillespie S, Bai S, Goldman-Yassen AE, Joiner CH, Brown RC, Buckley EM. Quantifying the Cerebral Hemometabolic Response to Blood Transfusion in Pediatric Sickle Cell Disease With Diffuse Optical Spectroscopies. Front Neurol 2022; 13:869117. [PMID: 35847200 PMCID: PMC9283827 DOI: 10.3389/fneur.2022.869117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Red blood cell transfusions are common in patients with sickle cell disease who are at increased risk of stroke. Unfortunately, transfusion thresholds needed to sufficiently dilute sickle red blood cells and adequately restore oxygen delivery to the brain are not well defined. Previous work has shown that transfusion is associated with a reduction in oxygen extraction fraction and cerebral blood flow, both of which are abnormally increased in sickle patients. These reductions are thought to alleviate hemometabolic stress by improving the brain's ability to respond to increased metabolic demand, thereby reducing susceptibility to ischemic injury. Monitoring the cerebral hemometabolic response to transfusion may enable individualized management of transfusion thresholds. Diffuse optical spectroscopies may present a low-cost, non-invasive means to monitor this response. In this study, children with SCD undergoing chronic transfusion therapy were recruited. Diffuse optical spectroscopies (namely, diffuse correlation spectroscopy combined with frequency domain near-infrared spectroscopy) were used to quantify oxygen extraction fraction (OEF), cerebral blood volume (CBV), an index of cerebral blood flow (CBFi), and an index of cerebral oxygen metabolism (CMRO2i) in the frontal cortex immediately before and after transfusion. A subset of patients receiving regular monthly transfusions were measured during a subsequent transfusion. Data was captured from 35 transfusions in 23 patients. Transfusion increased median blood hemoglobin levels (Hb) from 9.1 to 11.7 g/dL (p < 0.001) and decreased median sickle hemoglobin (HbS) from 30.9 to 21.7% (p < 0.001). Transfusion decreased OEF by median 5.9% (p < 0.001), CBFi by median 21.2% (p = 0.020), and CBV by median 18.2% (p < 0.001). CMRO2i did not statistically change from pre-transfusion levels (p > 0.05). Multivariable analysis revealed varying degrees of associations between outcomes (i.e., OEF, CBFi, CBV, and CMRO2i), Hb, and demographics. OEF, CBFi, and CBV were all negatively associated with Hb, while CMRO2i was only associated with age. These results demonstrate that diffuse optical spectroscopies are sensitive to the expected decreases of oxygen extraction, blood flow, and blood volume after transfusion. Diffuse optical spectroscopies may be a promising bedside tool for real-time monitoring and goal-directed therapy to reduce stroke risk for sickle cell disease.
Collapse
Affiliation(s)
- Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Katherine B. Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Scott Gillespie
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam E. Goldman-Yassen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Clinton H. Joiner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - R. Clark Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Research Scholar, Children's Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Erin M. Buckley
| |
Collapse
|
23
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
24
|
Gonchigsuren O, Harada M, Hisaoka S, Higashi K, Matsumoto Y, Sumida N, Mori T, Ito H, Mori K, Miyoshi M. Brain abnormalities in children with attention-deficit/hyperactivity disorder assessed by multi-delay arterial spin labeling perfusion and voxel-based morphometry. Jpn J Radiol 2022; 40:568-577. [DOI: 10.1007/s11604-021-01239-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
|
25
|
Wang R, Oh JM, Motovylyak A, Ma Y, Sager MA, Rowley HA, Johnson KM, Gallagher CL, Carlsson CM, Bendlin BB, Johnson SC, Asthana S, Eisenmenger L, Okonkwo OC. Impact of sex and APOE ε4 on age-related cerebral perfusion trajectories in cognitively asymptomatic middle-aged and older adults: A longitudinal study. J Cereb Blood Flow Metab 2021; 41:3016-3027. [PMID: 34102919 PMCID: PMC8545048 DOI: 10.1177/0271678x211021313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Cerebral hypoperfusion is thought to contribute to cognitive decline in Alzheimer's disease, but the natural trajectory of cerebral perfusion in cognitively healthy adults has not been well-studied. This longitudinal study is consisted of 950 participants (40-89 years), who were cognitively unimpaired at their first visit. We investigated the age-related changes in cerebral perfusion, and their associations with APOE-genotype, biological sex, and cardiometabolic measurements. During the follow-up period (range 0.13-8.24 years), increasing age was significantly associated with decreasing cerebral perfusion, in total gray-matter (β=-1.43), hippocampus (-1.25), superior frontal gyrus (-1.70), middle frontal gyrus (-1.99), posterior cingulate (-2.46), and precuneus (-2.14), with all P-values < 0.01. Compared with male-ɛ4 carriers, female-ɛ4 carriers showed a faster decline in global and regional cerebral perfusion with increasing age, whereas the age-related decline in cerebral perfusion was similar between male- and female-ɛ4 non-carriers. Worse cardiometabolic profile (i.e., increased blood pressure, body mass index, total cholesterol, and blood glucose) was associated with lower cerebral perfusion at all the visits. When time-varying cardiometabolic measurements were adjusted in the model, the synergistic effect of sex and APOE-ɛ4 on age-related cerebral perfusion-trajectories became largely attenuated. Our findings demonstrate that APOE-genotype and sex interactively impact cerebral perfusion-trajectories in mid- to late-life. This effect may be partially explained by cardiometabolic alterations.
Collapse
Affiliation(s)
- Rui Wang
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The Swedish School of Sport and Health Science, GIH, Stockholm, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jennifer M Oh
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Laura Eisenmenger
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
26
|
van Aalst J, Devrome M, Van Weehaeghe D, Rezaei A, Radwan A, Schramm G, Ceccarini J, Sunaert S, Koole M, Van Laere K. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 2021; 49:664-680. [PMID: 34398271 DOI: 10.1007/s00259-021-05518-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort. METHODS In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated. RESULTS An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (- 0.75 ≤ r ≤ - 0.41). CONCLUSION After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.
- UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, BE-3000 , Leuven, Belgium.
| |
Collapse
|
27
|
Comparing the effect of cognitive vs. exercise training on brain MRI outcomes in healthy older adults: A systematic review. Neurosci Biobehav Rev 2021; 128:511-533. [PMID: 34245760 DOI: 10.1016/j.neubiorev.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Aging is associated with cognitive decline. Importantly cognition and cerebral health is enhanced with interventions like cognitive (CT) and exercise training (ET). However, effects of CT and ET interventions on brain magnetic resonance imaging outcomes have never been compared systematically. Here, the primary objective was to critically and systematically compare CT to ET in healthy older adults on brain MRI outcomes. A total of 38 studies were included in the final review. Although results were mixed, patterns were identified: CT showed improvements in white matter microstructure, while ET demonstrated macrostructural enhancements, and both demonstrated changes to task-based BOLD signal changes. Importantly, beneficial effects for cognitive and cerebral outcomes were observed by almost all, regardless of intervention type. Overall, it is suggested that future work include more than one MRI outcome, and report all results including null. To better understand the MRI changes associated with CT or ET, more studies explicitly comparing interventions within the same domain (i.e. resistance vs. aerobic) and between domains (i.e. CT vs. ET) are needed.
Collapse
|
28
|
Tsvetanov KA, Henson RNA, Jones PS, Mutsaerts H, Fuhrmann D, Tyler LK, Rowe JB. The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology 2021; 58:e13714. [PMID: 33210312 PMCID: PMC8244027 DOI: 10.1111/psyp.13714] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Accurate identification of brain function is necessary to understand neurocognitive aging, and thereby promote health and well-being. Many studies of neurocognitive aging have investigated brain function with the blood-oxygen level-dependent (BOLD) signal measured by functional magnetic resonance imaging. However, the BOLD signal is a composite of neural and vascular signals, which are differentially affected by aging. It is, therefore, essential to distinguish the age effects on vascular versus neural function. The BOLD signal variability at rest (known as resting state fluctuation amplitude, RSFA), is a safe, scalable, and robust means to calibrate vascular responsivity, as an alternative to breath-holding and hypercapnia. However, the use of RSFA for normalization of BOLD imaging assumes that age differences in RSFA reflecting only vascular factors, rather than age-related differences in neural function (activity) or neuronal loss (atrophy). Previous studies indicate that two vascular factors, cardiovascular health (CVH) and cerebrovascular function, are insufficient when used alone to fully explain age-related differences in RSFA. It remains possible that their joint consideration is required to fully capture age differences in RSFA. We tested the hypothesis that RSFA no longer varies with age after adjusting for a combination of cardiovascular and cerebrovascular measures. We also tested the hypothesis that RSFA variation with age is not associated with atrophy. We used data from the population-based, lifespan Cam-CAN cohort. After controlling for cardiovascular and cerebrovascular estimates alone, the residual variance in RSFA across individuals was significantly associated with age. However, when controlling for both cardiovascular and cerebrovascular estimates, the variance in RSFA was no longer associated with age. Grey matter volumes did not explain age differences in RSFA, after controlling for CVH. The results were consistent between voxel-level analysis and independent component analysis. Our findings indicate that cardiovascular and cerebrovascular signals are together sufficient predictors of age differences in RSFA. We suggest that RSFA can be used to separate vascular from neuronal factors, to characterize neurocognitive aging. We discuss the implications and make recommendations for the use of RSFA in the research of aging.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Richard N. A. Henson
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - P. Simon Jones
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Henk Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Delia Fuhrmann
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Lorraine K. Tyler
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Cam‐CAN
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| |
Collapse
|
29
|
Burley CV, Francis ST, Whittaker AC, Mullinger KJ, Lucas SJE. Measuring resting cerebral haemodynamics using MRI arterial spin labelling and transcranial Doppler ultrasound: Comparison in younger and older adults. Brain Behav 2021; 11:e02126. [PMID: 34032379 PMCID: PMC8323033 DOI: 10.1002/brb3.2126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Resting cerebral blood flow (CBF) and perfusion measures have been used to determine brain health. Studies showing variation in resting CBF with age and fitness level using different imaging approaches have produced mixed findings. We assess the degree to which resting CBF measures through transcranial Doppler (TCD) and arterial spin labeling (ASL) MRI provide complementary information in older and younger, fit and unfit cohorts. METHODS Thirty-five healthy volunteers (20 younger: 24 ± 7y; 15 older: 66 ± 7y) completed two experimental sessions (TCD/MRI). Aging and fitness effects within and between imaging modalities were assessed. RESULTS Middle cerebral artery blood velocity (MCAv, TCD) was lower and transit time (MRI) slower in older compared with younger participants (p < .05). The younger group had higher gray matter cerebral perfusion (MRI) than the older group, albeit not significantly (p = .13). Surprisingly, fitness effects in the younger group (decrease/increase in MCAv/transit time with fitness, respectively) opposed the older group (increase/decrease in MCAv/transit time). Whole cohort transit times correlated with MCAv (r=-0.63; p < .05), whereas tissue perfusion did not correlate with TCD measures. CONCLUSION TCD and MRI modalities provide complementary resting CBF measures, with similar effects across the whole cohort and between subgroups (age/fitness) if metrics are comparable (e.g., velocity [TCD] versus transit time [MRI]).
Collapse
Affiliation(s)
- Claire V Burley
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.,Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Anna C Whittaker
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.,Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK.,School of Psychology, University of Birmingham, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| |
Collapse
|
30
|
Diomedi M, Rocco A, Bonomi CG, Mascolo AP, De Lucia V, Marrama F, Sallustio F, Koch G, Martorana A. Haemodynamic impairment along the Alzheimer's disease continuum. Eur J Neurol 2021; 28:2168-2173. [PMID: 33759296 DOI: 10.1111/ene.14834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is considered a clinical and biological continuum identified via cerebrospinal fluid (CSF) or imaging biomarkers. Chronic hypoperfusion is held as one of the main features of Alzheimer's disease, as part of the processes causing neuronal degeneration. The mechanism responsible for such condition is still debated, although recently a direct connection with amyloid peptides has been shown. Here the aim was to investigate whether measures of hypoperfusion change along the AD continuum. METHODS Seventy patients with mild AD were recruited and stratified according to their CSF biomarker profile-as indicated by the National Institute on Aging and Alzheimer's Association research framework-into patients with either isolated amyloid pathology (A+T-) or full-blown AD (A+T+), and further layered according to apolipoprotein E genotype. After evaluation of vascular risk factors, a transcranial Doppler was performed on each patient, to evaluate mean flow velocity and pulsatility index in the middle cerebral artery, and to calculate the breath-holding index. Patients were compared to a cohort of 17 healthy controls. RESULTS The breath-holding index was reduced in the AD continuum and was inversely correlated to CSF amyloid β42 levels. Such correlation was stronger in the A+T+ than in the A+T- group, and unexpectedly reached statistical significance only in the E3 and not in the E4 genotype carriers. CONCLUSIONS These results suggest a tight and effective relationship between amyloid β42, vascular hypoperfusion, cerebrovascular reactivity and epsilon genotype.
Collapse
Affiliation(s)
- Marina Diomedi
- Stroke Center, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| | - Alessandro Rocco
- Stroke Center, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| | | | | | - Vincenzo De Lucia
- Memory Clinic, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| | - Federico Marrama
- Stroke Center, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| | - Fabrizio Sallustio
- Stroke Center, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy.,Dipartimento di Neuroscienze e Riabilitazione, Sezione di Fisiologia Umana, Università di Ferrara, Ferrara, Italy
| | - Alessandro Martorana
- Memory Clinic, Policlinico Tor Vergata, Rome University 'Tor Vergata', Rome, Italy
| |
Collapse
|
31
|
Knight SP, Laird E, Williamson W, O'Connor J, Newman L, Carey D, De Looze C, Fagan AJ, Chappell MA, Meaney JF, Kenny RA. Obesity is associated with reduced cerebral blood flow - modified by physical activity. Neurobiol Aging 2021; 105:35-47. [PMID: 34022537 PMCID: PMC8600128 DOI: 10.1016/j.neurobiolaging.2021.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
This study examined the associations of body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), and physical activity (PA) with gray matter cerebral blood flow (CBFGM) in older adults. Cross-sectional data was used from the Irish Longitudinal Study on Ageing (n = 495, age 69.0 ±7.4 years, 52.1% female). Whole-brain CBFGM was quantified using arterial spin labeling MRI. Results from multivariable regression analysis revealed that an increase in BMI of 0.43 kg/m2, WHR of 0.01, or WC of 1.3 cm were associated with the same reduction in CBFGM as 1 year of advancing age. Participants overweight by BMI or with high WHR/WC reporting low/moderate PA had up to 3 ml/100g/min lower CBFGM (p ≤ .011); there was no significant reduction for those reporting high PA. Since PA could potentially moderate obesity/CBF associations, this may be a cost-effective and relatively easy way to help mitigate the negative impact of obesity in an older population, such as cerebral hypoperfusion, which is an early mechanism in vascular dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Silvin P Knight
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Eamon Laird
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Wilby Williamson
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - John O'Connor
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Celine De Looze
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - James F Meaney
- School of Medicine, Trinity College Dublin, Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Mercer's Institute for Successful Ageing (MISA), St. James's Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Hu Y, Liu R, Gao F. Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern. Korean J Radiol 2021; 22:1194-1202. [PMID: 33856130 PMCID: PMC8236374 DOI: 10.3348/kjr.2020.0716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Kavroulakis E, Simos NJ, Maris TG, Zaganas I, Panagiotakis S, Papadaki E. Evidence of Age-Related Hemodynamic and Functional Connectivity Impairment: A Resting State fMRI Study. Front Neurol 2021; 12:633500. [PMID: 33833727 PMCID: PMC8021915 DOI: 10.3389/fneur.2021.633500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To assess age-related changes in intrinsic functional brain connectivity and hemodynamics during adulthood in the context of the retrogenesis hypothesis, which states that the rate of age-related changes is higher in late-myelinating (prefrontal, lateral-posterior temporal) cerebrocortical areas as compared to early myelinating (parietal, occipital) regions. In addition, to examine the dependence of age-related changes upon concurrent subclinical depression symptoms which are common even in healthy aging. Methods: Sixty-four healthy adults (28 men) aged 23-79 years (mean 45.0, SD = 18.8 years) were examined. Resting-state functional MRI (rs-fMRI) time series were used to compute voxel-wise intrinsic connectivity contrast (ICC) maps reflecting the strength of functional connectivity between each voxel and the rest of the brain. We further used Time Shift Analysis (TSA) to estimate voxel-wise hemodynamic lead or lag for each of 22 ROIs from the automated anatomical atlas (AAL). Results: Adjusted for depression symptoms, gender and education level, reduced ICC with age was found primarily in frontal, temporal regions, and putamen, whereas the opposite trend was noted in inferior occipital cortices (p < 0.002). With the same covariates, increased hemodynamic lead with advancing age was found in superior frontal cortex and thalamus, with the opposite trend in inferior occipital cortex (p < 0.002). There was also evidence of reduced coupling between voxel-wise intrinsic connectivity and hemodynamics in the inferior parietal cortex. Conclusion: Age-related intrinsic connectivity reductions and hemodynamic changes were demonstrated in several regions-most of them part of DMN and salience networks-while impaired neurovascular coupling was, also, found in parietal regions. Age-related reductions in intrinsic connectivity were greater in anterior as compared to posterior cortices, in line with implications derived from the retrogenesis hypothesis. These effects were affected by self-reported depression symptoms, which also increased with age.
Collapse
Affiliation(s)
- Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Nicholas J Simos
- Department of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Simeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
34
|
Alisch JSR, Khattar N, Kim RW, Cortina LE, Rejimon AC, Qian W, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (Albany NY) 2021; 13:4911-4925. [PMID: 33596183 PMCID: PMC7950235 DOI: 10.18632/aging.202673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in a variety of settings, including aging, cerebrovascular diseases, and dementias.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luigi Ferrucci
- Laboratory Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| |
Collapse
|
35
|
Juttukonda MR, Li B, Almaktoum R, Stephens KA, Yochim KM, Yacoub E, Buckner RL, Salat DH. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging. Neuroimage 2021; 230:117807. [PMID: 33524575 PMCID: PMC8185881 DOI: 10.1016/j.neuroimage.2021.117807] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) has become a popular approach for studying cerebral hemodynamics in a range of disorders and has recently been included as part of the Human Connectome Project-Aging (HCP-A). Due to the high spatial resolution and multiple post-labeling delays, ASL data from HCP-A holds promise for localization of hemodynamic signals not only in gray matter but also in white matter. However, gleaning information about white matter hemodynamics with ASL is challenging due in part to longer blood arrival times in white matter compared to gray matter. In this work, we present an analytical approach for deriving measures of cerebral blood flow (CBF) and arterial transit times (ATT) from the ASL data from HCP-A and report on gray and white matter hemodynamics in a large cohort (n = 234) of typically aging adults (age 36–90 years). Pseudo-continuous ASL data were acquired with labeling duration = 1500 ms and five post-labeling delays = 200 ms, 700 ms, 1200, 1700 ms, and 2200 ms. ATT values were first calculated on a voxel-wise basis through normalized cross-correlation analysis of the acquired signal time course in that voxel and an expected time course based on an acquisition-specific Bloch simulation. CBF values were calculated using a two-compartment model and with age-appropriate blood water longitudinal relaxation times. Using this approach, we found that white matter CBF reduces (ρ = 0.39) and white matter ATT elongates (ρ = 0.42) with increasing age (p < 0.001). In addition, CBF is lower and ATTs are longer in white matter compared to gray matter across the adult lifespan (Wilcoxon signed-rank tests; p < 0.001). We also found sex differences with females exhibiting shorter white matter ATTs than males, independently of age (Wilcoxon rank-sum test; p < 0.001). Finally, we have shown that CBF and ATT values are spatially heterogeneous, with significant differences in cortical versus subcortical gray matter and juxtacortical versus periventricular white matter. These results serve as a characterization of normative physiology across the human lifespan against which hemodynamic impairment due to cerebrovascular or neurodegenerative diseases could be compared in future studies.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Neurology, Ruijin Hospital & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Randa Almaktoum
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kimberly A Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kathryn M Yochim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnessota, Minneapolis, MN, United States
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Psychology, Harvard University, Cambridge, MA, United States; Department of Neuroscience, Harvard University, Cambridge, MA, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
36
|
Leidhin CN, McMorrow J, Carey D, Newman L, Williamson W, Fagan AJ, Chappell MA, Kenny RA, Meaney JF, Knight SP. Age-related normative changes in cerebral perfusion: Data from The Irish Longitudinal Study on Ageing (TILDA). Neuroimage 2021; 229:117741. [PMID: 33454406 DOI: 10.1016/j.neuroimage.2021.117741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To establish normative reference values for total grey matter cerebral blood flow (CBFGM) measured using pseudo-continuous arterial spin labelling (pCASL) MRI in a large cohort of community-dwelling adults aged 54 years and older. BACKGROUND Quantitative assessment of CBFGM may provide an imaging biomarker for the early detection of those at risk of neurodegenerative diseases, such as Alzheimer's and dementia. However, the use of this method to differentiate normal age-related decline in CBFGM from pathological reduction has been hampered by the lack of reference values for cerebral perfusion. METHODS The study cohort comprised a subset of wave 3 (2014-2015) participants from The Irish Longitudinal Study on Ageing (TILDA), a large-scale prospective cohort study of individuals aged 50 and over. Of 4309 participants attending for health centre assessment, 578 individuals returned for 3T multi-parametric MRI brain examinations. In total, CBFGM data acquired from 468 subjects using pCASL-MRI were included in this analysis. Normative values were estimated using Generalised Additive Models for Location Shape and Scale (GAMLSS) and are presented as percentiles, means and standard deviations. RESULTS The mean age of the cohort was 68.2 ± 6.9 years and 51.7% were female. Mean CBFGM for the cohort was 36.5 ± 8.2 ml/100 g/min. CBFGM decreased by 0.2 ml/100 g/min for each year increase in age (95% CI = -0.3, -0.1; p ≤ 0.001) and was 3.1 ml/100 g/min higher in females (95% CI = 1.6, 4.5; p ≤ 0.001). CONCLUSIONS This study is by far the largest single-site study focused on an elderly community-dwelling cohort to present normative reference values for CBFGM measured at 3T using pCASL-MRI. Significant age- and sex-related differences exist in CBFGM.
Collapse
Affiliation(s)
- Caoilfhionn Ní Leidhin
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Jason McMorrow
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Daniel Carey
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Louise Newman
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Wilby Williamson
- School of Medicine, Trinity College Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Chappell
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rose Anne Kenny
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Mercer's Institute for Successful Ageing, St. James's Hospital, Dublin, Ireland
| | - James F Meaney
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Silvin P Knight
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland.
| |
Collapse
|
37
|
Zimmerman BJ, Schmidt SA, Khan RA, Tai Y, Shahsavarani S, Husain FT. Decreased resting perfusion in precuneus and posterior cingulate cortex predicts tinnitus severity. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100010. [PMID: 36246506 PMCID: PMC9559103 DOI: 10.1016/j.crneur.2021.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic resonance imaging has been increasingly used to understand the mechanisms involved in subjective tinnitus; however, researchers have struggled to reach a consensus about a primary mechanistic model to explain tinnitus. While many studies have used functional connectivity of the BOLD signal to understand how patterns of activity change with tinnitus severity, there is much less research on whether there are differences in more fundamental physiology, including cerebral blood flow, which may help inform the BOLD measures. Here, arterial spin labeling was used to measure perfusion in four regions-of-interest, guided by current models of tinnitus, in a sample of 60 tinnitus patients and 31 control subjects. We found global reductions in cerebral perfusion in tinnitus compared with controls. Additionally, we observed a significant negative correlation between tinnitus severity and perfusion. These results demonstrate that examining perfusion from the whole brain may present a complementary tool for studying tinnitus. More research will help better understand the physiology underlying these differences in perfusion. Global cerebral blood flow is reduced in tinnitus. Tinnitus severity is negatively correlated with cerebral blood flow globally. Tinnitus severity is negatively correlated with cerebral blood flow in the precuneus and posterior cingulate cortex. Hearing loss predicted reduced cerebral blood flow in the precuneus in participants without tinnitus. The presence or absence of hearing loss did not affect the correlation between tinnitus severity and cerebral blood flow.
Collapse
Affiliation(s)
- Benjamin J. Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sara A. Schmidt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rafay A. Khan
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yihsin Tai
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Speech Pathology and Audiology, Ball State University, Muncie, IN, USA
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Institute for Mind Brain and Behavior, Columbia University, New York, NY, USA
| | - Fatima T. Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Corresponding author. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
38
|
Gonzalez S, Vasavada M, Njau S, Sahib AK, Espinoza R, Narr KL, Leaver AM. Acute changes in cerebral blood flow after single-infusion ketamine in major depression: a pilot study. NEUROLOGY, PSYCHIATRY, AND BRAIN RESEARCH 2020; 38:5-11. [PMID: 34887623 PMCID: PMC8653983 DOI: 10.1016/j.npbr.2020.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ketamine provides rapid antidepressant response in those struggling with major depressive disorder (MDD). This study measured acute changes in brain activity over 24 hours after a single infusion of ketamine using arterial spin labeled (ASL) functional magnetic resonance imaging (fMRI) in patients with MDD. ASL is a novel technique that provides quantitative values to measure cerebral blood flow (CBF). METHODS A single sub-anesthetic dose (0.5 mg/kg) of ketamine was delivered intravenously. Treatment-refractory patients (n=11) were assessed at: Baseline (pre-infusion), and approximately 1hr, 6hrs, and 24hrs post-infusion. Linear mixed-effects models detected changes in CBF with respect to treatment outcome, and results were corrected for false discovery rate (FDR). RESULTS After ketamine infusion, increased CBF was observed in the thalamus, while decreased CBF was observed in lateral occipital cortex in all patients. Time-by-response interactions were noted in ventral basal ganglia and medial prefrontal cortex, where CBF change differed according to antidepressant response. LIMITATIONS Modest sample size is a limitation of this pilot study; strict statistical correction and visualization of single-subject data attempted to ameliorate this issue. CONCLUSION In this pilot study, a sub-anesthetic dose of ketamine was associated with acute neurofunctional changes that may be consistent with altered attention, specifically increased thalamus activity coupled with decreased cortical activity. By contrast, antidepressant response to ketamine was associated with changes in reward-system regions, specifically ventral basal ganglia and medial prefrontal cortex. Further work is needed to determine whether these results generalize to larger samples and/or serial ketamine infusions associated with longer-lasting clinical effects.
Collapse
Affiliation(s)
- Sara Gonzalez
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
| | - Megha Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
| | - Stephanie Njau
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
| | - Ashish K. Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
| | - Randall Espinoza
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles
| | - Amber M. Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles
- Center for Translational Imaging, Department of Radiology, Northwestern University
| |
Collapse
|
39
|
Li X, Slinin YX, Zhang L, Dengel DR, Tupper D, Metzger GJ, Murray AM. Cerebral blood flow characteristics following hemodialysis initiation in older adults: A prospective longitudinal pilot study using arterial spin labeling imaging. NEUROIMAGE-CLINICAL 2020; 28:102434. [PMID: 32980601 PMCID: PMC7522859 DOI: 10.1016/j.nicl.2020.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics before and after hemodialysis initiation and their longitudinal associations with global cognitive function in older adults. METHODS A cohort of 17 older end-stage renal disease patients anticipating standard thrice-weekly hemodialysis and a group of 11 age- and sex-matched healthy control volunteers were recruited for brain perfusion imaging studies using arterial spin labeling. Hemodialysis patients participated in a prospective longitudinal study using brain magnetic resonance imaging and global cognitive assessment using the Modified Mini-Mental State Examination (3MS) at two time points: baseline, 2.9 ± 0.9 months before, and follow-up, 6.4 ± 2.4 months after hemodialysis initiation. Healthy controls were imaged once using the same protocol. CBF analyses were performed globally in grey and white matter and regionally in the hippocampus and orbitofrontal cortex. Covariate-adjusted linear mixed-effects models were used for statistical analyses (significance: p < 0.05; marginal significance: p < 0.1). RESULTS At baseline, global and regional CBF was significantly higher in hemodialysis patients than in healthy controls. However, after approximately 6 months of hemodialysis, CBF declined substantially in hemodialysis patients, and became comparable to those in healthy controls. Specifically, in the hemodialysis patients, CBF declined non-significantly globally for grey and white matter and significantly regionally in the hippocampus and orbitofrontal cortex. Marginally significant associations were observed between 3MS scores and regional CBF measurements in the hippocampus and orbitofrontal cortex at baseline and follow-up, and between longitudinal changes. CONCLUSION The significant decline in CBF after hemodialysis initiation and the observed association between longitudinal changes in regional CBF and 3MS scores suggest that decreased brain perfusion may contribute to the observed cognitive decline.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Yelena X Slinin
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Donald R Dengel
- Human Performance Teaching Laboratory and Laboratory of Integrative Human Physiology, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - David Tupper
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology and Neuropsychology, Hennepin Healthcare, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Anne M Murray
- Hennepin HealthCare Research Institute, Hennepin Healthcare, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Geriatrics Division, Department of Medicine, Hennepin Healthcare, Minneapolis, MN USA
| |
Collapse
|
40
|
Stoeter P, Roa-Sanchez P, Gonzalez CF, Speckter H, Oviedo J, Bido P. Cerebral blood flow in dystonia due to pantothenate kinase-associated neurodegeneration. Neuroradiol J 2020; 33:479-485. [PMID: 32851917 DOI: 10.1177/1971400920943967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to look for deviations of cerebral perfusion in patients suffering from pantothenate kinase-associated neurodegeneration, where the globus pallidus is affected by severe accumulation of iron. MATERIAL AND METHODS Under resting conditions, cerebral blood flow was measured by the magnetic resonance imaging technique of arterial spin labelling in cortical areas and basal ganglia in eight pantothenate kinase-associated neurodegeneration patients and 14 healthy age-matched control subjects and correlated to T2* time of these areas and - in patients - to clinical parameters. RESULTS Despite highly significant differences of T2* time of the globus pallidus (20 vs 39 ms, p < 0.001), perfusion values of this nucleus were nearly identical in both groups (32 ± 3.3 vs 31 ± 4.0 ml/min/100 g) as well as in total brain gray matter (both 62 ± 6.7 resp. ±10.3 ml/min/100 g), putamen (41 ± 5.4 vs 40 ± 6.1 ml/min/100 g), in selected cortical regions, and the cerebellum. Correlations between perfusion and T2* time to clinical data did not reach significance (p > 0.05). CONCLUSION The absence of any obvious deviations of perfusion in the group of patients during a resting condition does not support the view that (non-functional) vascular pathology is a major pathogenic factor in pantothenate kinase-associated neurodegeneration in the younger age group. The findings underline the value of the arterial spin technique to measure cerebral blood flow in areas of disturbed susceptibility.
Collapse
Affiliation(s)
- Peter Stoeter
- Department of Radiology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| | - Pedro Roa-Sanchez
- Department of Neurology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| | - Cesar F Gonzalez
- Department of Radiology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| | - Herwin Speckter
- Department of Radiology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| | - Jairo Oviedo
- Department of Radiology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| | - Pamela Bido
- Department of Neurology, Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, Dominican Republic
| |
Collapse
|
41
|
Rajashekar D, Wilms M, Hecker KG, Hill MD, Dukelow S, Fiehler J, Forkert ND. The Impact of Covariates in Voxel-Wise Lesion-Symptom Mapping. Front Neurol 2020; 11:854. [PMID: 32922356 PMCID: PMC7456820 DOI: 10.3389/fneur.2020.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Voxel-wise lesion-symptom mapping (VLSM) is a statistical technique to infer the structure-function relationship in patients with cerebral strokes. Previous VLSM research suggests that it is important to adjust for various confounders such as lesion size to minimize the inflation of true effects. The aim of this work is to investigate the regional impact of covariates on true effects in VLSM. Methods: A total of 222 follow-up datasets of acute ischemic stroke patients with known NIH Stroke Scale (NIHSS) score at 48-h post-stroke were available for this study. Patient age, lesion volume, and follow-up imaging time were tested for multicollinearity using variance inflation factor analysis and used as covariates in VLSM analyses. Covariate importance maps were computed from the VLSM results by standardizing the beta coefficients of general linear models. Results: Covariates were found to have distinct regional importance with respect to lesion eloquence in the brain. Age has a relatively higher importance in the superior temporal gyrus, inferior parietal lobule, and in the pre- and post-central gyri. Volume explains more variability in the opercular area of the insula, inferior frontal gyrus, and caudate. Follow-up imaging time accounts for most of the variance in the globus pallidus, ventromedial- and dorsolateral putamen, dorsal caudate, pre-motor thalamus, and the dorsal insula. Conclusions: This is the first study investigating and revealing distinctive regional patterns of importance for covariates typically used in VLSM. These covariate importance maps can improve our understanding of the lesion-deficit relationships in patients and could prove valuable for patient-specific treatment and rehabilitation planning.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kent G Hecker
- Departments of Community Health Sciences and Veterinary Clinical, and Diagnostic Sciences, University of Calgary, Calgary, AB, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Warnert EAH, Steketee RME, Vernooij MW, Ikram MA, Vogel M, Hernandez Tamames JA, Kotek G. Implementation and validation of ASL perfusion measurements for population imaging. Magn Reson Med 2020; 84:2048-2054. [PMID: 32239745 PMCID: PMC7383568 DOI: 10.1002/mrm.28271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
Abstract
Purpose Pseudocontinuous arterial spin labeling (pCASL) allows for noninvasive measurement of regional cerebral blood flow (CBF), which has the potential to serve as biomarker for neurodegenerative and cardiovascular diseases. This work aimed to implement and validate pCASL on the dedicated MRI system within the population‐based Rotterdam Study, which was installed in 2005 and for which software and hardware configurations have remained fixed. Methods Imaging was performed on two 1.5T MRI systems (General Electric); (I) the Rotterdam Study system, and (II) a hospital‐based system with a product pCASL sequence. An in‐house implementation of pCASL was created on scanner I. A flow phantom and three healthy volunteers (<27 years) were scanned on both systems for validation purposes. The data of the first 30 participants (86 ± 4 years) of the Rotterdam Study undergoing pCASL scans on scanner I only were analyzed with and without partial volume correction for gray matter. Results The validation study showed a difference in blood flow velocity, sensitivity, and spatial coefficient of variation of the perfusion‐weighted signal between the two scanners, which was accounted for during post‐processing. Gray matter CBF for the Rotterdam Study participants was 52.4 ± 8.2 ml/100 g/min, uncorrected for partial volume effects of gray matter. In this elderly cohort, partial volume correction for gray matter had a variable effect on measured CBF in a range of cortical and sub‐cortical regions of interest. Conclusion Regional CBF measurements are now included to investigate novel biomarkers in the Rotterdam Study. This work highlights that when it is not feasible to purchase a novel ASL sequence, an in‐house implementation is valuable.
Collapse
Affiliation(s)
- Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Gyula Kotek
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
44
|
Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men. Front Aging Neurosci 2019; 11:333. [PMID: 31866855 PMCID: PMC6904365 DOI: 10.3389/fnagi.2019.00333] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Background Physical activity may attenuate age-related cognitive decline by improving cerebrovascular function. The aim of this study was therefore to investigate effects of aerobic exercise training on cerebral blood flow (CBF), which is a sensitive physiological marker of cerebrovascular function, in sedentary older men. Methods Seventeen apparently healthy men, aged 60–70 years and with a BMI between 25 and 35 kg/m2, were included in a randomized, controlled cross-over trial. Study participants were randomly allocated to a fully-supervised, progressive, aerobic exercise training or no-exercise control period for 8 weeks, separated by a 12-week wash-out period. Measurements at the end of each period included aerobic fitness evaluated using peak oxygen consumption during incremental exercise (VO2peak), CBF measured with pseudo-continuous arterial spin labeling magnetic resonance imaging, and post-load glucose responses determined using an oral glucose tolerance test (OGTT). Furthermore, cognitive performance was assessed in the domains of executive function, memory, and psychomotor speed. Results VO2peak significantly increased following aerobic exercise training compared to no-exercise control by 262 ± 236 mL (P < 0.001). CBF was increased by 27% bilaterally in the frontal lobe, particularly the subcallosal and anterior cingulate gyrus (cluster volume: 1008 mm3; P < 0.05), while CBF was reduced by 19% in the right medial temporal lobe, mainly temporal fusiform gyrus (cluster volume: 408 mm3; P < 0.05). Mean post-load glucose concentrations determined using an OGTT decreased by 0.33 ± 0.63 mmol/L (P = 0.049). Furthermore, executive function improved as the latency of response was reduced by 5% (P = 0.034), but no changes were observed in memory or psychomotor speed. Conclusion Aerobic exercise training improves regional CBF in sedentary older men. These changes in CBF may underlie exercise-induced beneficial effects on executive function, which could be partly mediated by improvements in glucose metabolism. This clinical trial is registered on ClinicalTrials.gov as NCT03272061.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jos J Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea.,Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
45
|
Abnormal pattern of brain glucose metabolism in Parkinson's disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging 2019; 47:437-450. [PMID: 31768600 PMCID: PMC6974499 DOI: 10.1007/s00259-019-04570-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Rationale In Parkinson’s disease (PD), spatial covariance analysis of 18F-FDG PET data has consistently revealed a characteristic PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP). Methods The PDRPNL was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20 PD patients from the Netherlands. The PDRPIT was identified in 20 controls and 20 “de-novo” PD patients from an Italian cohort. A further 24 controls and 18 “de-novo” Italian patients were used for validation. The PDRPSP was identified in 19 controls and 19 PD patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy. Results A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus, putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in “de-novo” PD subjects (Italian cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRPIT, PDRPNL, and PDRPSP were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P < 0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA. Conclusion The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects. Electronic supplementary material The online version of this article (10.1007/s00259-019-04570-7) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Abstract
Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia;
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|