1
|
Chen H, Chen XD, Xie M, Zhang X, Song S, Zhang H, Zhou P, Liu N, Zhang N. Decoding goal-habit brain networks of OCD from the structural and functional connectivity. Neuroscience 2025; 575:63-72. [PMID: 40194657 DOI: 10.1016/j.neuroscience.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) may involve an imbalance between goal-directed and habitual learning systems, and this study investigates the structural and functional brain networks underpinning these systems in OCD. Using predefined brain regions, structural and functional connectivity networks were constructed, and methods such as network-based statistics, average connectivity strength, structural-functional coupling, and partial least squares path modeling were employed to compare OCD patients and healthy controls. The results revealed that OCD patients showed increased structural connectivity within both the goal-directed and habitual learning networks, particularly in the subnetwork that connects these systems. However, functional connectivity strength was reduced in both the habitual learning network and the subnetwork connecting goal-directed and habitual learning systems. The symptoms of ordering and hoarding are, to some extent, correlated with the structural-functional coupling network and network characteristics. These findings suggest that alterations in both structural and functional brain networks underpin goal-directed and habitual learning in OCD, with increased structural connectivity potentially reflecting compensatory mechanisms, while reduced functional connectivity may contribute to the symptoms of OCD. Further research is required to better understand the complex interplay between these learning systems in OCD, considering symptom heterogeneity and disease's progression.
Collapse
Affiliation(s)
- Haocheng Chen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo 315201 Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201 Zhejiang, China; Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Xiao Dong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Xuedi Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Shasha Song
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Huan Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029 Jiangsu, China
| |
Collapse
|
2
|
Kazi A, Mora J, Fischl B, Dalca AV, Aganj I. Structural Connectome Analysis using a Graph-based Deep Model for Age and Dementia Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642165. [PMID: 40161600 PMCID: PMC11952334 DOI: 10.1101/2025.03.09.642165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We tackle the prediction of age and mini-mental state examination (MMSE) score based on structural brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple branches, thereby disentangling the input node and graph features. The novelty of our work lies in the model architecture, especially the connectivity attention module, which learns an embedding representation of brain graphs while providing graph-level attention. We show experiments on publicly available datasets of PREVENT-AD and OASIS3. Through our experiments, we validate our model by comparing it to existing methods and via ablations. This quantifies the degree to which the connectome varies depending on the task, which is important for improving our understanding of health and disease across the population. The proposed model generally demonstrates higher performance especially for age prediction compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component.
Collapse
Affiliation(s)
- Anees Kazi
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| | - Adrian V. Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
- CSAIL, Massachusetts Institute of Technology, Cambridge, USA
| | - Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Huang J, Wei S, Gao Z, Jiang S, Wang M, Sun L, Ding W, Zhang D. Local structural-functional coupling with counterfactual explanations for epilepsy prediction. Neuroimage 2025; 306:120978. [PMID: 39755222 DOI: 10.1016/j.neuroimage.2024.120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The structural-functional brain connections coupling (SC-FC coupling) describes the relationship between white matter structural connections (SC) and the corresponding functional activation or functional connections (FC). It has been widely used to identify brain disorders. However, the existing research on SC-FC coupling focuses on global and regional scales, and few studies have investigated the impact of brain disorders on this relationship from the perspective of multi-brain region cooperation (i.e., local scale). Here, we propose the local SC-FC coupling pattern for brain disorders prediction. Compared with previous methods, the proposed patterns quantify the relationship between SC and FC in terms of subgraphs rather than whole connections or single brain regions. Specifically, we first construct structural and functional connections using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) data, subsequently organizing them into a multimodal brain network. Then, we extract subgraphs from these multimodal brain networks and select them based on their frequencies to generate local SC-FC coupling patterns. Finally, we employ these patterns to identify brain disorders while refining abnormal patterns to generate counterfactual explanations. Results on a real epilepsy dataset suggest that the proposed method not only outperforms existing methods in accuracy but also provides insights into the local SC-FC coupling pattern and their changes in brain disorders. Code available at https://github.com/UAIBC-Brain/Local-SC-FC-coupling-pattern.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Shaolong Wei
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Zhen Gao
- Affiliated Hospital 2 of Nantong University, Nantong, 226001, China
| | - Shu Jiang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liang Sun
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, 518038, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 210016, China
| | - Weiping Ding
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China.
| | - Daoqiang Zhang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, 518038, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 210016, China.
| |
Collapse
|
4
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
5
|
Du J, Xu S, Zhu W. Structure-function coupling alterations in cognitively normal individuals with white matter hyperintensities. J Alzheimers Dis 2025; 103:1049-1059. [PMID: 39791245 DOI: 10.1177/13872877241309098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear. OBJECTIVE This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults. METHODS We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden). Neuroimaging data were used to calculate SDI, and gene enrichment analysis was conducted to explore related molecular pathways. RESULTS An increased spatial gradient of SDI from the sensory-motor cortex to the associative cortex was observed. Compared to the low WMH burden group, the high WMH group exhibited elevated SDI in the right superior frontal gyrus, bilateral orbital gyrus, bilateral precentral gyrus, bilateral cingulate gyrus, bilateral thalamus, and bilateral striatum. In the high WMH burden group, SDI in the left thalamus and right cingulate gyrus negatively correlated with memory, while SDI in the right orbital gyrus and left precentral gyrus positively correlated with processing speed. Gene enrichment analysis highlighted associations with pathways involved in neural system function, potassium ion transmembrane transport, synaptic signaling, neuron projection development, and cell secretion regulation. CONCLUSIONS The findings suggest SDI alterations as a potential mechanistic pathway in WMH, which is associated with significant molecular pathways and cognitive impairments. This study provides a theoretical framework for understanding the pathophysiology of WMH progression and subsequent cognitive deficits.
Collapse
Affiliation(s)
- Junyong Du
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Srinivasan A, Raja R, Glass JO, Hudson MM, Sabin ND, Krull KR, Reddick WE. Graph Neural Network Learning on the Pediatric Structural Connectome. Tomography 2025; 11:14. [PMID: 39997997 PMCID: PMC11861995 DOI: 10.3390/tomography11020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
PURPOSE Sex classification is a major benchmark of previous work in learning on the structural connectome, a naturally occurring brain graph that has proven useful for studying cognitive function and impairment. While graph neural networks (GNNs), specifically graph convolutional networks (GCNs), have gained popularity lately for their effectiveness in learning on graph data, achieving strong performance in adult sex classification tasks, their application to pediatric populations remains unexplored. We seek to characterize the capacity for GNN models to learn connectomic patterns on pediatric data through an exploration of training techniques and architectural design choices. METHODS Two datasets comprising an adult BRIGHT dataset (N = 147 Hodgkin's lymphoma survivors and N = 162 age similar controls) and a pediatric Human Connectome Project in Development (HCP-D) dataset (N = 135 healthy subjects) were utilized. Two GNN models (GCN simple and GCN residual), a deep neural network (multi-layer perceptron), and two standard machine learning models (random forest and support vector machine) were trained. Architecture exploration experiments were conducted to evaluate the impact of network depth, pooling techniques, and skip connections on the ability of GNN models to capture connectomic patterns. Models were assessed across a range of metrics including accuracy, AUC score, and adversarial robustness. RESULTS GNNs outperformed other models across both populations. Notably, adult GNN models achieved 85.1% accuracy in sex classification on unseen adult participants, consistent with prior studies. The extension of the adult models to the pediatric dataset and training on the smaller pediatric dataset were sub-optimal in their performance. Using adult data to augment pediatric models, the best GNN achieved comparable accuracy across unseen pediatric (83.0%) and adult (81.3%) participants. Adversarial sensitivity experiments showed that the simple GCN remained the most robust to perturbations, followed by the multi-layer perceptron and the residual GCN. CONCLUSIONS These findings underscore the potential of GNNs in advancing our understanding of sex-specific neurological development and disorders and highlight the importance of data augmentation in overcoming challenges associated with small pediatric datasets. Further, they highlight relevant tradeoffs in the design landscape of connectomic GNNs. For example, while the simpler GNN model tested exhibits marginally worse accuracy and AUC scores in comparison to the more complex residual GNN, it demonstrates a higher degree of adversarial robustness.
Collapse
Affiliation(s)
- Anand Srinivasan
- Departments of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.S.); (R.R.); (J.O.G.); (N.D.S.)
| | - Rajikha Raja
- Departments of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.S.); (R.R.); (J.O.G.); (N.D.S.)
| | - John O. Glass
- Departments of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.S.); (R.R.); (J.O.G.); (N.D.S.)
| | - Melissa M. Hudson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Noah D. Sabin
- Departments of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.S.); (R.R.); (J.O.G.); (N.D.S.)
| | - Kevin R. Krull
- Department of Psychology and Behavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Wilburn E. Reddick
- Departments of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.S.); (R.R.); (J.O.G.); (N.D.S.)
| |
Collapse
|
7
|
Jin L, Hu J, Li Y, Zhu Y, He X, Bai R, Wang L. Altered neurovascular coupling and structure-function coupling in Moyamoya disease affect postoperative collateral formation. Sci Rep 2024; 14:31324. [PMID: 39732819 PMCID: PMC11682109 DOI: 10.1038/s41598-024-82729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging. All patients had preoperative and postoperative digital subtraction angiography. Upon constructing the structural connectivity (SC) and functional connectivity (FC) networks, the SC-FC coupling was calculated. After obtaining the graph theoretical parameters, neurovascular coupling represented the spatial correlation between node degree centrality (DC) of functional networks and CBF. The CBF-DC coupling and SC-FC coupling were compared between MMD and HC groups. We further analyzed the correlation between coupling indexes and cognitive scores, as well as postoperative collateral formation. Compared with HC, CBF-DC coupling was decreased in MMD (p = 0.021), especially in the parietal lobe (p = 0.047). SC-FC coupling in MMD decreased in frontal, occipital, and subcortical regions. Cognitive scores were correlated with the CBF-DC coupling in frontal lobes (r = 0.394, p = 0.029) and SC-FC coupling (r = 0.397, p = 0.027). The CBF-DC coupling of patients with good postoperative collateral formation was higher (p = 0.041). Overall, neurovascular decoupling and structure-functional decoupling at the cortical level may be the underlying neuropathological mechanisms of MMD.
Collapse
Affiliation(s)
- Lingji Jin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yin Li
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yuhan Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xuchao He
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
9
|
Rajesh A, Seider NA, Newbold DJ, Adeyemo B, Marek S, Greene DJ, Snyder AZ, Shimony JS, Laumann TO, Dosenbach NUF, Gordon EM. Structure-function coupling in highly sampled individual brains. Cereb Cortex 2024; 34:bhae361. [PMID: 39277800 DOI: 10.1093/cercor/bhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 min of diffusion-weighted MRI for SC and 360 min of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas.
Collapse
Affiliation(s)
- Aishwarya Rajesh
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92037, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, New York Langone Medical Center, 550 First Avenue, New York, NY, 10016, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, 660 S. Euclid Ave.St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave.St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
- Program in Occupational Therapy, Washington University, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Zhang X, Liang C, Feng M, Xin H, Fu Y, Gao Y, Sui C, Wang N, Wang Y, Zhang N, Guo L, Wen H. Aberrant brain structural-functional connectivity coupling associated with cognitive dysfunction in different cerebral small vessel disease burdens. CNS Neurosci Ther 2024; 30:e70005. [PMID: 39228091 PMCID: PMC11371661 DOI: 10.1111/cns.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Emerging evidence suggests that cerebral small vessel disease (CSVD) pathology changes brain structural connectivity (SC) and functional connectivity (FC) networks. Although network-level SC and FC are closely coupled in the healthy population, how SC-FC coupling correlates with neurocognitive outcomes in patients with different CSVD burdens remains largely unknown. METHODS Using multimodal MRI, we reconstructed whole-brain SC and FC networks for 54 patients with severe CSVD burden (CSVD-s), 106 patients with mild CSVD burden (CSVD-m), and 79 healthy controls. We then investigated the aberrant SC-FC coupling and functional network topology in CSVD and their correlations with cognitive dysfunction. RESULTS Compared with controls, the CSVD-m patients showed no significant change in any SC-FC coupling, but the CSVD-s patients exhibited significantly decreased whole-brain (p = 0.014), auditory/motor (p = 0.033), and limbic modular (p = 0.011) SC-FC coupling. For functional network topology, despite no change in global efficiency, CSVD-s patients exhibited significantly reduced nodal efficiency of the bilateral amygdala (p = 0.024 and 0.035) and heschl gyrus (p = 0.001 and 0.005). Notably, for the CSVD-s patients, whole-brain SC-FC coupling showed a significantly positive correlation with MoCA (r = 0.327, p = 0.020) and SDMT (r = 0.373, p = 0.008) scores, limbic/subcortical modular SC-FC coupling showed a negative correlation (r = -0.316, p = 0.025) with SCWT score, and global/local efficiency (r = 0.367, p = 0.009 and r = 0.353, p = 0.012) showed a positive correlation with AVLT score. For the CSVD-m group, whole-brain and auditory/motor modular SC-FC couplings showed significantly positive correlations with SCWT (r = 0.217, p = 0.028 and r = 0.219, p = 0.027) and TMT (r = 0.324, p = 0.001 and r = 0.245, p = 0.013) scores, and global/local efficiency showed positive correlations with AVLT (r = 0.230, p = 0.020 and r = 0.248, p = 0.012) and SDMT (r = 0.263, p = 0.008 and r = 0.263, p = 0.007) scores. CONCLUSION Our findings demonstrated that decreased whole-brain and module-dependent SC-FC coupling associated with reduced functional efficiency might underlie more severe burden and worse cognitive decline in CSVD. SC-FC coupling might serve as a more sensitive neuroimaging biomarker of CSVD burden and provided new insights into the pathophysiologic mechanisms of clinical development of CSVD.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajie Fu
- Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yian Gao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Song Z, Jiang Z, Zhang Z, Wang Y, Chen Y, Tang X, Li H. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Neuroimage 2024; 297:120740. [PMID: 39047590 DOI: 10.1016/j.neuroimage.2024.120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Modular dynamic graph theory metrics effectively capture the patterns of dynamic information interaction during human brain development. While existing research has employed modular algorithms to examine the overall impact of dynamic changes in community structure throughout development, there is a notable gap in understanding the cross-community dynamic changes within different functional networks during early childhood and their potential contributions to the efficiency of brain information transmission. This study seeks to address this gap by tracing the trajectories of cross-community structural changes within early childhood functional networks and modeling their contributions to information transmission efficiency. We analyzed 194 functional imaging scans from 83 children aged 2 to 8 years, who participated in passive viewing functional magnetic resonance imaging sessions. Utilizing sliding windows and modular algorithms, we evaluated three spatiotemporal metrics-temporal flexibility, spatiotemporal diversity, and within-community spatiotemporal diversity-and four centrality metrics: within-community degree centrality, eigenvector centrality, between-community degree centrality, and between-community eigenvector centrality. Mixed-effects linear models revealed significant age-related increases in the temporal flexibility of the default mode network (DMN), executive control network (ECN), and salience network (SN), indicating frequent adjustments in community structure within these networks during early childhood. Additionally, the spatiotemporal diversity of the SN also displayed significant age-related increases, highlighting its broad pattern of cross-community dynamic interactions. Conversely, within-community spatiotemporal diversity in the language network exhibited significant age-related decreases, reflecting the network's gradual functional specialization. Furthermore, our findings indicated significant age-related increases in between-community degree centrality across the DMN, ECN, SN, language network, and dorsal attention network, while between-community eigenvector centrality also increased significantly for the DMN, ECN, and SN. However, within-community eigenvector centrality remained stable across all functional networks during early childhood. These results suggest that while centrality of cross-community interactions in early childhood functional networks increases, centrality within communities remains stable. Finally, mediation analysis was conducted to explore the relationships between age, brain dynamic graph metrics, and both global and local efficiency based on community structure. The results indicated that the dynamic graph metrics of the SN primarily mediated the relationship between age and the decrease in global efficiency, while those of the DMN, language network, ECN, dorsal attention network, and SN primarily mediated the relationship between age and the increase in local efficiency. This pattern suggests a developmental trajectory in early childhood from global information integration to local information segregation, with the SN playing a pivotal role in this transformation. This study provides novel insights into the mechanisms by which early childhood brain functional development impacts information transmission efficiency through cross-community adjustments in functional networks.
Collapse
Affiliation(s)
- Zeyu Song
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhao Zhang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yifei Wang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Chen
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hanjun Li
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
12
|
Zhang H, Cao P, Mak HKF, Hui ES. The structural-functional-connectivity coupling of the aging brain. GeroScience 2024; 46:3875-3887. [PMID: 38443539 PMCID: PMC11226573 DOI: 10.1007/s11357-024-01106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Aging primarily affects memory and executive functions, a relationship that may be underpinned by the fact that almost all adults over 60 years old develop small vessel disease (SVD). The fact that a wide range of neuropathologies could only explain up to 43% of the variation in age-related cognitive impairment suggests that other factors, such as cognitive reserve, may play a role in the brain's resilience against aging-related cognitive decline. This study aims to examine the relationship between structural-functional-connectivity coupling (SFC), and aging, cognitive abilities and reserve, and SVD-related neuropathologies using a cohort of n = 176 healthy elders from the Harvard Aging Brain Study. The SFC is a recently proposed biomarker that reflects the extent to which anatomical brain connections can predict coordinated neural activity. After controlling for the effect of age, sex, and years of education, global SFC, as well as the intra-network SFC of the dorsolateral somatomotor and dorsal attention networks, and the inter-network SFC between dorsolateral somatomotor and frontoparietal networks decreased with age. The global SFC decreased with total cognitive score. There were significant interaction effects between years of education versus white matter hyperintensities and between years of education versus cerebral microbleeds on inter-network SFC. Enlarged perivascular space in basal ganglia was associated with higher inter-network SFC. Our results suggest that cognitive ability is associated with brain coupling at the global level and cognitive reserve with brain coupling at the inter-functional-brain-cluster level with interaction effect from white matter hyperintensities and cerebral microbleed in a cohort of healthy elderlies.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
- Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.
- CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Liao QM, Liu YL, Dou YK, Du Y, Wang M, Wei JX, Zhao LS, Yang X, Ma XH. Multimodal neuroimaging network associated with executive function in adolescent major depressive disorder patients via cognition-guided magnetic resonance imaging fusion. Cereb Cortex 2024; 34:bhae208. [PMID: 38752981 DOI: 10.1093/cercor/bhae208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 01/28/2025] Open
Abstract
Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi-Lin Liu
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi-Kai Dou
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Du
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Wang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jin-Xue Wei
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lian-Sheng Zhao
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao-Hong Ma
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Popp JL, Thiele JA, Faskowitz J, Seguin C, Sporns O, Hilger K. Structural-functional brain network coupling predicts human cognitive ability. Neuroimage 2024; 290:120563. [PMID: 38492685 DOI: 10.1016/j.neuroimage.2024.120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.
Collapse
Affiliation(s)
- Johanna L Popp
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| | - Jonas A Thiele
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Kirsten Hilger
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| |
Collapse
|
15
|
Normand F, Gajwani M, Côté DC, Allard A. NBS-SNI, an extension of the network-based statistic: Abnormal functional connections between important structural actors. Netw Neurosci 2024; 8:44-80. [PMID: 38562286 PMCID: PMC10861162 DOI: 10.1162/netn_a_00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Elucidating the coupling between the structure and the function of the brain and its development across maturation has attracted a lot of interest in the field of network neuroscience in the last 15 years. Mounting evidence supports the hypothesis that the onset of certain brain disorders is linked with the interplay between the structural architecture of the brain and its functional processes, often accompanied with unusual connectivity features. This paper introduces a method called the network-based statistic-simultaneous node investigation (NBS-SNI) that integrates both representations into a single framework, and identifies connectivity abnormalities in case-control studies. With this method, significance is given to the properties of the nodes, as well as to their connections. This approach builds on the well-established network-based statistic (NBS) proposed in 2010. We uncover and identify the regimes in which NBS-SNI offers a gain in statistical resolution to identify a contrast of interest using synthetic data. We also apply our method on two real case-control studies, one consisting of individuals diagnosed with autism and the other consisting of individuals diagnosed with early psychosis. Using NBS-SNI and node properties such as the closeness centrality and local information dimension, we found hypo- and hyperconnected subnetworks and show that our method can offer a 9 percentage points gain in prediction power over the standard NBS.
Collapse
Affiliation(s)
- Francis Normand
- Centre de Recherche CERVO, Québec, Canada
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
- The Turner Institute for Brain and Mental Health and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Mehul Gajwani
- The Turner Institute for Brain and Mental Health and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Daniel C. Côté
- Centre de Recherche CERVO, Québec, Canada
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
| | - Antoine Allard
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
| |
Collapse
|
16
|
Kazi A, Mora J, Fischl B, Dalca AV, Aganj I. Multi-Head Graph Convolutional Network for Structural Connectome Classification. GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, AND OVERLAPPED CELL ON TISSUE DATASET FOR HISTOPATHOLOGY : 5TH MICCAI WORKSHOP, GRAIL 2023 AND 1ST MICCAI CHALLENGE, OCELOT 2023, HELD IN CONJUNCTION WITH MICCAI 2023, VANCOUVER, BC, CANADA, SEPTEMBE... 2024; 14373:27-36. [PMID: 38665679 PMCID: PMC11044650 DOI: 10.1007/978-3-031-55088-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain-connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, thoroughly capturing representations from the input data. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.
Collapse
Affiliation(s)
- Anees Kazi
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
- CSAIL, Massachusetts Institute of Technology, Cambridge, USA
| | - Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, USA
- Radiology Department, Harvard Medical School, Boston, USA
| |
Collapse
|
17
|
Sun Z, Naismith SL, Meikle S, Calamante F. A novel method for PET connectomics guided by fibre-tracking MRI: Application to Alzheimer's disease. Hum Brain Mapp 2024; 45:e26659. [PMID: 38491564 PMCID: PMC10943179 DOI: 10.1002/hbm.26659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
This study introduces a novel brain connectome matrix, track-weighted PET connectivity (twPC) matrix, which combines positron emission tomography (PET) and diffusion magnetic resonance imaging data to compute a PET-weighted connectome at the individual subject level. The new method is applied to characterise connectivity changes in the Alzheimer's disease (AD) continuum. The proposed twPC samples PET tracer uptake guided by the underlying white matter fibre-tracking streamline point-to-point connectivity calculated from diffusion MRI (dMRI). Using tau-PET, dMRI and T1-weighted MRI from the Alzheimer's Disease Neuroimaging Initiative database, structural connectivity (SC) and twPC matrices were computed and analysed using the network-based statistic (NBS) technique to examine topological alterations in early mild cognitive impairment (MCI), late MCI and AD participants. Correlation analysis was also performed to explore the coupling between SC and twPC. The NBS analysis revealed progressive topological alterations in both SC and twPC as cognitive decline progressed along the continuum. Compared to healthy controls, networks with decreased SC were identified in late MCI and AD, and networks with increased twPC were identified in early MCI, late MCI and AD. The altered network topologies were mostly different between twPC and SC, although with several common edges largely involving the bilateral hippocampus, fusiform gyrus and entorhinal cortex. Negative correlations were observed between twPC and SC across all subject groups, although displaying an overall reduction in the strength of anti-correlation with disease progression. twPC provides a new means for analysing subject-specific PET and MRI-derived information within a hybrid connectome using established network analysis methods, providing valuable insights into the relationship between structural connections and molecular distributions. PRACTITIONER POINTS: New method is proposed to compute patient-specific PET connectome guided by MRI fibre-tracking. Track-weighted PET connectivity (twPC) matrix allows to leverage PET and structural connectivity information. twPC was applied to dementia, to characterise the PET nework abnormalities in Alzheimer's disease and mild cognitive impairment.
Collapse
Affiliation(s)
- Zhuopin Sun
- School of Biomedical EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Sharon L. Naismith
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNew South WalesAustralia
- Charles Perkins CenterThe University of SydneySydneyNew South WalesAustralia
| | - Steven Meikle
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
- School of Health SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Fernando Calamante
- School of Biomedical EngineeringThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
| | | |
Collapse
|
18
|
Huang Q, Yang Y, Qi N, Guan Y, Zhao J, Hua F, Ren S, Xie F. Coupling Between Human Brain Cortical Thickness and Glucose Metabolism from Regional to Connective Level: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Brain Connect 2024; 14:122-129. [PMID: 38308482 DOI: 10.1089/brain.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Background: Balance between brain structure and function is implicated in aging and many brain disorders. This study aimed to investigate the coupling between brain structure and function using 18F-fludeoxyglucose positron emission tomography (PET)/magnetic resonance imaging (MRI). Methods: One hundred thirty-eight subjects who underwent brain 18F-FDG PET/MRI were recruited. The structural and functional coupling at the regional level was explored by calculating within-subject Spearman's correlation between glucose metabolism (GluM) and cortical thickness (CTh) across the cortex for each subject, which was then correlated with age to explore its physiological effects. Then, subjects were divided into groups of middle-aged and young adults and older adults (OAs); structural connectivity (SC) based on CTh and functional connectivity (FC) based on GluM were constructed for the two groups, respectively, followed by exploring the connective-level structural and functional coupling on SC and FC matrices. The global and local efficiency values of the brain SC and FC were also evaluated. Results: Of the subjects, 97.83% exhibited a significant negative correlation between regional CTh and GluM (r = -0.24 to -0.71, p < 0.05, FDR correction), and this CTh-GluM correlation was negatively correlated with age (R = -0.35, p < 0.001). For connectivity matrices, many regions showed positive correlation between SC and FC, especially in the OA group. Besides, FC exhibited denser connections than SC, resulting in both higher global and local efficiency, but lower global efficiency when the network size was corrected. Conclusions: This study found couplings between CTh and GluM at both regional and connective levels, which reflected the aging progress, and might provide new insight into brain disorders. Impact statement The intricate interplay between brain structures and functions plays a pivotal role in unraveling the complexities inherent in the aging process and the pathogenesis of neurological disorders. This study revealed that 97.83% subjects showed negative correlation between the brain's regional cortical thickness and glucose metabolism, while at the connective level, many regions showed positive correlations between structural and functional connectivity. The observed coupling at the regional and connective levels reflected physiological progress, such as aging, and provides insights into the brain mechanisms and potential implications for the diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- Qi Huang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihong Yang
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Qi
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Lizarraga A, Ripp I, Sala A, Shi K, Düring M, Koch K, Yakushev I. Similarity between structural and proxy estimates of brain connectivity. J Cereb Blood Flow Metab 2024; 44:284-295. [PMID: 37773727 PMCID: PMC10993877 DOI: 10.1177/0271678x231204769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Functional magnetic resonance and diffusion weighted imaging have so far made a major contribution to delineation of the brain connectome at the macroscale. While functional connectivity (FC) was shown to be related to structural connectivity (SC) to a certain degree, their spatial overlap is unknown. Even less clear are relations of SC with estimates of connectivity from inter-subject covariance of regional F18-fluorodeoxyglucose uptake (FDGcov) and grey matter volume (GMVcov). Here, we asked to what extent SC underlies three proxy estimates of brain connectivity: FC, FDGcov and GMVcov. Simultaneous PET/MR acquisitions were performed in 56 healthy middle-aged individuals. Similarity between four networks was assessed using Spearman correlation and convergence ratio (CR), a measure of spatial overlap. Spearman correlation coefficient was 0.27 for SC-FC, 0.40 for SC-FDGcov, and 0.15 for SC-GMVcov. Mean CRs were 51% for SC-FC, 48% for SC-FDGcov, and 37% for SC-GMVcov. These results proved to be reproducible and robust against image processing steps. In sum, we found a relevant similarity of SC with FC and FDGcov, while GMVcov consistently showed the weakest similarity. These findings indicate that white matter tracts underlie FDGcov to a similar degree as FC, supporting FDGcov as estimate of functional brain connectivity.
Collapse
Affiliation(s)
- Aldana Lizarraga
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Isabelle Ripp
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arianna Sala
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Coma Science Group, GIGA Consciousness, University of Liege; Centre du Cerveau2, University Hospital of Liege, Avenue de L'Hôpital 1, Liege, Belgium
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
| | - Marco Düring
- Medical Image Analysis Center (MIAC AG) and Qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Rajesh A, Seider NA, Newbold DJ, Adeyemo B, Marek S, Greene DJ, Snyder AZ, Shimony JS, Laumann TO, Dosenbach NUF, Gordon EM. Structure-Function Coupling in Highly Sampled Individual Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560909. [PMID: 37873167 PMCID: PMC10592963 DOI: 10.1101/2023.10.04.560909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Structural connections (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to structural connections may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 minutes of diffusion-weighted MRI for SC and 360 minutes of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas. SIGNIFICANCE STATEMENT Structural connections between distant regions of the human brain support networked function that enables cognition and behavior. Improving our understanding of how structure enables function could allow better insight into how brain disconnection injuries impair brain function.Previous work using neuroimaging suggested that structure-function relationships vary systematically across the brain, with structure better explaining function in basic visual/motor areas than in higher-order areas. However, this work was conducted in group-averaged data, which may obscure details of individual-specific structure-function relationships.Using individual-specific densely sampled neuroimaging data, we found that in addition to visual/motor regions, structure strongly predicts function in specific circuits of the higher-order cingulate gyrus. The cingulate's structure-function relationship suggests that its organization may be unique among higher-order cortical regions.
Collapse
|
21
|
Fotiadis P, Cieslak M, He X, Caciagli L, Ouellet M, Satterthwaite TD, Shinohara RT, Bassett DS. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat Commun 2023; 14:6115. [PMID: 37777569 PMCID: PMC10542365 DOI: 10.1038/s41467-023-41686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu Ouellet
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
22
|
Xu M, Qian L, Wang S, Cai H, Sun Y, Thakor N, Qi X, Sun Y. Brain network analysis reveals convergent and divergent aberrations between mild stroke patients with cortical and subcortical infarcts during cognitive task performing. Front Aging Neurosci 2023; 15:1193292. [PMID: 37484690 PMCID: PMC10358837 DOI: 10.3389/fnagi.2023.1193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Although consistent evidence has revealed that cognitive impairment is a common sequela in patients with mild stroke, few studies have focused on it, nor the impact of lesion location on cognitive function. Evidence on the neural mechanisms underlying the effects of mild stroke and lesion location on cognitive function is limited. This prompted us to conduct a comprehensive and quantitative study of functional brain network properties in mild stroke patients with different lesion locations. Specifically, an empirical approach was introduced in the present work to explore the impact of mild stroke-induced cognitive alterations on functional brain network reorganization during cognitive tasks (i.e., visual and auditory oddball). Electroencephalogram functional connectivity was estimated from three groups (i.e., 40 patients with cortical infarctions, 48 patients with subcortical infarctions, and 50 healthy controls). Using graph theoretical analysis, we quantitatively investigated the topological reorganization of functional brain networks at both global and nodal levels. Results showed that both patient groups had significantly worse behavioral performance on both tasks, with significantly longer reaction times and reduced response accuracy. Furthermore, decreased global and local efficiency were found in both patient groups, indicating a mild stroke-related disruption in information processing efficiency that is independent of lesion location. Regarding the nodal level, both divergent and convergent node strength distribution patterns were revealed between both patient groups, implying that mild stroke with different lesion locations would lead to complex regional alterations during visual and auditory information processing, while certain robust cognitive processes were independent of lesion location. These findings provide some of the first quantitative insights into the complex neural mechanisms of mild stroke-induced cognitive impairment and extend our understanding of underlying alterations in cognition-related brain networks induced by different lesion locations, which may help to promote post-stroke management and rehabilitation.
Collapse
Affiliation(s)
- Mengru Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Linze Qian
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Sujie Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Huaying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nitish Thakor
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Parsons N, Irimia A, Amgalan A, Ugon J, Morgan K, Shelyag S, Hocking A, Poudel G, Caeyenberghs K. Structural-functional connectivity bandwidth predicts processing speed in mild traumatic brain Injury: A multiplex network analysis. Neuroimage Clin 2023; 38:103428. [PMID: 37167841 PMCID: PMC10196722 DOI: 10.1016/j.nicl.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
An emerging body of work has revealed alterations in structural (SC) and functional (FC) brain connectivity following mild TBI (mTBI), with mixed findings. However, these studies seldom integrate complimentary neuroimaging modalities within a unified framework. Multilayer network analysis is an emerging technique to uncover how white matter organization enables functional communication. Using our novel graph metric (SC-FC Bandwidth), we quantified the information capacity of synchronous brain regions in 53 mild TBI patients (46 females; age mean = 40.2 years (y), σ = 16.7 (y), range: 18-79 (y). Diffusion MRI and resting state fMRI were administered at the acute and chronic post-injury intervals. Moreover, participants completed a cognitive task to measure processing speed (30 Seconds and Counting Task; 30-SACT). Processing speed was significantly increased at the chronic, relative to the acute post-injury intervals (p = <0.001). Nonlinear principal components of direct (t = -1.84, p = 0.06) and indirect SC-FC Bandwidth (t = 3.86, p = <0.001) predicted processing speed with a moderate effect size (R2 = 0.43, p < 0.001), while controlling for age. A subnetwork of interhemispheric edges with increased SC-FC Bandwidth was identified at the chronic, relative to the acute mTBI post-injury interval (pFDR = 0.05). Increased interhemispheric SC-FC Bandwidth of this network corresponded with improved processing speed at the chronic post-injury interval (partial r = 0.32, p = 0.02). Our findings revealed that mild TBI results in complex reorganization of brain connectivity optimized for maximum information flow, supporting improved cognitive performance as a compensatory mechanism. Moving forward, this measurement may complement clinical assessment as an objective marker of mTBI recovery.
Collapse
Affiliation(s)
- Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia; BrainCast Neurotechnologies, Australia; School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Julien Ugon
- School of Information Technology, Faculty of Science Engineering Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Kerri Morgan
- School of Information Technology, Faculty of Science Engineering Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Sergiy Shelyag
- School of Information Technology, Faculty of Science Engineering Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Alex Hocking
- School of Information Technology, Faculty of Science Engineering Built Environment, Deakin University, Melbourne, VIC, Australia
| | - Govinda Poudel
- BrainCast Neurotechnologies, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Piao S, Chen K, Wang N, Bao Y, Liu X, Hu B, Lu Y, Yang L, Geng D, Li Y. Modular Level Alterations Of Structural-Functional Connectivity Coupling in Mild Cognitive Impairment Patients and Interactions with Age Effect. J Alzheimers Dis 2023; 92:1439-1450. [PMID: 36911934 DOI: 10.3233/jad-220837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND Structural-functional connectivity (SC- FC) coupling is related to various cognitive functions and more sensitive for the detection of subtle brain alterations. OBJECTIVE To investigate whether decoupling of SC-FC was detected in mild cognitive impairment (MCI) patients on a modular level, the interaction effect of aging and disease, and its relationship with network efficiency. METHODS 73 patients with MCI and 65 healthy controls were enrolled who underwent diffusion tensor imaging and resting-state functional MRI to generate structural and functional networks. Five modules were defined based on automated anatomical labeling 90 atlas, including default mode network (DMN), frontoparietal attention network (FPN), sensorimotor network (SMN), subcortical network (SCN), and visual network (VIS). Intra-module and inter-module SC-FC coupling were compared between two groups. The interaction effect of aging and group on modular SC-FC coupling was further analyzed by two-way ANOVA. The correlation between the coupling and network efficiency was finally calculated. RESULTS In MCI patients, aberrant intra-module coupling was noted in SMN, and altered inter-module coupling was found in the other four modules. Intra-module coupling exhibited significant age-by-group effects in DMN and SMN, and inter-module coupling showed significant age-by-group effects in DMN and FPN. In MCI patients, both positive or negative correlations between coupling and network efficiency were found in DMN, FPN, SCN, and VIS. CONCLUSION SC-FC coupling could reflect the association of SC and FC, especially in modular levels. In MCI, SC-FC coupling could be affected by the interaction effect of aging and disease, which may shed light on advancing the pathophysiological mechanisms of MCI.
Collapse
Affiliation(s)
- Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yucheng Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Effective Connectivity Evaluation of Resting-State Brain Networks in Alzheimer's Disease, Amnestic Mild Cognitive Impairment, and Normal Aging: An Exploratory Study. Brain Sci 2023; 13:brainsci13020265. [PMID: 36831808 PMCID: PMC9954618 DOI: 10.3390/brainsci13020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
(1) Background: Alzheimer's disease (AD) is a neurodegenerative disease with a high prevalence. Despite the cognitive tests to diagnose AD, there are pitfalls in early diagnosis. Brain deposition of pathological markers of AD can affect the direction and intensity of the signaling. The study of effective connectivity allows the evaluation of intensity flow and signaling pathways in functional regions, even in the early stage, known as amnestic mild cognitive impairment (aMCI). (2) Methods: 16 aMCI, 13 AD, and 14 normal subjects were scanned using resting-state fMRI and T1-weighted protocols. After data pre-processing, the signal of the predefined nodes was extracted, and spectral dynamic causal modeling analysis (spDCM) was constructed. Afterward, the mean and standard deviation of the Jacobin matrix of each subject describing effective connectivity was calculated and compared. (3) Results: The maps of effective connectivity in the brain networks of the three groups were different, and the direction and strength of the causal effect with the progression of the disease showed substantial changes. (4) Conclusions: Impaired information flow in the resting-state networks of the aMCI and AD groups was found versus normal groups. Effective connectivity can serve as a potential marker of Alzheimer's pathophysiology, even in the early stages of the disease.
Collapse
|
26
|
Liu Y, Li F, Shang S, Wang P, Yin X, Krishnan Muthaiah VP, Lu L, Chen YC. Functional-structural large-scale brain networks are correlated with neurocognitive impairment in acute mild traumatic brain injury. Quant Imaging Med Surg 2023; 13:631-644. [PMID: 36819289 PMCID: PMC9929413 DOI: 10.21037/qims-22-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Background This study was conducted to investigate topological changes in large-scale functional connectivity (FC) and structural connectivity (SC) networks in acute mild traumatic brain injury (mTBI) and determine their potential relevance to cognitive impairment. Methods Seventy-one patients with acute mTBI (29 males, 42 females, mean age 43.54 years) from Nanjing First Hospital and 57 matched healthy controls (HC) (33 males, 24 females, mean age 46.16 years) from the local community were recruited in this prospective study. Resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were acquired within 14 days (mean 3.29 days) after the onset of mTBI. Then, large-scale FC and SC networks with 116 regions from the automated anatomical labeling (AAL) brain atlas were constructed. Graph theory analysis was used to analyze global and nodal metrics. Finally, correlations were assessed between topological properties and neurocognitive performances evaluated by the Montreal Cognitive Assessment (MoCA). Bonferroni correction was performed out for multiple comparisons in all involved analyses. Results Compared with HC, acute mTBI patients had a higher normalized clustering coefficient (γ) for FC (Cohen's d=4.076), and higher γ and small worldness (σ) for SC (Cohen's d=0.390 and Cohen's d=0.395). The mTBI group showed aberrant nodal degree (Dc), nodal efficiency (Ne), and nodal local efficiency (Nloc) for FC and aberrant Dc, nodal betweenness (Bc), nodal clustering coefficient (NCp) and Ne for SC mainly in the frontal and temporal, cerebellum, and subcortical areas. Acute mTBI patients also had higher functional-structural coupling strength at both the group and individual levels (Cohen's d=0.415). These aberrant global and nodal topological properties at functional and structural levels were associated with attention, orientation, memory, and naming performances (all P<0.05). Conclusions Our findings suggested that large-scale FC and SC network changes, higher correlation between FC and SC and cognitive impairment can be detected in the acute stage of mTBI. These network aberrances may be a compensatory mechanism for cognitive impairment in acute mTBI patients.
Collapse
Affiliation(s)
- Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Ren J, Xu D, Mei H, Zhong X, Yu M, Ma J, Fan C, Lv J, Xiao Y, Gao L, Xu H. Asymptomatic carotid stenosis is associated with both edge and network reconfigurations identified by single-subject cortical thickness networks. Front Aging Neurosci 2023; 14:1091829. [PMID: 36711201 PMCID: PMC9878604 DOI: 10.3389/fnagi.2022.1091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background and purpose Patients with asymptomatic carotid stenosis, even without stroke, are at high risk for cognitive impairment, and the neuroanatomical basis remains unclear. Using a novel edge-centric structural connectivity (eSC) analysis from individualized single-subject cortical thickness networks, we aimed to examine eSC and network measures in severe (> 70%) asymptomatic carotid stenosis (SACS). Methods Twenty-four SACS patients and 24 demographically- and comorbidities-matched controls were included, and structural MRI and multidomain cognitive data were acquired. Individual eSC was estimated via the Manhattan distances of pairwise cortical thickness histograms. Results In the eSC analysis, SACS patients showed longer interhemispheric but shorter intrahemispheric Manhattan distances seeding from left lateral temporal regions; in network analysis the SACS patients had a decreased system segregation paralleling with white matter hyperintensity burden and recall memory. Further network-based statistic analysis identified several eSC and subgraph features centred around the Perisylvian regions that predicted silent lesion load and cognitive tests. Conclusion We conclude that SACS exhibits abnormal eSC and a less-optimized trade-off between physical cost and network segregation, providing a reference and perspective for identifying high-risk individuals.
Collapse
Affiliation(s)
- Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiaojiao Ma
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Lei Gao, ✉
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Haibo Xu, ✉
| |
Collapse
|
28
|
Guo J, Chen Y, Huang L, Liu W, Hu D, Lv Y, Kang H, Li N, Peng Y. Local structural-functional connectivity decoupling of caudate nucleus in infantile esotropia. Front Neurosci 2022; 16:1098735. [PMID: 36620443 PMCID: PMC9815444 DOI: 10.3389/fnins.2022.1098735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal brain structural and functional properties were demonstrated in patients with infantile esotropia (IE). However, few studies have investigated the interaction between structural and functional connectivity (SC-FC) in patients with IE. Structural network was generated with diffusion tensor imaging and functional network was constructed with resting-state functional magnetic resonance imaging for 18 patients with IE as well as 20 age- and gender- matched healthy subjects. The SC-FC coupling for global connectome, short connectome and long connectome were examined in IE patients and compared with those of healthy subjects. A linear mixed effects model was employed to examine the group-age interaction in terms of the coupling metrics. The Pearson correlation between coupling measures and strabismus degree was evaluated in IE patients, on which the regulatory effect of age was also investigated through hierarchical regression analysis. Significantly decreased SC-FC coupling score for short connections was observed in left caudate nucleus (CAU) in IE patients, whereas no brain regions exhibited altered coupling metrics for global connections or long connections. The group-age interaction was also evident in local coupling metrics of left CAU. The age-related regulatory effect on coupling-degree association was distinguishing between brain regions implicated in visual processing and cognition-related brain areas in IE patients. Local SC-FC decoupling in CAU was evident in patients with IE and was initiated in their early postnatal period, possibly interfering the visual cortico-striatal loop and subcortical optokinetic pathway subserving visual processing and nasalward optokinesis during neurodevelopment, which provides new insight into underlying neuropathological mechanism of IE.
Collapse
Affiliation(s)
- Jianlin Guo
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yuanyuan Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lijuan Huang
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Di Hu
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yanqiu Lv
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Huiying Kang
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China,*Correspondence: Ningdong Li,
| | - Yun Peng
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Yun Peng,
| |
Collapse
|
29
|
Zhao H, Wen W, Cheng J, Jiang J, Kochan N, Niu H, Brodaty H, Sachdev P, Liu T. An accelerated degeneration of white matter microstructure and networks in the nondemented old-old. Cereb Cortex 2022; 33:4688-4698. [PMID: 36178117 DOI: 10.1093/cercor/bhac372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
The nondemented old-old over the age of 80 comprise a rapidly increasing population group; they can be regarded as exemplars of successful aging. However, our current understanding of successful aging in advanced age and its neural underpinnings is limited. In this study, we measured the microstructural and network-based topological properties of brain white matter using diffusion-weighted imaging scans of 419 community-dwelling nondemented older participants. The participants were further divided into 230 young-old (between 72 and 79, mean = 76.25 ± 2.00) and 219 old-old (between 80 and 92, mean = 83.98 ± 2.97). Results showed that white matter connectivity in microstructure and brain networks significantly declined with increased age and that the declined rates were faster in the old-old compared with young-old. Mediation models indicated that cognitive decline was in part through the age effect on the white matter connectivity in the old-old but not in the young-old. Machine learning predictive models further supported the crucial role of declines in white matter connectivity as a neural substrate of cognitive aging in the nondemented older population. Our findings shed new light on white matter connectivity in the nondemented aging brains and may contribute to uncovering the neural substrates of successful brain aging.
Collapse
Affiliation(s)
- Haichao Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
30
|
Alm KH, Soldan A, Pettigrew C, Faria AV, Hou X, Lu H, Moghekar A, Mori S, Albert M, Bakker A. Structural and Functional Brain Connectivity Uniquely Contribute to Episodic Memory Performance in Older Adults. Front Aging Neurosci 2022; 14:951076. [PMID: 35903538 PMCID: PMC9315224 DOI: 10.3389/fnagi.2022.951076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we examined the independent contributions of structural and functional connectivity markers to individual differences in episodic memory performance in 107 cognitively normal older adults from the BIOCARD study. Structural connectivity, defined by the diffusion tensor imaging (DTI) measure of radial diffusivity (RD), was obtained from two medial temporal lobe white matter tracts: the fornix and hippocampal cingulum, while functional connectivity markers were derived from network-based resting state functional magnetic resonance imaging (rsfMRI) of five large-scale brain networks: the control, default, limbic, dorsal attention, and salience/ventral attention networks. Hierarchical and stepwise linear regression methods were utilized to directly compare the relative contributions of the connectivity modalities to individual variability in a composite delayed episodic memory score, while also accounting for age, sex, cerebrospinal fluid (CSF) biomarkers of amyloid and tau pathology (i.e., Aβ42/Aβ40 and p-tau181), and gray matter volumes of the entorhinal cortex and hippocampus. Results revealed that fornix RD, hippocampal cingulum RD, and salience network functional connectivity were each significant independent predictors of memory performance, while CSF markers and gray matter volumes were not. Moreover, in the stepwise model, the addition of sex, fornix RD, hippocampal cingulum RD, and salience network functional connectivity each significantly improved the overall predictive value of the model. These findings demonstrate that both DTI and rsfMRI connectivity measures uniquely contributed to the model and that the combination of structural and functional connectivity markers best accounted for individual variability in episodic memory function in cognitively normal older adults.
Collapse
Affiliation(s)
- Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Arnold Bakker,
| |
Collapse
|
31
|
Ding C, Wang L, Han Y, Jiang J. Discrimination of subjective cognitive decline from healthy control based on glucose-oxygen metabolism network coupling features and machine learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3334-3337. [PMID: 36085993 DOI: 10.1109/embc48229.2022.9870934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Our previous studies have proved that preclinical Alzheimer's disease (AD) which including subjective cognitive decline (SCD) stage, can be distinguished from normal control (NC) by glucose-oxygen metabolism coupling at the voxel level, but whether the coupling at the network level worked has not been studied. Therefore, this study aimed to explore the coupling relationship between brain glucose metabolic connectivity network and oxygen functional connectivity network, and whether its feasibility as a biomarker to discriminate SCD from healthy control (HC). METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) and glucose positron emission tomography (PET) based on hybrid PET/MRI scans were used to investigate metabolism-oxygen metabolism coupling in 56 SCD individuals and 54 HCs. Network coupling features were selected by logistic regression-recursive feature elimination (LR-RFE), and then a linear support vector machine (SVM) was used to distinguish SCD and HC by using 5-fold cross-validation. RESULTS The classification average accuracy of network coupling had reached 76.36% with a standard deviation of 9.85% (with a sensitivity of 77.82%±15.13% and a specificity of 75.30%±15.15%). After receiver operating characteristic (ROC) analysis, the average area under curve (AUC) of network coupling was 0.788 (95% confidence interval [Formula: see text]). CONCLUSION This study provided a new perspective for exploring network coupling. The proposed classification method highlighted the potential clinical application by combing glucose-oxygen metabolism coupling and machine learning in identifying SCD.
Collapse
|
32
|
Xu X, Xu S, Han L, Yao X. Coupling analysis between functional and structural brain networks in Alzheimer's disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:8963-8974. [PMID: 35942744 DOI: 10.3934/mbe.2022416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The coupling between functional and structural brain networks is difficult to clarify due to the complicated alterations in gray matter and white matter for the development of Alzheimer's disease (AD). A cohort of 112 participants [normal control group (NC, 62 cases), mild cognitive impairment group (MCI, 31 cases) and AD group (19 cases)], was recruited in our study. The brain networks of rsfMRI functional connectivity (rsfMRI-FC) and diffusion tensor imaging structural connectivity (DTI-SC) across the three groups were constructed, and their correlations were evaluated by Pearson's correlation analyses and multiple comparison with Bonferroni correction. Furthermore, the correlations between rsfMRI-SC/DTI-FC coupling and four neuropsychological scores of mini-mental state examination (MMSE), clinical dementia rating-sum of boxes (CDR-SB), functional activities questionnaire (FAQ) and montreal cognitive assessment (MoCA) were inferred by partial correlation analyses, respectively. The results demonstrated that there existed significant correlation between rsfMRI-FC and DTI-SC (p < 0.05), and the coupling of rsfMRI-FC/DTI-SC showed negative correlation with MMSE score (p < 0.05), positive correlations with CDR-SB and FAQ scores (p < 0.05), and no correlation with MoCA score (p > 0.05). It was concluded that there existed FC/SC coupling and varied network characteristics for rsfMRI and DTI, and this would provide the clues to understand the underlying mechanisms of cognitive deficits of AD.
Collapse
Affiliation(s)
- Xia Xu
- College of Medical Imaging, Jiading District Central Hospital affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Song Xu
- College of Medical Imaging, Jiading District Central Hospital affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liting Han
- College of Medical Imaging, Jiading District Central Hospital affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
33
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
34
|
Chan SY, Ong ZY, Ngoh ZM, Chong YS, Zhou JH, Fortier MV, Daniel LM, Qiu A, Meaney MJ, Tan AP. Structure-function coupling within the reward network in preschool children predicts executive functioning in later childhood. Dev Cogn Neurosci 2022; 55:101107. [PMID: 35413663 PMCID: PMC9010704 DOI: 10.1016/j.dcn.2022.101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development. Functional connectivity is not tethered to structural connectivity in preschool age. Higher degree of SC-FC coupling reflects lower plasticity in early childhood. Gender differences in reward sensitivity were present as early as in preschool age. Early reward network SC-FC coupling affects later executive function.
Collapse
|
35
|
Kulik SD, Nauta IM, Tewarie P, Koubiyr I, van Dellen E, Ruet A, Meijer KA, de Jong BA, Stam CJ, Hillebrand A, Geurts JJG, Douw L, Schoonheim MM. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Netw Neurosci 2021; 6:339-356. [PMID: 35733434 PMCID: PMC9208024 DOI: 10.1162/netn_a_00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Multiple sclerosis (MS) features extensive connectivity changes, but how structural and functional connectivity relate, and whether this relation could be a useful biomarker for cognitive impairment in MS is unclear.
This study included 79 MS patients and 40 healthy controls (HCs). Patients were classified as cognitively impaired (CI) or cognitively preserved (CP). Structural connectivity was determined using diffusion MRI and functional connectivity using resting-state magnetoencephalography (MEG) data (theta, alpha1 and alpha2 bands). Structure-function coupling was assessed by correlating modalities, and further explored in frequency bands that significantly correlated with whole-brain structural connectivity. Functional correlates of short- and long-range structural connections (based on tract length) were then specifically assessed. ROC analyses were performed on coupling values to identify biomarker potential.
Only the theta band showed significant correlations between whole-brain structural and functional connectivity (rho = −0.26, p = 0.023, only in MS). Long-range structure-function coupling was higher in CI patients compared to HCs (p = 0.005). Short-range coupling showed no group differences. Structure-function coupling was not a significant classifier of cognitive impairment for any tract length (short-range AUC = 0.498, p = 0.976, long-range AUC = 0.611, p = 0.095).
Long-range structure-function coupling was higher in CI-MS compared to HC, but more research is needed to further explore this measure as biomarkers in MS.
Collapse
Affiliation(s)
- Shanna D. Kulik
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ilse M. Nauta
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Prejaas Tewarie
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail Koubiyr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Edwin van Dellen
- University Medical Center Utrecht, Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Aurelie Ruet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Kim A. Meijer
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen J. G. Geurts
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Lee D, Quattrocki Knight E, Song H, Lee S, Pae C, Yoo S, Park HJ. Differential structure-function network coupling in the inattentive and combined types of attention deficit hyperactivity disorder. PLoS One 2021; 16:e0260295. [PMID: 34851976 PMCID: PMC8635373 DOI: 10.1371/journal.pone.0260295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The heterogeneous presentation of inattentive and hyperactive-impulsive core symptoms in attention deficit hyperactivity disorder (ADHD) warrants further investigation into brain network connectivity as a basis for subtype divisions in this prevalent disorder. With diffusion and resting-state functional magnetic resonance imaging data from the Healthy Brain Network database, we analyzed both structural and functional network efficiency and structure-functional network (SC-FC) coupling at the default mode (DMN), executive control (ECN), and salience (SAN) intrinsic networks in 201 children diagnosed with the inattentive subtype (ADHD-I), the combined subtype (ADHD-C), and typically developing children (TDC) to characterize ADHD symptoms relative to TDC and to test differences between ADHD subtypes. Relative to TDC, children with ADHD had lower structural connectivity and network efficiency in the DMN, without significant group differences in functional networks. Children with ADHD-C had higher SC-FC coupling, a finding consistent with diminished cognitive flexibility, for all subnetworks compared to TDC. The ADHD-C group also demonstrated increased SC-FC coupling in the DMN compared to the ADHD-I group. The correlation between SC-FC coupling and hyperactivity scores was negative in the ADHD-I, but not in the ADHD-C group. The current study suggests that ADHD-C and ADHD-I may differ with respect to their underlying neuronal connectivity and that the added dimensionality of hyperactivity may not explain this distinction.
Collapse
Affiliation(s)
- Dongha Lee
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Elizabeth Quattrocki Knight
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Hyunjoo Song
- Department of Educational Psychology, Seoul Women’s University, Seoul, Republic of Korea
| | - Saebyul Lee
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sol Yoo
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Relationship between Amyloid-β Deposition and the Coupling between Structural and Functional Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer's Disease. Brain Sci 2021; 11:brainsci11111535. [PMID: 34827535 PMCID: PMC8615711 DOI: 10.3390/brainsci11111535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that the accumulation of amyloid-β (Aβ) pathologies has distinctive stage-specific effects on the structural and functional brain networks along the Alzheimer's disease (AD) continuum. A more comprehensive account of both types of brain network may provide a better characterization of the stage-specific effects of Aβ pathologies. A potential candidate for this joint characterization is the coupling between the structural and functional brain networks (SC-FC coupling). We therefore investigated the effect of Aβ accumulation on global SC-FC coupling in patients with mild cognitive impairment (MCI), AD, and healthy controls. Patients with MCI were dichotomized according to their level of Aβ pathology seen in 18F-flutemetamol PET-CT scans-namely, Aβ-negative and Aβ-positive. Our results show that there was no difference in global SC-FC coupling between different cohorts. During the prodromal AD stage, there was a significant negative correlation between the level of Aβ pathology and the global SC-FC coupling of MCI patients with positive Aβ, but no significant correlation for MCI patients with negative Aβ. During the AD dementia stage, the correlation between Aβ pathology and global SC-FC coupling in patients with AD was positive. Our results suggest that Aβ pathology has distinctive stage-specific effects on global coupling between the structural and functional brain networks along the AD continuum.
Collapse
|
38
|
Youssef N, Xiao S, Liu M, Lian H, Li R, Chen X, Zhang W, Zheng X, Li Y, Li Y. Functional Brain Networks in Mild Cognitive Impairment Based on Resting Electroencephalography Signals. Front Comput Neurosci 2021; 15:698386. [PMID: 34776913 PMCID: PMC8579961 DOI: 10.3389/fncom.2021.698386] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
The oscillatory patterns of electroencephalography (EEG), during resting states, are informative and helpful in understanding the functional states of brain network and their contribution to behavioral performances. The aim of this study is to characterize the functional brain network alterations in patients with amnestic mild cognitive impairment (aMCI). To this end, rsEEG signals were recorded before and after a cognitive task. Functional connectivity metrics were calculated using debiased weighted phase lag index (DWPLI). Topological features of the functional connectivity network were analyzed using both the classical graph approach and minimum spanning tree (MST) algorithm. Subsequently, the network and connectivity values together with Mini-Mental State Examination cognitive test were used as features to classify the participants. Results showed that: (1) across the pre-task condition, in the theta band, the aMCI group had a significantly lower global mean DWPLI than the control group; the functional connectivity patterns were different in the left hemisphere between two groups; the aMCI group showed significantly higher average clustering coefficient and the remarkably lower global efficiency than the control. (2) Analysis of graph measures under post-task resting state, unveiled that for the percentage change of post-task vs. pre-task in beta EEG, a significant increase in tree hierarchy was observed in aMCI group (2.41%) than in normal control (-3.89%); (3) Furthermore, the classification analysis of combined measures of functional connectivity, brain topology, and MMSE test showed improved accuracy compared to the single method, for which the connectivity patterns and graph metrics were used as separate inputs. The classification accuracy obtained for the case of post-task resting state was 87.2%, while the one achieved under pre-task resting state was found to be 77.7%. Therefore, the functional network alterations in aMCI patients were more prominent during the post-task resting state. This study suggests that the disintegration observed in MCI functional network during the resting states, preceding and following a task, might be possible biomarkers of cognitive dysfunction in aMCI patients.
Collapse
Affiliation(s)
- Nadia Youssef
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Shasha Xiao
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Lian
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Xiaoran Zheng
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingjie Li
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| |
Collapse
|
39
|
Ponticorvo S, Manara R, Cassandro E, Canna A, Scarpa A, Troisi D, Cassandro C, Cuoco S, Cappiello A, Pellecchia MT, Salle FD, Esposito F. Cross-modal connectivity effects in age-related hearing loss. Neurobiol Aging 2021; 111:1-13. [PMID: 34915240 DOI: 10.1016/j.neurobiolaging.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/19/2022]
Abstract
Age-related sensorineural hearing loss (HL) leads to localized brain changes in the primary auditory cortex, long-range functional alterations, and is considered a risk factor for dementia. Nonhuman studies have repeatedly highlighted cross-modal brain plasticity in sensorial brain networks other than those primarily involved in the peripheral damage, thus in this study, the possible cortical alterations associated with HL have been analyzed using a whole-brain multimodal connectomic approach. Fifty-two HL and 30 normal hearing participants were examined in a 3T MRI study along with audiological and neurological assessments. Between-regions functional connectivity and whole-brain probabilistic tractography were calculated in a connectome-based manner and graph theory was used to obtain low-dimensional features for the analysis of brain connectivity at global and local levels. The HL condition was associated with a different functional organization of the visual subnetwork as revealed by a significant increase in global efficiency, density, and clustering coefficient. These functional effects were mirrored by similar (but more subtle) structural effects suggesting that a functional repurposing of visual cortical centers occurs to compensate for age-related loss of hearing abilities.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Renzo Manara
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; Department of Neuroscience, University of Padova, Padova, Italy
| | - Ettore Cassandro
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Antonietta Canna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alfonso Scarpa
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Donato Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Claudia Cassandro
- University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Arianna Cappiello
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
40
|
Gu Z, Jamison KW, Sabuncu MR, Kuceyeski A. Heritability and interindividual variability of regional structure-function coupling. Nat Commun 2021; 12:4894. [PMID: 34385454 PMCID: PMC8361191 DOI: 10.1038/s41467-021-25184-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.
Collapse
Affiliation(s)
- Zijin Gu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Mert Rory Sabuncu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Cole M, Murray K, St‐Onge E, Risk B, Zhong J, Schifitto G, Descoteaux M, Zhang Z. Surface-Based Connectivity Integration: An atlas-free approach to jointly study functional and structural connectivity. Hum Brain Mapp 2021; 42:3481-3499. [PMID: 33956380 PMCID: PMC8249904 DOI: 10.1002/hbm.25447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 01/29/2023] Open
Abstract
There has been increasing interest in jointly studying structural connectivity (SC) and functional connectivity (FC) derived from diffusion and functional MRI. Previous connectome integration studies almost exclusively required predefined atlases. However, there are many potential atlases to choose from and this choice heavily affects all subsequent analyses. To avoid such an arbitrary choice, we propose a novel atlas-free approach, named Surface-Based Connectivity Integration (SBCI), to more accurately study the relationships between SC and FC throughout the intra-cortical gray matter. SBCI represents both SC and FC in a continuous manner on the white surface, avoiding the need for prespecified atlases. The continuous SC is represented as a probability density function and is smoothed for better facilitation of its integration with FC. To infer the relationship between SC and FC, three novel sets of SC-FC coupling (SFC) measures are derived. Using data from the Human Connectome Project, we introduce the high-quality SFC measures produced by SBCI and demonstrate the use of these measures to study sex differences in a cohort of young adults. Compared with atlas-based methods, this atlas-free framework produces more reproducible SFC features and shows greater predictive power in distinguishing biological sex. This opens promising new directions for all connectomics studies.
Collapse
Affiliation(s)
- Martin Cole
- Department of Biostatistics and Computational BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Kyle Murray
- Department of Physics and AstronomyUniversity of RochesterRochesterNew YorkUSA
| | - Etienne St‐Onge
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeQuébecCanada
| | - Benjamin Risk
- Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Jianhui Zhong
- Department of Physics and AstronomyUniversity of RochesterRochesterNew YorkUSA
- Department of Imaging SciencesUniversity of RochesterRochesterNew YorkUSA
| | - Giovanni Schifitto
- Department of Imaging SciencesUniversity of RochesterRochesterNew YorkUSA
- Department of NeurologyUniversity of RochesterRochesterNew YorkUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeQuébecCanada
| | - Zhengwu Zhang
- Department of Statistics and Operations ResearchUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
42
|
Manza P, Shokri-Kojori E, Volkow ND. Reduced Segregation Between Cognitive and Emotional Processes in Cannabis Dependence. Cereb Cortex 2021; 30:628-639. [PMID: 31211388 DOI: 10.1093/cercor/bhz113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023] Open
Abstract
Addiction is characterized by an erosion of cognitive control toward drug taking that is accentuated by negative emotional states. Here we tested the hypothesis that enhanced interference on cognitive control reflects a loss of segregation between cognition and emotion in addiction. We analyzed Human Connectome Project data from 1206 young adults, including 89 with cannabis dependence (CD). Two composite factors, one for cognition and one for emotion, were derived using principal component (PC) analyses. Component scores for these PCs were significantly associated in the CD group, such that negative emotionality correlated with poor cognition. However, the corresponding component scores were uncorrelated in matched controls and nondependent recreational cannabis users (n = 87). In CD, but not controls or recreational users, functional magnetic resonance imaging activations to emotional stimuli (angry/fearful faces > shapes) correlated with activations to cognitive demand (working memory; 2-back > 0-back). Canonical correlation analyses linked individual differences in cognitive and emotional component scores with brain activations. In CD, there was substantial overlap between cognitive and emotional brain-behavior associations, but in controls, associations were more restricted to the cognitive domain. These findings support our hypothesis of impaired segregation between cognitive and emotional processes in CD that might contribute to poor cognitive control under conditions of increased emotional demand.
Collapse
Affiliation(s)
- Peter Manza
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Wu Q, Hu H, Chen W, Chen HH, Chen L, Zhou J, Liu H, Wu FY, Xu XQ. Disrupted Topological Organization of the Brain Structural Network in Patients With Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33821882 PMCID: PMC8039468 DOI: 10.1167/iovs.62.4.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Increasing evidence indicated that thyroid-associated ophthalmopathy (TAO) might be a neural related disease more than an ocular disease. In this study, we aimed to investigate the alterations of structural brain connectome in patients with TAO. Methods Twenty-seven patients with TAO and 27 well-matched healthy controls underwent diffusion tensor imaging. Graph theoretical analyses, including global (shortest path length, clustering coefficient, small-worldness, global efficiency, and local efficiency) and nodal (nodal betweenness, nodal degree, and nodal efficiency) topological properties and network-based statistics were performed to evaluate TAO-related changes in brain network pattern. Correlations were assessed between the network properties and clinical variables, including disease duration, visual acuity, neuropsychiatric measurements, and serum thyroid function indexes. Results Compared with healthy controls, patients with TAO exhibited preserved global network parameters but altered nodal properties. We found decreased nodal betweenness and nodal degree in right anterior cingulate and paracingulate gyri, decreased nodal degree and nodal efficiency in the right orbital part of middle frontal gyrus (ORBmid), whereas increased nodal degree and nodal efficiency in the left cuneus. Decrease of structural connectivity strength was found involving the right ORBmid, right putamen, left caudate nucleus, and left medial superior frontal gyrus. Significant correlations were also found between nodal properties and neuropsychological performances as well as visual acuity. Conclusions Patients with TAO developed disruption of structural brain network connectome. Disrupted topological organization of the brain structural network may be associated with the clinical-psychiatric dysfunction of patients with TAO.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Sheng X, Chen H, Shao P, Qin R, Zhao H, Xu Y, Bai F. Brain Structural Network Compensation Is Associated With Cognitive Impairment and Alzheimer's Disease Pathology. Front Neurosci 2021; 15:630278. [PMID: 33716654 PMCID: PMC7947929 DOI: 10.3389/fnins.2021.630278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Structural network alterations in Alzheimer's disease (AD) are related to worse cognitive impairment. The aim of this study was to quantify the alterations in gray matter associated with impaired cognition and their pathological biomarkers in AD-spectrum patients. METHODS We extracted gray matter networks from 3D-T1 magnetic resonance imaging scans, and a graph theory analysis was used to explore alterations in the network metrics in 34 healthy controls, 70 mild cognitive impairment (MCI) patients, and 40 AD patients. Spearman correlation analysis was computed to investigate the relationships among network properties, neuropsychological performance, and cerebrospinal fluid pathological biomarkers (i.e., Aβ, t-tau, and p-tau) in these subjects. RESULTS AD-spectrum individuals demonstrated higher nodal properties and edge properties associated with impaired memory function, and lower amyloid-β or higher tau levels than the controls. Furthermore, these compensations at the brain regional level in AD-spectrum patients were mainly in the medial temporal lobe; however, the compensation at the whole-brain network level gradually extended from the frontal lobe to become widely distributed throughout the cortex with the progression of AD. CONCLUSION The findings provide insight into the alterations in the gray matter network related to impaired cognition and pathological biomarkers in the progression of AD. The possibility of compensation was detected in the structural networks in AD-spectrum patients; the compensatory patterns at regional and whole-brain levels were different and the clinical significance was highlighted.
Collapse
Affiliation(s)
- Xiaoning Sheng
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
45
|
Kong LY, Huang YY, Lei BY, Ke PF, Li HH, Zhou J, Xiong DS, Li GX, Chen J, Li XB, Xiang ZM, Ning YP, Wu FC, Wu K. Divergent Alterations of Structural-Functional Connectivity Couplings in First-episode and Chronic Schizophrenia Patients. Neuroscience 2021; 460:1-12. [PMID: 33588002 DOI: 10.1016/j.neuroscience.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidence suggests that the coupling relating the structural connectivity (SC) of the brain to its functional connectivity (FC) exhibits remarkable changes during development, normal aging, and diseases. Although altered structural-functional connectivity couplings (SC-FC couplings) have been previously reported in schizophrenia patients, the alterations in SC-FC couplings of different illness stages of schizophrenia (SZ) remain largely unknown. In this study, we collected structural and resting-state functional MRI data from 73 normal controls (NCs), 61 first-episode (FeSZ) and 78 chronic (CSZ) schizophrenia patients. Positive and negative syndrome scale (PANSS) scores were assessed for all patients. Structural and functional brain networks were constructed using gray matter volume (GMV) and resting-state magnetic resonance imaging (rs-fMRI) time series measurements. At the connectivity level, the CSZ patients showed significantly increased SC-FC coupling strength compared with the FeSZ patients. At the node strength level, significant decreased SC-FC coupling strength was observed in the FeSZ patients compared to that of the NCs, and the coupling strength was positively correlated with negative PANSS scores. These results demonstrated divergent alterations of SC-FC couplings in FeSZ and CSZ patients. Our findings provide new insight into the neuropathological mechanisms underlying the developmental course of SZ.
Collapse
Affiliation(s)
- Ling-Yin Kong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuan-Yuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Bing-Ye Lei
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Peng-Fei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - He-Hua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dong-Sheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Gui-Xiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Xiao-Bo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhi-Ming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou 511400, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Feng-Chun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
46
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Topological impact of negative links on the stability of resting-state brain network. Sci Rep 2021; 11:2176. [PMID: 33500525 PMCID: PMC7838299 DOI: 10.1038/s41598-021-81767-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Stability is a physical attribute that stands opposite the change. However, it is still unclear how the arrangement of links called topology affects network stability. In this study, we tackled this issue in the resting-state brain network using structural balance. Structural balance theory employs the quality of triadic associations between signed links to determine the network stability. In this study, we showed that negative links of the resting-state network make hubs to reduce balance-energy and push the network into a more stable state compared to null-networks with trivial topologies. In this regard, we created a global measure entitled 'tendency to make hub' to assess the hubness of the network. Besides, we revealed nodal degrees of negative links have an exponential distribution that confirms the existence of negative hubs. Our findings indicate that the arrangement of negative links plays an important role in the balance (stability) of the resting-state brain network.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran.
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
- Physics Department, Shahid Beheshti University, G.C., Tehran, 1983969411, Iran
| |
Collapse
|
47
|
Relationship between the disrupted topological efficiency of the structural brain connectome and glucose hypometabolism in normal aging. Neuroimage 2020; 226:117591. [PMID: 33248254 DOI: 10.1016/j.neuroimage.2020.117591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Normal aging is accompanied by structural degeneration and glucose hypometabolism in the human brain. However, the relationship between structural network disconnections and hypometabolism in normal aging remains largely unknown. In the present study, by combining MRI and PET techniques, we investigated the metabolic mechanism of the structural brain connectome and its relationship with normal aging in a cross-sectional, community-based cohort of 42 cognitively normal elderly individuals aged 57-84 years. The structural connectome was constructed based on diffusion MRI tractography, and the network efficiency metrics were quantified using graph theory analyses. FDG-PET scanning was performed to evaluate the glucose metabolic level in the cortical regions of the individuals. The results of this study demonstrated that both network efficiency and cortical metabolism decrease with age (both p < 0.05). In the subregions of the bilateral thalamus, significant correlations between nodal efficiency and cortical metabolism could be observed across subjects. Individual-level analyses indicated that brain regions with higher nodal efficiency tend to exhibit higher metabolic levels, implying a tight coupling between nodal efficiency and glucose metabolism (r = 0.56, p = 1.15 × 10-21). Moreover, efficiency-metabolism coupling coefficient significantly increased with age (r = 0.44, p = 0.0046). Finally, the main findings were also reproducible in the ADNI dataset. Together, our results demonstrate a close coupling between structural brain connectivity and cortical metabolism in normal elderly individuals and provide new insight that improve the present understanding of the metabolic mechanisms of structural brain disconnections in normal aging.
Collapse
|
48
|
Prajapati R, Emerson IA. Construction and analysis of brain networks from different neuroimaging techniques. Int J Neurosci 2020; 132:745-766. [DOI: 10.1080/00207454.2020.1837802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rutvi Prajapati
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Li Q, Gao J, Zhang Z, Huang Q, Wu Y, Xu B. Distinguishing Epileptiform Discharges From Normal Electroencephalograms Using Adaptive Fractal and Network Analysis: A Clinical Perspective. Front Physiol 2020; 11:828. [PMID: 32903770 PMCID: PMC7438848 DOI: 10.3389/fphys.2020.00828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common disorders of the brain. Clinically, to corroborate an epileptic seizure-like symptom and to find the seizure localization, electroencephalogram (EEG) data are often visually examined by a clinical doctor to detect the presence of epileptiform discharges. Epileptiform discharges are transient waveforms lasting for several tens to hundreds of milliseconds and are mainly divided into seven types. It is important to develop systematic approaches to accurately distinguish these waveforms from normal control ones. This is a difficult task if one wishes to develop first principle rather than black-box based approaches, since clinically used scalp EEGs usually contain a lot of noise and artifacts. To solve this problem, we analyzed 640 multi-channel EEG segments, each 4s long. Among these segments, 540 are short epileptiform discharges, and 100 are from healthy controls. We have proposed two approaches for distinguishing epileptiform discharges from normal EEGs. The first method is based on Signal Range and EEGs' long range correlation properties characterized by the Hurst parameter H extracted by applying adaptive fractal analysis (AFA), which can also maximally suppress the effects of noise and various kinds of artifacts. Our second method is based on networks constructed from three aspects of the scalp EEG signals, the Signal Range, the energy of the alpha wave component, and EEG's long range correlation properties. The networks are further analyzed using singular value decomposition (SVD). The square of the first singular value from SVD is used to construct features to distinguish epileptiform discharges from normal controls. Using Random Forest Classifier (RF), our approaches can achieve very high accuracy in distinguishing epileptiform discharges from normal control ones, and thus are very promising to be used clinically. The network-based approach is also used to infer the localizations of each type of epileptiform discharges, and it is found that the sub-networks representing the most likely location of each type of epileptiform discharges are different among the seven types of epileptiform discharges.
Collapse
Affiliation(s)
- Qiong Li
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Jianbo Gao
- Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- International College, Guangxi University, Nanning, Guangxi, China
| | - Ziwen Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Qi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|