1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Fiore NT, Hayes JP, Williams SI, Moalem-Taylor G. Interleukin-35 alleviates neuropathic pain and induces an anti-inflammatory shift in spinal microglia in nerve-injured male mice. Brain Behav Immun 2024; 122:287-300. [PMID: 39097202 DOI: 10.1016/j.bbi.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Immune cells are critical in promoting neuroinflammation and neuropathic pain and in facilitating pain resolution, depending on their inflammatory and immunoregulatory cytokine response. Interleukin (IL)-35, secreted by regulatory immune cells, is a member of the IL-12 family with a potent immunosuppressive function. In this study, we investigated the effects of IL-35 on pain behaviors, spinal microglia phenotype following peripheral nerve injury, and in vitro microglial cultures in male and female mice. Intrathecal recombinant IL-35 treatment alleviated mechanical pain hypersensitivity prominently in male mice, with only a modest effect in female mice after sciatic nerve chronic constriction injury (CCI). IL-35 treatment resulted in sex-specific microglial changes following CCI, reducing inflammatory microglial markers and upregulating anti-inflammatory markers in male mice. Spatial transcriptomic analysis revealed that IL-35 suppressed microglial complement activation in the superficial dorsal horn in male mice after CCI. Moreover, in vitro studies showed that IL-35 treatment of cultured inflammatory microglia mitigated their hypertrophied morphology, increased their cell motility, and decreased their phagocytic activity, indicating a phenotypic shift towards homeostatic microglia. Further, IL-35 altered microglial cytokines/chemokines in vitro, suppressing the release of IL-9 and monocyte-chemoattractant protein-1 and increasing IL-10 in the supernatant of male microglial cultures. Our findings indicate that treatment with IL-35 modulates spinal microglia and alleviates neuropathic pain in male mice, suggesting IL-35 as a potential sex-specific targeted immunomodulatory treatment for neuropathic pain.
Collapse
Affiliation(s)
- Nathan T Fiore
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Sarah I Williams
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW, Australia.
| |
Collapse
|
3
|
Zou X, Tang Q, Ojiro R, Ozawa S, Shobudani M, Sakamaki Y, Ebizuka Y, Jin M, Yoshida T, Shibutani M. Increased spontaneous activity and progressive suppression of adult neurogenesis in the hippocampus of rat offspring after maternal exposure to imidacloprid. Chem Biol Interact 2024; 399:111145. [PMID: 39002876 DOI: 10.1016/j.cbi.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).
Collapse
Affiliation(s)
- Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Momoka Shobudani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yuri Sakamaki
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yuri Ebizuka
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Orrù V, Serra V, Marongiu M, Lai S, Lodde V, Zoledziewska M, Steri M, Loizedda A, Lobina M, Piras MG, Virdis F, Delogu G, Marini MG, Mingoia M, Floris M, Masala M, Castelli MP, Mostallino R, Frau J, Lorefice L, Farina G, Fronza M, Carmagnini D, Carta E, Pilotto S, Chessa P, Devoto M, Castiglia P, Solla P, Zarbo RI, Idda ML, Pitzalis M, Cocco E, Fiorillo E, Cucca F. Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination. Front Immunol 2024; 15:1416464. [PMID: 39076966 PMCID: PMC11284103 DOI: 10.3389/fimmu.2024.1416464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.
Collapse
Affiliation(s)
- Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valentina Serra
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Sandra Lai
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Annalisa Loizedda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Monia Lobina
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesca Virdis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maura Mingoia
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Masala
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Frau
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Lorena Lorefice
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Gabriele Farina
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Marzia Fronza
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Carmagnini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Carta
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Chessa
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Marcella Devoto
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Solla
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberto Ignazio Zarbo
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Eleonora Cocco
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Wang Y, Wang J, Zhang X, Xia C, Wang Z. Diagnostic efficacy of long non-coding RNAs in multiple sclerosis: a systematic review and meta-analysis. Front Genet 2024; 15:1400387. [PMID: 38812967 PMCID: PMC11133556 DOI: 10.3389/fgene.2024.1400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Currently, an increasing body of research suggests that blood-based long non-coding RNAs (lncRNAs) could serve as biomarkers for diagnosing multiple sclerosis (MS). This meta-analysis evaluates the diagnostic capabilities of selected lncRNAs in distinguishing individuals with MS from healthy controls and in differentiating between the relapsing and remitting phases of the disease. Methods We conducted comprehensive searches across seven databases in both Chinese and English to identify relevant studies, applying stringent inclusion and exclusion criteria. The quality of the selected references was rigorously assessed using the QUADAS-2 tool. The analysis involved calculating summarized sensitivity (SSEN), specificity (SSPE), positive likelihood ratio (SPLR), negative likelihood ratio (SNLR), and diagnostic odds ratio (DOR) with 95% confidence intervals (CIs). Accuracy was assessed using summary receiver operating characteristic (SROC) curves. Results Thirteen high-quality studies were selected for inclusion in the meta-analysis. Our meta-analysis assessed the combined diagnostic performance of lncRNAs in distinguishing MS patients from healthy controls. We found a SSEN of 0.81 (95% CI: 0.74-0.87), SSPE of 0.84 (95% CI: 0.78-0.89), SPLR of 5.14 (95% CI: 3.63-7.28), SNLR of 0.22 (95% CI: 0.16-0.31), and DOR of 23.17 (95% CI: 14.07-38.17), with an AUC of 0.90 (95% CI: 0.87-0.92). For differentiating between relapsing and remitting MS, the results showed a SSEN of 0.79 (95% CI: 0.71-0.85), SSPE of 0.76 (95% CI: 0.64-0.85), SPLR of 3.34 (95% CI: 2.09-5.33), SNLR of 0.28 (95% CI: 0.19-0.40), and DOR of 12.09 (95% CI: 5.70-25.68), with an AUC of 0.84 (95% CI: 0.81-0.87). Conclusion This analysis underscores the significant role of lncRNAs as biomarkers in MS diagnosis and differentiation between its relapsing and remitting forms.
Collapse
Affiliation(s)
| | | | | | | | - Zhiping Wang
- Department of Neurology, Chengdu Shuangliu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Thakolwiboon S, Mills EA, Yang J, Doty J, Belkin MI, Cho T, Schultz C, Mao-Draayer Y. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. FRONTIERS IN AGING 2023; 4:1234572. [PMID: 37900152 PMCID: PMC10603254 DOI: 10.3389/fragi.2023.1234572] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Elizabeth A. Mills
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Doty
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Martin I. Belkin
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Thomas Cho
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Schultz
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
- Autoimmune Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Hahn KR, Kwon HJ, Kim W, Jung HY, Hwang IK, Kim DW, Yoon YS. Cu,Zn-Superoxide Dismutase has Minimal Effects Against Cuprizone-Induced Demyelination, Microglial Activation, and Neurogenesis Defects in the C57BL/6 Mouse Hippocampus. Neurochem Res 2023; 48:2138-2147. [PMID: 36808020 DOI: 10.1007/s11064-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.,Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Peng Y, Dong W, Chen G, Mi J, Lu L, Xie Z, Xu W, Zhou W, Sun Y, Zeng X, Cao Y, Yan Y. Anthocyanins from Lycium ruthenicum Murray Ameliorated High-Fructose Diet-Induced Neuroinflammation through the Promotion of the Integrity of the Intestinal Barrier and the Proliferation of Lactobacillus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2864-2882. [PMID: 36725206 DOI: 10.1021/acs.jafc.2c06713] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the present study, we found that anthocyanins from Lycium ruthenicum Murray (ACN) potently ameliorated a high-fructose diet (HFrD)-induced neuroinflammation in mice. ACN improved the integrity of the intestinal barrier and suppressed the toll-like receptor 4 (TLR4) signaling pathway to ameliorate the neuroinflammation, which was verified by Tlr4-/- mice. Furthermore, ACN could modulate the HFrD-induced dysbiosis of gut microbiota. The fecal microbiota transplantation from ACN-induced mice was sufficient to attenuate the neuroinflammation, while the amelioration of neuroinflammation by ACN was blocked upon gut microbiota depletion. In addition, ACN-induced increment of the relative abundance of Lactobacillus might be responsible for the alleviation of the neuroinflammation, which was further confirmed in the promoting effect of ACN on the growth of Lactobacillus in vitro. Overall, these results provided the evidence of a comprehensive cross-talk mechanism between ACN and neuroinflammation in HFrD-fed mice, which was mediated by reducing gut microbiota dysbiosis and maintaining the intestinal barrier integrity.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| |
Collapse
|
9
|
de Almeida MMA, Watson AES, Bibi S, Dittmann NL, Goodkey K, Sharafodinzadeh P, Galleguillos D, Nakhaei-Nejad M, Kosaraju J, Steinberg N, Wang BS, Footz T, Giuliani F, Wang J, Sipione S, Edgar JM, Voronova A. Fractalkine enhances oligodendrocyte regeneration and remyelination in a demyelination mouse model. Stem Cell Reports 2023; 18:519-533. [PMID: 36608690 PMCID: PMC9968989 DOI: 10.1016/j.stemcr.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Demyelinating disorders of the central nervous system (CNS) occur when myelin and oligodendrocytes are damaged or lost. Remyelination and regeneration of oligodendrocytes can be achieved from endogenous oligodendrocyte precursor cells (OPCs) that reside in the adult CNS tissue. Using a cuprizone mouse model of demyelination, we show that infusion of fractalkine (CX3CL1) into the demyelinated murine brain increases de novo oligodendrocyte formation and enhances remyelination in the corpus callosum and cortical gray matter. This is achieved by increased OPC proliferation in the cortical gray matter as well as OPC differentiation and attenuation of microglia/macrophage activation both in corpus callosum and cortical gray matter. Finally, we show that activated OPCs and microglia/macrophages express fractalkine receptor CX3CR1 in vivo, and that in OPC-microglia co-cultures fractalkine increases in vitro oligodendrocyte differentiation by modulating both OPC and microglia biology. Our results demonstrate a novel pro-regenerative role of fractalkine in a demyelinating mouse model.
Collapse
Affiliation(s)
- Monique M A de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, 11405 87 Avenue NW, Edmonton, AB T6G 1C9, Canada
| | - Sana Bibi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, 11405 87 Avenue NW, Edmonton, AB T6G 1C9, Canada
| | - Pedram Sharafodinzadeh
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Danny Galleguillos
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada
| | - Maryam Nakhaei-Nejad
- Department of Medicine, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada
| | - Jayasankar Kosaraju
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Noam Steinberg
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada
| | - Beatrix S Wang
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, 11405 87 Avenue NW, Edmonton, AB T6G 1C9, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Fabrizio Giuliani
- Department of Medicine, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada; Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Simonetta Sipione
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada
| | - Julia M Edgar
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, 11405 87 Avenue NW, Edmonton, AB T6G 1C9, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2E1, Canada; Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada; Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
10
|
Sun W, Wen M, Liu M, Wang Q, Liu Q, Li L, Siebert HC, Loers G, Zhang R, Zhang N. Effect of β-hydroxybutyrate on behavioral alterations, molecular and morphological changes in CNS of multiple sclerosis mouse model. Front Aging Neurosci 2022; 14:1075161. [PMID: 36533180 PMCID: PMC9752847 DOI: 10.3389/fnagi.2022.1075161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of central nervous system (CNS). Aging is the most significant risk factor for the progression of MS. Dietary modulation (such as ketogenic diet) and caloric restriction, can increase ketone bodies, especially β-hydroxybutyrate (BHB). Increased BHB has been reported to prevent or improve age-related disease. The present studies were performed to understand the therapeutic effect and potential mechanisms of exogenous BHB in cuprizone (CPZ)-induced demyelinating model. In this study, a continuous 35 days CPZ mouse model with or without BHB was established. The changes of behavior function, pathological hallmarks of CPZ, and intracellular signal pathways in mice were detected by Open feld test, Morris water maze, RT-PCR, immuno-histochemistry, and western blot. The results showed that BHB treatment improved behavioral performance, prevented myelin loss, decreased the activation of astrocyte as well as microglia, and up-regulated the neurotrophin brain-derived neurotrophic factor in both the corpus callosum and hippocampus. Meanwhile, BHB treatment increased the number of MCT1+ cells and APC+ oligodendrocytes. Furthermore, the treatment decreased the expression of HDAC3, PARP1, AIF and TRPA1 which is related to oligodendrocyte (OL) apoptosis in the corpus callosum, accompanied by increased expression of TrkB. This leads to an increased density of doublecortin (DCX)+ neuronal precursor cells and mature NeuN+ neuronal cells in the hippocampus. As a result, BHB treatment effectively promotes the generation of PDGF-Ra+ (oligodendrocyte precursor cells, OPCs), Sox2+ cells and GFAP+ (astrocytes), and decreased the production of GFAP+ TRAP1+ cells, and Oligo2+ TRAP1+ cells in the corpus callosum of mouse brain. Thus, our results demonstrate that BHB treatment efficiently supports OPC differentiation and decreases the OLs apoptosis in CPZ-intoxicated mice, partly by down-regulating the expression of TRPA1 and PARP, which is associated with the inhibition of the p38-MAPK/JNK/JUN pathway and the activation of ERK1/2, PI3K/AKT/mTOR signaling, supporting BHB treatment adjunctive nutritional therapy for the treatment of chronic demyelinating diseases, such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Quiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Lanjie Li
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Hans-Christian Siebert
- Schauenburgerstr, RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Kiel University, Kiel, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
- Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
12
|
Wang J, Zhao J, Hu P, Gao L, Tian S, He Z. Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential. Front Mol Neurosci 2022; 15:949095. [PMID: 35813070 PMCID: PMC9259972 DOI: 10.3389/fnmol.2022.949095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pan Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shen Tian
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhenwei He,
| |
Collapse
|
13
|
Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology 2022; 30:919-934. [PMID: 35364735 PMCID: PMC9135867 DOI: 10.1007/s10787-022-00956-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022]
Abstract
The heterogeneous nature of multiple sclerosis (MS) and the unavailability of treatments addressing its intricate network and reversing the disease state is yet an area that needs to be elucidated. Liraglutide, a glucagon-like peptide-1 analogue, recently exhibited intriguing potential neuroprotective effects. The currents study investigated its potential effect against mouse model of MS and the possible underlying mechanisms. Demyelination was induced in C57Bl/6 mice by cuprizone (400 mg/kg/day p.o.) for 5 weeks. Animals received either liraglutide (25 nmol/kg/day i.p.) or dorsomorphin, an AMPK inhibitor, (2.5 mg/Kg i.p.) 30 min before the liraglutide dose, for 4 weeks (starting from the second week). Liraglutide improved the behavioral profile in cuprizone-treated mice. Furthermore, it induced the re-myelination process through stimulating oligodendrocyte progenitor cells differentiation via Olig2 transcription activation, reflected by increased myelin basic protein and myelinated nerve fiber percentage. Liraglutide elevated the protein content of p-AMPK and SIRT1, in addition to the autophagy proteins Beclin-1 and LC3B. Liraglutide halted cellular damage as manifested by reduced HMGB1 protein and consequently TLR-4 downregulation, coupled with a decrease in NF-κB. Liraglutide also suppressed NLRP3 transcription. Dorsomorphin pre-administration indicated a possible interplay between AMPK/SIRT1 and NLRP3 inflammasome activation as it partially reversed liraglutide's effects. Immunohistochemical examination of Iba+ microglia emphasized these findings. In conclusion, liraglutide exerts neuroprotection against cuprizone-induced demyelination via anti-inflammatory, autophagic flux activation, NLRP3 inflammasome suppression, and anti-apoptotic mechanisms, possibly mediated, at least in part, via AMPK/SIRT1, autophagy, TLR-4/ NF-κB/NLRP3 signaling. The potential mechanistic insight of Lira in alleviating Cup-induced neurotoxicity via: (1) AMPK/SIRT1 pathways activation resulting in the stimulation of brain autophagy flux (confirmed by lowering Beclin-1 and LC3-B protein expression). (2) Inhibition of NLRP3 inflammasome activation, as evidenced by reduced HMGB1, TLR-4, NF-κB and NLRP3 protein expression, alongside diminishing the activation of its downstream cascade as reflected by reduced levels of caspase-1 and IL-1β protein expression. (3) A possible modulating interplay between the previously mentioned two pathways.
Collapse
Affiliation(s)
- Reham A Ammar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
14
|
Wittekindt M, Kaddatz H, Joost S, Staffeld A, Bitar Y, Kipp M, Frintrop L. Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells 2022; 11:cells11111723. [PMID: 35681418 PMCID: PMC9179561 DOI: 10.3390/cells11111723] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Microglia play an important role in the pathology of various central nervous system disorders, including multiple sclerosis (MS). While different methods exist to evaluate the extent of microglia activation, comparative studies investigating the sensitivity of these methods are missing for most models. In this study, we systematically evaluated which of the three commonly used histological methods (id est, quantification of microglia density, densitometrically evaluated staining intensity, or cellular morphology based on the determination of a ramification index, all measured in anti-ionized calcium-binding adaptor protein-1 (IBA1) immunohistochemical stains) is the most sensitive method to detect subtle changes in the microglia activation status in the context of MS. To this end, we used the toxin-induced cuprizone model which allows the experimental induction of a highly reproducible demyelination in several central nervous system regions, paralleled by early microglia activation. In this study, we showed that after 3 weeks of cuprizone intoxication, all methods reveal a significant microglia activation in the white matter corpus callosum. In contrast, in the affected neocortical grey matter, the evaluation of anti-IBA1 cell morphologies was the most sensitive method to detect subtle changes of microglial activation. The results of this study provide a useful guide for future immunohistochemical evaluations in the cuprizone and other neurodegenerative models.
Collapse
|
15
|
Hu Q, Du Q, Yu W, Dong X. 2-Methoxyestradiol Alleviates Neuroinflammation and Brain Edema in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Front Cell Neurosci 2022; 16:869546. [PMID: 35558877 PMCID: PMC9087802 DOI: 10.3389/fncel.2022.869546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Numerous studies have shown that neuroinflammation and brain edema play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). 2-Methoxyestradiol (2-ME) has been shown to have anti-inflammatory and anti-angiogenic effects. This study aimed to investigate the effects of 2-ME on neuroinflammation and brain edema after SAH and its underlying mechanism of action. Methods Rats were used to produce an endovascular puncture model of SAH. 2-ME or the control agent was injected intraperitoneally 1 h after SAH induction. At 24 h after surgery, the neurological score, SAH grading, brain water content, and blood–brain barrier (BBB) permeability were examined. The microglial activation level in the rat brain tissue was determined using immunofluorescence staining, whereas the cell apoptosis in the rat brain tissue was assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, the levels of Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were measured by enzyme linked immunosorbent assay, and the expression levels of ZO-1, occludin, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP)-9 in the rat brain tissue were determined using western blotting. Results Twenty-four hours after SAH, brain water content, BBB permeability, microglial activation, and cell apoptosis were significantly increased, whereas neurological function deteriorated significantly in rats. Treatment with 2-ME significantly decreased brain water content, BBB permeability, microglial cell activation, and cell apoptosis and improved neurological dysfunction in rats. Treatment with 2-ME reduced the expression levels of inflammatory factors (IL-1β, IL-6, and TNF-α), which were significantly elevated 24 h after SAH. Treatment with 2-ME alleviated the disruption of tight junction proteins (ZO-1 and occludin), which significantly decreased 24 h after SAH. To further determine the mechanism of this protective effect, we found that 2-ME inhibited the expression of HIF-1α, MMP-9, and VEGF, which was associated with the inflammatory response to EBI and BBB disruption after SAH. Conclusion 2-ME alleviated neuroinflammation and brain edema as well as improved neurological deficits after SAH in rats. The neuroprotective effect of 2-ME on EBI after SAH in rats may be related to the inhibition of neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Wenhua Yu,
| | - Xiaoqiao Dong
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Marenna S, Huang SC, Dalla Costa G, d’Isa R, Castoldi V, Rossi E, Comi G, Leocani L. Visual Evoked Potentials to Monitor Myelin Cuprizone-Induced Functional Changes. Front Neurosci 2022; 16:820155. [PMID: 35495042 PMCID: PMC9051229 DOI: 10.3389/fnins.2022.820155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The visual system is one of the most accessible routes to study the central nervous system under pathological conditions, such as in multiple sclerosis (MS). Non-invasive visual evoked potential (VEP) and optical coherence tomography (OCT) were used to assess visual function and neuroretinal thickness in C57BL/6 taking 0.2% cuprizone for 7 weeks and at 5, 8, 12, and 15 days after returning to a normal diet. VEPs were significantly delayed starting from 4 weeks on cuprizone, with progressive recovery off cuprizone, becoming significant at day 8, complete at day 15. In contrast, OCT and neurofilament staining showed no significant axonal thinning. Optic nerve histology indicated that whilst there was significant myelin loss at 7 weeks on the cuprizone diet compared with healthy mice, at 15 days off cuprizone diet demyelination was significantly less severe. The number of Iba 1+ cells was found increased in cuprizone mice at 7 weeks on and 15 days off cuprizone. The combined use of VEPs and OCT allowed us to characterize non-invasively, in vivo, the functional and structural changes associated with demyelination and remyelination in a preclinical model of MS. This approach contributes to the non-invasive study of possible effective treatments to promote remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d’Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Casa di Cura Privata del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Letizia Leocani,
| |
Collapse
|
17
|
Comparison of the Effects of Cuprizone on Demyelination in the Corpus Callosum and Hippocampal Progenitors in Young Adult and Aged Mice. Neurochem Res 2022; 47:1073-1082. [DOI: 10.1007/s11064-021-03506-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
|
18
|
Moussaoui H, Ladjel-Mendil A, Laraba-Djebari F. Neuromodulation of neurological disorders in a demyelination model: effect of a potassium channel inhibitor from Androctonus scorpion venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2022698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hadjila Moussaoui
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Amina Ladjel-Mendil
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Fatima Laraba-Djebari
- Faculty of Biological Sciences, USTHB, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| |
Collapse
|
19
|
Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA, Anyaegbu C, Fitzgerald M. Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 2021; 11:22594. [PMID: 34799634 PMCID: PMC8604913 DOI: 10.1038/s41598-021-01963-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.
Collapse
Affiliation(s)
- Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Alexander J Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carole A Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
20
|
Funk KE, Arutyunov AD, Desai P, White JP, Soung AL, Rosen SF, Diamond MS, Klein RS. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell 2021; 20:e13412. [PMID: 34327802 PMCID: PMC8373274 DOI: 10.1111/acel.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) is an emerging pathogen that causes disease syndromes ranging from a mild flu‐like illness to encephalitis. While the incidence of WNV infection is fairly uniform across age groups, the risk of lethal encephalitis increases with advanced age. Prior studies have demonstrated age‐related, functional immune deficits that limit systemic antiviral immunity and increase mortality; however, the effect of age on antiviral immune responses specifically within the central nervous system (CNS) is unknown. Here, we show that aged mice exhibit increased peripheral organ and CNS tissue viral burden, the latter of which is associated with alterations in activation of both myeloid and lymphoid cells compared with similarly infected younger animals. Aged mice exhibit lower MHCII expression by microglia, and higher levels of PD1 and lower levels of IFNγ expression by WNV‐specific CD8+ T cells in the CNS and CD8+CD45+ cells. These data indicate that the aged CNS exhibits limited local reactivation of T cells during viral encephalitis, which may lead to reduced virologic control at this site.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Artem D. Arutyunov
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Pritesh Desai
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - James P. White
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Allison L. Soung
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Sarah F. Rosen
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
| | - Michael S. Diamond
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Department of Molecular Microbiology Washington University School of Medicine Saint Louis Missouri USA
- Department of Pathology and Immunology Washington University School of Medicine Saint Louis Missouri USA
| | - Robyn S. Klein
- Department of Internal Medicine Division of Infectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Center for Neuroimmunology and Neuroinfectious Diseases Washington University School of Medicine Saint Louis Missouri USA
- Department of Pathology and Immunology Washington University School of Medicine Saint Louis Missouri USA
- Department of Neurosciences Washington University School of Medicine Saint Louis Missouri USA
| |
Collapse
|
21
|
Gras S, Blasco A, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Rueda R, Pereira SL, Navarro X, Esquerda JE, Calderó J. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging (Albany NY) 2021; 13:18051-18093. [PMID: 34319911 PMCID: PMC8351677 DOI: 10.18632/aging.203336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.
Collapse
Affiliation(s)
- Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alejandro Barranco
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tapas Das
- Abbott Nutrition, Research and Development, Columbus, OH 43215, USA
| | - Ricardo Rueda
- Abbott Nutrition, Research and Development, Granada, Spain
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Josep E. Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
22
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 2021; 22:ijms22041636. [PMID: 33561958 PMCID: PMC7915979 DOI: 10.3390/ijms22041636] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are immune brain cells involved in neuroinflammation. They express a lot of proteins on their surface such as receptors that can be activated by mediators released in the microglial environment. Among these receptors, purinergic receptor expression could be modified depending on the activation status of microglia. In this review, we focus on P2Y receptors and more specifically on P2RY12 that is involved in microglial motility and migration, the first step of neuroinflammation process. We describe the purinergic receptor families, P2RY12 structure, expression and physiological functions. The pharmacological and genetic tools for studying this receptor are detailed thereafter. Last but not least, we report the contribution of microglial P2RY12 to neuroinflammation in acute and chronic brain pathologies in order to better understand P2RY12 microglial role.
Collapse
|
24
|
Lee DW, Kwon JI, Woo CW, Heo H, Kim KW, Woo DC, Kim JK, Lee DH. In Vivo Measurement of Neurochemical Abnormalities in the Hippocampus in a Rat Model of Cuprizone-Induced Demyelination. Diagnostics (Basel) 2020; 11:diagnostics11010045. [PMID: 33396601 PMCID: PMC7823778 DOI: 10.3390/diagnostics11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022] Open
Abstract
This study quantitatively measured the changes in metabolites in the hippocampal lesions of a rat model of cuprizone-induced demyelination as detected using in vivo 7 T proton magnetic resonance spectroscopy. Nineteen Sprague Dawley rats were randomly divided into two groups and fed a normal chow diet or cuprizone (0.2%, w/w) for 7 weeks. Demyelinated hippocampal lesions were quantitatively measured using a 7 T magnetic resonance imaging scanner. All proton spectra were quantified for metabolite concentrations and relative ratios. Compared to those in the controls, the cuprizone-induced rats had significantly higher concentrations of glutamate (p = 0.001), gamma-aminobutyric acid (p = 0.019), and glutamate + glutamine (p = 0.001); however, creatine + phosphocreatine (p = 0.006) and myo-inositol (p = 0.001) concentrations were lower. In addition, we found that the glutamine and glutamate complex/total creatine (p < 0.001), glutamate/total creatine (p < 0.001), and GABA/total creatine (p = 0.002) ratios were significantly higher in cuprizone-treated rats than in control rats. Our results showed that cuprizone-induced neuronal demyelination may influence the severe abnormal metabolism in hippocampal lesions, and these responses could be caused by microglial activation, mitochondrial dysfunction, and astrocytic necrosis.
Collapse
Affiliation(s)
- Do-Wan Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
- Correspondence: (D.-W.L.); (D.-H.L.)
| | - Jae-Im Kwon
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Hwon Heo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Hoon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Korea
- Correspondence: (D.-W.L.); (D.-H.L.)
| |
Collapse
|
25
|
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte Lineage Marker Expression in eGFP-GFAP Transgenic Mice. J Mol Neurosci 2020; 71:2237-2248. [PMID: 33346907 PMCID: PMC8585802 DOI: 10.1007/s12031-020-01771-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, orchestrate several key cellular functions in the brain and spinal cord, including axon insulation, energy transfer to neurons, and, eventually, modulation of immune responses. There is growing interest for obtaining reliable markers that can specifically label oligodendroglia and their progeny. In many studies, anti-CC1 antibodies, presumably recognizing the protein adenomatous polyposis coli (APC), are used to label mature, myelinating oligodendrocytes. However, it has been discussed whether anti-CC1 antibodies could recognize as well, under pathological conditions, other cell populations, particularly astrocytes. In this study, we used transgenic mice in which astrocytes are labeled by the enhanced green fluorescent protein (eGFP) under the control of the human glial fibrillary acidic protein (GFAP) promoter. By detailed co-localization studies we were able to demonstrate that a significant proportion of eGFP-expressing cells co-express markers of the oligodendrocyte lineage, such as the transcription factor Oligodendrocyte Transcription Factor 2 (OLIG2); the NG2 proteoglycan, also known as chrondroitin sulfate proteoglycan 4 (CSPG4); or APC. The current finding that the GFAP promoter drives transgene expression in cells of the oligodendrocyte lineage should be considered when interpreting results from co-localization studies.
Collapse
Affiliation(s)
- Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
26
|
|
27
|
Lee J, d'Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, Hassan A, Graf J, Petrosino J, Putluri N, Zhu L, Durgan DJ, Bryan RM, McCullough LD, Venna VR. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ Res 2020; 127:453-465. [PMID: 32354259 DOI: 10.1161/circresaha.119.316448] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE The elderly experience profound systemic responses after stroke, which contribute to higher mortality and more severe long-term disability. Recent studies have revealed that stroke outcomes can be influenced by the composition of gut microbiome. However, the potential benefits of manipulating the gut microbiome after injury is unknown. OBJECTIVE To determine if restoring youthful gut microbiota after stroke aids in recovery in aged subjects, we altered the gut microbiome through young fecal transplant gavage in aged mice after experimental stroke. Further, the effect of direct enrichment of selective bacteria producing short-chain fatty acids (SCFAs) was tested as a more targeted and refined microbiome therapy. METHODS AND RESULTS Aged male mice (18-20 months) were subjected to ischemic stroke by middle cerebral artery occlusion. We performed fecal transplant gavage 3 days after middle cerebral artery occlusion using young donor biome (2-3 months) or aged biome (18-20 months). At day 14 after stroke, aged stroke mice receiving young fecal transplant gavage had less behavioral impairment, and reduced brain and gut inflammation. Based on data from microbial sequencing and metabolomics analysis demonstrating that young fecal transplants contained much higher SCFA levels and related bacterial strains, we selected 4 SCFA-producers (Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and Lactobacillus fermentum) for transplantation. These SCFA-producers alleviated poststroke neurological deficits and inflammation, and elevated gut, brain and plasma SCFA concentrations in aged stroke mice. CONCLUSIONS This is the first study suggesting that the poor stroke recovery in aged mice can be reversed via poststroke bacteriotherapy following the replenishment of youthful gut microbiome via modulation of immunologic, microbial, and metabolomic profiles in the host.
Collapse
Affiliation(s)
- Juneyoung Lee
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - John d'Aigle
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Louise Atadja
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Victoria Quaicoe
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Pedram Honarpisheh
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Bhanu P Ganesh
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Ahmad Hassan
- Department of Molecular and Cell Biology, Institute of Systems Genomics, The University of Connecticut, Storrs (A.H., J.G.)
| | - Joerg Graf
- Department of Molecular and Cell Biology, Institute of Systems Genomics, The University of Connecticut, Storrs (A.H., J.G.)
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (J.P.)
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery (N.P.), Baylor College of Medicine, Houston, TX
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences (L.Z.), The University of Texas Health Science Center at Houston
| | - David J Durgan
- Department of Anesthesiology (D.J.D., R.M.B.), Baylor College of Medicine, Houston, TX
| | - Robert M Bryan
- Department of Anesthesiology (D.J.D., R.M.B.), Baylor College of Medicine, Houston, TX
| | - Louise D McCullough
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Venugopal Reddy Venna
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This article describes the dynamic evolution of multiple sclerosis (MS) through its phases and the impact of this understanding on treatment decisions. RECENT FINDINGS MS consists of three phases: (1) the high-risk phase, (2) the relapsing-remitting phase, and (3) the progressive phase. Increasingly, subclinical disease activity is becoming an integral part of our definition of disease course in MS. In many patients, the relapsing-remitting phase starts as subclinical activity, likely long before they present with a clinically isolated syndrome. Differentiating progressive MS subgroups is also becoming less relevant. This is illustrated by comparing progressive MS that evolves from an asymptomatic state in individuals with radiologically isolated syndrome (primary progressive MS) and symptomatic individuals with relapsing-remitting MS (secondary progressive MS). In each case, the background disease activity and pathology can be indistinguishable. These phases evolve on a continuum and largely follow the aging process with little influence by the preceding clinical activity level. Recently, it also became evident that one or a few poorly recovered relapses at the beginning of clinical manifestations of MS predict much earlier progressive MS onset. SUMMARY These findings suggest that interventions to prevent progressive MS, when they become available for clinical practice, may need to be considered as early as when the asymptomatic radiologically isolated syndrome is detected. This early treatment approach is being evaluated with ongoing trials with available disease-modifying therapies. In contrast, continuing the use of disease-modifying therapy beyond a certain age may have little benefit. However, being in the progressive phase of MS is not, in itself, an argument against disease-modifying therapy use in active disease in younger patients.
Collapse
|
29
|
Laquinimod ameliorates secondary brain inflammation. Neurobiol Dis 2019; 134:104675. [PMID: 31731041 DOI: 10.1016/j.nbd.2019.104675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that a degenerative processes within the brain can trigger the formation of new, focal inflammatory lesions in Multiple Sclerosis (MS). Here, we used a novel pre-clinical MS animal model to test whether the amelioration of degenerative brain events reduces the secondary recruitment of peripheral immune cells and, in consequence, inflammatory lesion development. Neural degeneration was induced by a 3 weeks cuprizone intoxication period. To mitigate the cuprizone-induced pathology, animals were treated with Laquinimod (25 mg/kg) during the cuprizone-intoxication period. At the beginning of week 6, encephalitogenic T cell development in peripheral lymphoid organs was induced by the immunization with myelin oligodendrocyte glycoprotein 35-55 peptide (i.e., Cup/EAE). Demyelination, axonal injury and reactive gliosis were determined by immunohistochemistry. Positron emission tomography (PET) imaging was performed to analyze glia activation in vivo. Vehicle-treated cuprizone mice displayed extensive callosal demyelination, glia activation and enhanced TSPO-ligand binding. This cuprizone-induced pathology was profoundly ameliorated in mice treated with Laquinimod. In vehicle-treated Cup/EAE mice, the cuprizone-induced pathology triggered massive peripheral immune cell recruitment into the forebrain, evidenced by multifocal perivascular inflammation, glia activation and neuro-axonal injury. While anti myelin oligodendrocyte glycoprotein 35-55 peptide immune responses were comparable in vehicle- and Laquinimod-treated Cup/EAE mice, the cuprizone-triggered immune cell recruitment was ameliorated by the Laquinimod treatment. This study clearly illustrates that amelioration of a primary brain-intrinsic degenerative process secondary halts peripheral immune cell recruitment and, in consequence, inflammatory lesion development. These findings have important consequences for the interpretation of the results of clinical studies.
Collapse
|
30
|
Franco-Bocanegra DK, George B, Lau LC, Holmes C, Nicoll JAR, Boche D. Microglial motility in Alzheimer's disease and after Aβ42 immunotherapy: a human post-mortem study. Acta Neuropathol Commun 2019; 7:174. [PMID: 31703599 PMCID: PMC6842157 DOI: 10.1186/s40478-019-0828-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/13/2019] [Indexed: 02/04/2023] Open
Abstract
Microglial function is highly dependent on cell motility, with baseline motility required for homeostatic surveillance activity and directed motility to migrate towards a source of injury. Experimental evidence suggests impaired microglial motility in Alzheimer’s disease (AD) and therefore we have investigated whether the expression of proteins associated with motility is altered in AD and affected by the Aβ immunotherapy using post-mortem brain tissue of 32 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against Aβ42 (iAD). Sections of brain were immunolabelled and quantified for (i) the motility-related microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-Aβ, Aβ42 and phosphorylated tau (ptau). The neuroinflammatory environment was characterised using Meso Scale Discovery multiplex assays. The expression of all four motility-related proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12 showed significant positive correlations with Aβ in controls but not in the AD or iAD groups. Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears to result in a slightly less pro-inflammatory environment. Our findings suggest that as Aβ appears during the ageing process, the homeostatic Iba1 and P2RY12 –positive microglia respond to Aβ, but this response is absent in AD. Aβ-immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased baseline microglial motility but without restoring the profile observed in controls.
Collapse
|
31
|
Jin X, Wang T, Liao Y, Guo J, Wang G, Zhao F, Jin Y. Neuroinflammatory Reactions in the Brain of 1,2-DCE-Intoxicated Mice during Brain Edema. Cells 2019; 8:cells8090987. [PMID: 31461951 PMCID: PMC6770564 DOI: 10.3390/cells8090987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
We previously reported that expression of matrix metalloproteinase-9 (MMP-9) mRNA and protein was upregulated during 1,2-dichloroethane (1,2-DCE) induced brain edema in mice. We also found that the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway resulted in MMP-9 overexpression and nuclear factor-κB (NF-κB) activation in mice treated with 1,2-DCE. In this study, we further hypothesized that inflammatory reactions mediated by the p38 MAPK/ NF-κB signaling pathway might be involved in MMP-9 overexpression, blood–brain barrier (BBB) disruption and edema formation in the brain of 1,2-DCE-intoxicated mice. Our results revealed that subacute poisoning by 1,2-DCE upregulates protein levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and p-p65 in mouse brains. Pretreatment with an inhibitor against p38 MAPK attenuates these changes. Moreover, pretreatment with an inhibitor against NF-κB attenuates alterations in brain water content, pathological indications notable in brain edema, as well as mRNA and protein expression on levels of MMP-9, VCAM-1, ICAM-1, iNOS, and IL-1β, tight junction proteins (TJs), GFAP and Iba-1 in the brain of 1,2-DCE-intoxicated mice. Furthermore, pretreatment with an inhibitor against MMP-9 obstructs the decrease of TJs in the brain of 1,2-DCE-intoxicated mice. Lastly, pretreatment with an antagonist against the IL-1β receptor also attenuates changes in protein levels of p-p38 MAPK, p-p65, p-IκB, VCAM -1, ICAM-1, IL-1β, and Iba-1 in the brain of 1,2-DCE-intoxicated-mice. Taken together, findings from the current study indicate that the p38 MAPK/ NF-κB signaling pathway might be involved in the activation of glial cells, and the overproduction of proinflammatory factors, which might induce inflammatory reactions in the brain of 1,2-DCE-intoxicated mice that leads to brain edema.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yingjun Liao
- Department of Physiology, China Medical University, Shenyang 110122, Liaoning, China
| | - Jingjing Guo
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
32
|
Yamada C, Beron-Pelusso C, Algazzaz N, Heidari A, Luz D, Rawas-Qalaji M, Toderas I, Mascarenhas AK, Kawai T, Movila A. Age-dependent effect between MARCO and TLR4 on PMMA particle phagocytosis by macrophages. J Cell Mol Med 2019; 23:5827-5831. [PMID: 31225947 PMCID: PMC6653467 DOI: 10.1111/jcmm.14494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022] Open
Abstract
Progressive generation of total joint implant-derived wear particles is one of the major risk factors in development of peri-prosthetic osteolysis especially in the aging society. It is commonly accepted that macrophages predominantly drive the inflammatory response to wear debris particles. Among various surface receptors that activate the macrophages to phagocytize particles, it is believed that the Toll-like receptor 4 (TLR4) and the scavenger macrophage receptor with collagenous structure (MARCO) play key roles in recognition of wear debris particles. However, a strong body of evidence indicates an age-dependent diminished function of human TLRs. Thus, we hypothesized that the MARCO receptor may be more engaged than TLRs in the phagocytosis of wear debris particles which in turn up-regulate production of pro-inflammatory cytokines from aged macrophages. We demonstrated that peritoneal macrophages isolated from aged mice show elevated expression of MARCO receptor compared to that from young mice. In contrast the expression of TLR4 was significantly decreased on the surface of aged macrophages. Furthermore, using anti-MARCO and anti-TLR4 neutralizing mAbs, we demonstrated the age-dependent pathogenic role of MARCO, but not TLR4, receptor in promoting poly-methyl methacrylate (PMMA) bone cement particles phagocytosis by macrophages leading to the release of pro-inflammatory cytokines migration inhibitory factor and tumour necrosis factor in vitro. These data also suggest that the approach to neutralize MARCO may lead to the development of therapeutic regimen for the prevention of particle-induced osteolysis in aged patients.
Collapse
Affiliation(s)
- Chiaki Yamada
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Camila Beron-Pelusso
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Neira Algazzaz
- Halmos College of Natural Science and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida
| | - Alireza Heidari
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Diogo Luz
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | | | - Ion Toderas
- Institute of Zoology, Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| | | | - Toshihisa Kawai
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Alexandru Movila
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida.,Halmos College of Natural Science and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida.,Institute of Zoology, Academy of Sciences of Moldova, Chisinau, Republic of Moldova.,Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| |
Collapse
|
33
|
Nack A, Brendel M, Nedelcu J, Daerr M, Nyamoya S, Beyer C, Focke C, Deussing M, Hoornaert C, Ponsaerts P, Schmitz C, Bartenstein P, Rominger A, Kipp M. Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells 2019; 8:cells8020094. [PMID: 30696113 PMCID: PMC6406715 DOI: 10.3390/cells8020094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35–55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.
Collapse
MESH Headings
- Animals
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Axons/metabolism
- Axons/ultrastructure
- Biomarkers/metabolism
- Carbazoles/metabolism
- Cuprizone
- Demyelinating Diseases/diagnostic imaging
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammation/pathology
- Ligands
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Monocytes/metabolism
- Multiple Sclerosis/diagnostic imaging
- Neuroglia/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
Collapse
Affiliation(s)
- Anne Nack
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Julia Nedelcu
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Markus Daerr
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Stella Nyamoya
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.
| | - Markus Kipp
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|