1
|
Carther‐Krone T, McAllister ZA, Choi EH, Ryner L, Ko JH. Asymmetric Modulation of Brain Connectivity by Anodal Transcranial Direct Current Stimulation in Healthy Individuals: A Single-Blind, Randomized Sham-Controlled Trial. Hum Brain Mapp 2025; 46:e70218. [PMID: 40312821 PMCID: PMC12045925 DOI: 10.1002/hbm.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/17/2025] [Accepted: 04/20/2025] [Indexed: 05/03/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) applied to the dorsolateral prefrontal cortex (DLPFC) has shown asymmetric behavioral effects, though the underlying neurophysiological mechanisms remain unclear. In this preliminary study with 34 healthy individuals, tDCS was applied to either the left or right DLPFC or a sham group. Behavioral and neurophysiological changes were examined by the Stroop test and resting-state fMRI, respectively, which were measured before and after a 15-min tDCS session. Seed-to-voxel connectivity analysis with seeds placed under the tDCS target regions (F3 and F4) showed no significant changes, but voxel-to-voxel whole-brain intrinsic connectivity (IC) analysis revealed significant 3 × 2 interaction effects (stimulation site × time) in the right DLPFC (18 mm off from the F4). Post hoc analysis showed that only the right DLPFC stimulation led to an increase in IC from pre- to post-stimulation. Consistent with this finding, right DLPFC stimulation improved Stroop task performance measured by increased interference score, which represents better inhibition of irrelevant information. These findings provide further insights into the hemispheric difference of tDCS effects and its underlying neurophysiological mechanisms. However, the small sample size limits the generalizability of the results and necessitates further research with a larger cohort for confirmation.
Collapse
Affiliation(s)
- Tiffany Carther‐Krone
- Department of Human Anatomy and Cell Science, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada
- PrairieNeuro Research CentreKleysen Institute for Advanced Medicine, Winnipeg Health Science CentreWinnipegCanada
| | - Zachary A. McAllister
- Department of Human Anatomy and Cell Science, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada
- PrairieNeuro Research CentreKleysen Institute for Advanced Medicine, Winnipeg Health Science CentreWinnipegCanada
| | - Eun Hyung Choi
- Department of Human Anatomy and Cell Science, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada
- PrairieNeuro Research CentreKleysen Institute for Advanced Medicine, Winnipeg Health Science CentreWinnipegCanada
| | - Lawrence Ryner
- Department of Radiology, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada
- PrairieNeuro Research CentreKleysen Institute for Advanced Medicine, Winnipeg Health Science CentreWinnipegCanada
- Graduate Program in Biomedical Engineering, Price Faculty of EngineeringUniversity of ManitobaWinnipegCanada
| |
Collapse
|
2
|
Kianimotlagh I, Abedanzadeh R, Hashemi A. Comparison of the Effect of Active Video Games and Transcranial Direct Current Stimulation on Executive Functions of the Elderly: A Randomized Clinical Trial Study. Exp Aging Res 2025:1-17. [PMID: 39968891 DOI: 10.1080/0361073x.2025.2468103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVES Among the changes related to aging in the elderly, a decline in executive functions is notable. The present study aimed to investigate the comparative impact of active video games (AVG) and transcranial direct current stimulation (tDCS) on executive functions in elderly individuals in Khuzestan province, Iran. METHODS This research employed a randomized controlled trial with a pretest-posttest design, including a control group and follow-up. The statistical population comprised all elderly residents of Khuzestan province. Sixty elderly participants (60 years and above) were selected using convenience sampling and randomly assigned to three experimental groups (tDCS, AVG, tDCS + AVG) and one control group. They received interventions for 5 weeks (2 sessions per week). Data were collected using the N-back, Stroop, and Wisconsin Card Sorting tests. Data analysis was performed using mixed-ANOVA with SPSS version 25, and significance was set at p < .05. RESULTS The results of the study demonstrated that AVG and tDCS significantly improved working memory and cognitive flexibility in the elderly. Comparison between the two intervention groups indicated a greater effect of tDCS compared to AVG (p < .05). Additionally, the combined group showed better performance in posttest and memory follow-up compared to the other groups, although no significant difference was found in the attention component (p > .05). CONCLUSION Engaging in AVG and tDCS can contribute to improving executive functions in the elderly. Therefore, it is recommended that these therapeutic techniques be utilized in elderly care centers to enhance the executive performance of these individuals.
Collapse
Affiliation(s)
- Isa Kianimotlagh
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rasool Abedanzadeh
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ayoub Hashemi
- Department of Sport Science, Faculty of literature and human sciences, Yasouj University, Yasouj, Iran
| |
Collapse
|
3
|
Alcalá-Lozano R, Carmona-Hernández R, Ocampo-Romero AG, Sosa-Millán AL, Morelos-Santana ED, Abarca DZ, Castro-de-Aquino DV, Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Sosa Ortiz AL, Garza-Villarreal EA, Saracco-Alvarez R, González Olvera JJ. Predicting the Beneficial Effects of Cognitive Stimulation and Transcranial Direct Current Stimulation in Amnestic Mild Cognitive Impairment with Clinical, Inflammation, and Human Microglia Exposed to Serum as Potential Markers: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int J Mol Sci 2025; 26:1754. [PMID: 40004217 PMCID: PMC11855719 DOI: 10.3390/ijms26041754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
In amnestic mild cognitive impairment (aMCI), neuroinflammation evolves during disease progression, affecting microglial function and potentially accelerating the pathological process. Currently, no effective treatment exists, leading to explorations of various symptomatic approaches, though few target the underlying physiological mechanisms. Modulating inflammatory processes may be critical in slowing disease progression. Cognitive stimulation (CS) and transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (l-DLPFC) show promise, but the results are heterogeneous. Thus, a randomized, double-blind, placebo-controlled clinical trial is currently underway. The first-stage results were examined after three weeks of intervention in two groups: active tDCS combined with CS and sham tDCS combined with CS. Twenty-two participants underwent two assessments: T0 (baseline) and T1 (after 15 sessions of tDCS, active or sham, and 9 sessions of CS). The results demonstrated that CS improved cognition, increased brain-derived neurotrophic factor (BDNF) levels, and reduced peripheral proinflammatory cytokine levels (interleukin IL-6 and chemokine CX3CL1) in serum. This decrease in IL-6 may promote microglial proliferation and survival as a modulatory effect response, while the increase in BDNF might suggest a regulatory mechanism in microglia-neuron interaction responses. However, tDCS did not enhance the cognitive or modulatory effects of CS, suggesting that longer interventions might be required to achieve substantial benefits.
Collapse
Affiliation(s)
- Ruth Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Programa de Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rocio Carmona-Hernández
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Ana Gabriela Ocampo-Romero
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Adriana Leticia Sosa-Millán
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Erik Daniel Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Diana Zapata Abarca
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Dana Vianey Castro-de-Aquino
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Ana Luisa Sosa Ortiz
- Laboratorio de Demencias, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco (INNN), Mexico City 14269, Mexico
| | - Eduardo A. Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico
| | - Ricardo Saracco-Alvarez
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | | |
Collapse
|
4
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
6
|
Fromm AE, Grittner U, Brodt S, Flöel A, Antonenko D. No Object-Location Memory Improvement through Focal Transcranial Direct Current Stimulation over the Right Temporoparietal Cortex. Life (Basel) 2024; 14:539. [PMID: 38792561 PMCID: PMC11122124 DOI: 10.3390/life14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.
Collapse
Affiliation(s)
- Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Svenja Brodt
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17489 Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
7
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. tDCS reduces depression and state anxiety symptoms in older adults from the augmenting cognitive training in older adults study (ACT). Brain Stimul 2024; 17:283-311. [PMID: 38438012 PMCID: PMC11110843 DOI: 10.1016/j.brs.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Pharmacological interventions for depression and anxiety in older adults often have significant side effects, presenting the need for more tolerable alternatives. Transcranial direct current stimulation (tDCS) is a promising non-pharmacological intervention for depression in clinical populations. However, its effects on depression and anxiety symptoms, particularly in older adults from the general public, are understudied. OBJECTIVE We conducted a secondary analysis of the Augmenting Cognitive Training in Older Adults (ACT) trial to assess tDCS efficacy in reducing psychological symptoms in older adults. We hypothesized that active stimulation would yield greater reductions in depression and state anxiety compared to sham post-intervention and at the one-year follow-up. We also explored tDCS effects in subgroups characterized by baseline symptom severity. METHODS A sample of 378 older adults recruited from the community completed a 12-week tDCS intervention with cognitive or education training. Electrodes were placed at F3/F4, and participants received active or sham tDCS during training sessions. We assessed the association between tDCS group and changes in depression, state anxiety, and trait anxiety from baseline to post-intervention and one-year controlling for covariates. RESULTS The active tDCS group demonstrated greater reductions in depression and state anxiety compared to sham post-intervention, particularly in individuals with mild depression and moderate/severe state anxiety at baseline. Furthermore, the active tDCS group with moderate/severe state anxiety maintained greater symptom reductions at one-year. CONCLUSIONS tDCS effectively reduced depression and state anxiety symptoms in a large sample of older adults. These findings highlight the importance of considering symptom severity when identifying those who may benefit most from this intervention.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Antonenko D, Fromm AE, Thams F, Kuzmina A, Backhaus M, Knochenhauer E, Li SC, Grittner U, Flöel A. Cognitive training and brain stimulation in patients with cognitive impairment: a randomized controlled trial. Alzheimers Res Ther 2024; 16:6. [PMID: 38212815 PMCID: PMC10782634 DOI: 10.1186/s13195-024-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks. METHODS In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups. We administered a 9-session cognitive training (consisting of a letter updating and a Markov decision-making task) over 3 weeks with concurrent 1-mA anodal tDCS over the left dorsolateral prefrontal cortex (20 min in tDCS, 30 s in sham group). Primary outcome was trained task performance (letter updating task) immediately after training. Secondary outcomes included performance in tasks testing working memory (N-back task), decision-making (Wiener Matrices test) and verbal memory (verbal learning and memory test), and resting-state functional connectivity (FC). Tasks were administered at baseline, at post-assessment, and at 1- and 7-month follow-ups (FU). MRI was conducted at baseline and 7-month FU. Thirty-nine participants (85%) successfully completed the intervention. Data analyses are reported on the intention-to-treat (ITT) and the per-protocol (PP) sample. RESULTS For the primary outcome, no difference was observed in the ITT (β = 0.1, 95%-CI [- 1.2, 1.3, p = 0.93] or PP sample (β = - 0.2, 95%-CI [- 1.6, 1.2], p = 0.77). However, secondary analyses in the N-back working memory task showed that, only in the PP sample, the tDCS outperformed the sham group (PP: % correct, β = 5.0, 95%-CI [- 0.1, 10.2], p = 0.06, d-prime β = 0.2, 95%-CI [0.0, 0.4], p = 0.02; ITT: % correct, β = 3.0, 95%-CI [- 3.9, 9.9], p = 0.39, d-prime β = 0.1, 95%-CI [- 0.1, 0.3], p = 0.5). Frontoparietal network FC was increased from baseline to 7-month FU in the tDCS compared to the sham group (pFDR < 0.05). Exploratory analyses showed a correlation between individual memory improvements and higher electric field magnitudes induced by tDCS (ρtDCS = 0.59, p = 0.02). Adverse events did not differ between groups, questionnaires indicated successful blinding (incidence rate ratio, 1.1, 95%-CI [0.5, 2.2]). CONCLUSIONS In sum, cognitive training with concurrent brain stimulation, compared to cognitive training with sham stimulation, did not lead to superior performance enhancements in patients with cognitive impairment. However, we observed transferred working memory benefits in patients who underwent the full 3-week intervention. MRI data pointed toward a potential intervention-induced modulation of neural network dynamics. A link between individual performance gains and electric fields suggested dosage-dependent effects of brain stimulation. Together, our findings do not support the immediate benefit of the combined intervention on the trained function, but provide exploratory evidence for transfer effects on working memory in patients with cognitive impairment. Future research needs to explore whether individualized protocols for both training and stimulation parameters might further enhance treatment gains. TRIAL REGISTRATION The study is registered on ClinicalTrials.gov (NCT04265378). Registered on 7 February 2020. Retrospectively registered.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Anna Kuzmina
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Malte Backhaus
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Elena Knochenhauer
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, 01062, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10187, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
9
|
Indahlastari A, Dunn AL, Pedersen S, Kraft JN, Someya S, Albizu A, Woods AJ. Impact of electrode selection on modeling tDCS in the aging brain. Front Hum Neurosci 2023; 17:1274114. [PMID: 38077189 PMCID: PMC10704166 DOI: 10.3389/fnhum.2023.1274114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Background Person-specific computational models can estimate transcranial direct current stimulation (tDCS) current dose delivered to the brain and predict treatment response. Artificially created electrode models derived from virtual 10-20 EEG measurements are typically included in these models as current injection and removal sites. The present study directly compares current flow models generated via artificially placed electrodes ("artificial" electrode models) against those generated using real electrodes acquired from structural MRI scans ("real" electrode models) of older adults. Methods A total of 16 individualized head models were derived from cognitively healthy older adults (mean age = 71.8 years) who participated in an in-scanner tDCS study with an F3-F4 montage. Visible tDCS electrodes captured within the MRI scans were segmented to create the "real" electrode model. In contrast, the "artificial" electrodes were generated in ROAST. Percentage differences in current density were computed in selected regions of interest (ROIs) as examples of stimulation targets within an F3-F4 montage. Main results We found significant inverse correlations (p < 0.001) between median current density values and brain atrophy in both electrode pipelines with slightly larger correlations found in the artificial pipeline. The percent difference (PD) of the electrode distances between the two models predicted the median current density values computed in the ROIs, gray, and white matter, with significant correlation between electrode distance PDs and current density. The correlation between PD of the contact areas and the computed median current densities in the brain was found to be non-significant. Conclusions This study demonstrates potential discrepancies in generated current density models using real versus artificial electrode placement when applying tDCS to an older adult cohort. Our findings strongly suggest that future tDCS clinical work should consider closely monitoring and rigorously documenting electrode location during stimulation to model tDCS montages as closely as possible to actual placement. Detailed physical electrode location data may provide more precise information and thus produce more robust tDCS modeling results.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ayden L. Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Samantha Pedersen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shizu Someya
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Vandendoorent B, Nackaerts E, Zoetewei D, Hulzinga F, Gilat M, Orban de Xivry JJ, Nieuwboer A. Effect of transcranial direct current stimulation on learning in older adults with and without Parkinson's disease: A systematic review with meta-analysis. Brain Cogn 2023; 171:106073. [PMID: 37611344 DOI: 10.1016/j.bandc.2023.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Older adults with and without Parkinson's disease show impaired retention after training of motor or cognitive skills. This systematic review with meta-analysis aims to investigate whether adding transcranial direct current stimulation (tDCS) to motor or cognitive training versus placebo boosts motor sequence and working memory training. The effects of interest were estimated between three time points, i.e. pre-training, post-training and follow-up. This review was conducted according to the PRISMA guidelines (PROSPERO: CRD42022348885). Electronic databases were searched from conception to March 2023. Following initial screening, 24 studies were eligible for inclusion in the qualitative synthesis and 20 could be included in the meta-analysis, of which 5 studies concerned motor sequence learning (total n = 186) and 15 working memory training (total n = 650). Results were pooled using an inverse variance random effects meta-analysis. The findings showed no statistically significant additional effects of tDCS over placebo on motor sequence learning outcomes. However, there was a strong trend showing that tDCS boosted working memory training, although methodological limitations and some heterogeneity were also apparent. In conclusion, the present findings do not support wide implementation of tDCS as an add-on to motor sequence training at the moment, but the promising results on cognitive training warrant further investigations.
Collapse
Affiliation(s)
- Britt Vandendoorent
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Evelien Nackaerts
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Demi Zoetewei
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun 2023; 14:3184. [PMID: 37268628 DOI: 10.1038/s41467-023-38910-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | | | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Marcus Meinzer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Chatterjee SA, Seidler RD, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Effects of Prefrontal Transcranial Direct Current Stimulation on Retention of Performance Gains on an Obstacle Negotiation Task in Older Adults. Neuromodulation 2023; 26:829-839. [PMID: 35410769 PMCID: PMC9547038 DOI: 10.1016/j.neurom.2022.02.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would produce greater within-session improvements in walking performance and retention of gains, compared to sham tDCS and no tDCS conditions. MATERIALS AND METHODS A total of 50 older adults (mean age = 74.46 years ± 6.49) with self-reported walking difficulty were randomized to receive either active tDCS (active-tDCS group) or sham tDCS (sham-tDCS group) bilaterally to the dorsolateral prefrontal cortex or no tDCS (no-tDCS group). Each group performed ten practice trials of an obstacle negotiation task at their fastest safe speed. Retention of gains in walking performance was assessed with three trials conducted one week later. Within-session effects of practice and between-session retention effects on obstacle negotiation speed were examined. RESULTS At the practice session, all three groups exhibited significant within-session gains in walking speed (p ≤ 0.005). However, the gains were significantly greater in the sham-tDCS group than in the active-tDCS and no-tDCS groups (p ≤ 0.03) and were comparable between the active-tDCS and no-tDCS groups (p = 0.89). At one-week follow-up, the active-tDCS group exhibited significant between-session retention of gains and continued "offline" improvement in walking speed (p = 0.005). The active-tDCS group showed significantly greater retention of gains than the no-tDCS (p = 0.02) but not the sham-tDCS group (p = 0.24). CONCLUSIONS Pairing prefrontal active tDCS with a single session of obstacle negotiation practice may enhance one-week retention of gains in walking performance compared to no tDCS. However, the evidence is insufficient to suggest a benefit of active tDCS over sham tDCS for enhancing the gains in walking performance. Additional studies with a multisession intervention design and larger sample size are needed to further investigate these findings. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT03122236.
Collapse
Affiliation(s)
- Sudeshna A Chatterjee
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jared W Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dorian K Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brooks Rehabilitation, Jacksonville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
13
|
Nissim NR, McAfee DC, Edwards S, Prato A, Lin JX, Lu Z, Coslett HB, Hamilton RH. Efficacy of Transcranial Alternating Current Stimulation in the Enhancement of Working Memory Performance in Healthy Adults: A Systematic Meta-Analysis. Neuromodulation 2023; 26:728-737. [PMID: 36759231 PMCID: PMC10257732 DOI: 10.1016/j.neurom.2022.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations in the brain-has shown the capacity to enhance working memory (WM) abilities in healthy individuals. The efficacy of tACS in the improvement of WM performance in healthy individuals is not yet fully understood. OBJECTIVE/HYPOTHESIS This meta-analysis aimed to systematically evaluate the efficacy of tACS in the enhancement of WM in healthy individuals and to assess moderators of response to stimulation. We hypothesized that active tACS would significantly enhance WM compared with sham. We further hypothesized that it would do so in a task-dependent manner and that differing stimulation parameters would affect response to tACS. MATERIALS AND METHODS Ten tACS studies met the inclusion criteria and provided 32 effects in the overall analysis. Random-effect models assessed mean change scores on WM tasks from baseline to poststimulation. The included studies involved varied in stimulation parameters, between-subject and within-subject study designs, and online vs offline tACS. RESULTS We observed a significant, heterogeneous, and moderate effect size for active tACS in the enhancement of WM performance over sham (Cohen's d = 0.5). Cognitive load, task domain, session number, and stimulation region showed a significant relationship between active tACS and enhanced WM behavior over sham. CONCLUSIONS Our findings indicate that active tACS enhances WM performance in healthy individuals compared with sham. Future randomized controlled trials are needed to further explore key parameters, including personalized stimulation vs standardized electroencephalography frequencies and maintenance of tACS effects, and whether tACS-induced effects translate to populations with WM impairments.
Collapse
Affiliation(s)
- Nicole R Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| | - Darrian C McAfee
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanna Edwards
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amara Prato
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer X Lin
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiye Lu
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA
| |
Collapse
|
14
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. Primary outcome from the augmenting cognitive training in older adults study (ACT): A tDCS and cognitive training randomized clinical trial. Brain Stimul 2023; 16:904-917. [PMID: 37245842 PMCID: PMC10436327 DOI: 10.1016/j.brs.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND There is a need for effective interventions to stave off cognitive decline in older adults. Cognitive training has variably produced gains in untrained tasks and daily functioning. Combining cognitive training with transcranial direct current stimulation (tDCS) may augment cognitive training effects; however, this approach has yet to be tested on a large-scale. OBJECTIVE This paper will present the primary findings of the Augmenting Cognitive Training in Older Adults (ACT) clinical trial. We hypothesize that receiving active stimulation with cognitive training will result in greater improvements on an untrained fluid cognition composite compared to sham following intervention. METHODS 379 older adults were randomized, and 334 were included in intent-to-treat analyses for a 12-week multidomain cognitive training and tDCS intervention. Active or sham tDCS was administered at F3/F4 during cognitive training daily for two weeks then weekly for 10 weeks. To assess the tDCS effect, we fitted regression models for changes in NIH Toolbox Fluid Cognition Composite scores immediately following intervention and one year from baseline controlling for covariates and baseline scores. RESULTS Across the entire sample, there were improvements in NIH Toolbox Fluid Cognition Composite scores immediately post-intervention and one year following baseline; however, there were no significant tDCS group effects at either timepoint. CONCLUSIONS The ACT study models rigorous, safe administration of a combined tDCS and cognitive training intervention in a large sample of older adults. Despite potential evidence of near-transfer effects, we failed to demonstrate an additive benefit of active stimulation. Future analyses will continue to assess the intervention's efficacy by examining additional measures of cognition, functioning, mood, and neural markers.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
17
|
Jiang J, Fan L, Liu J. The knowledge domain of cognitive neuroscience of aging: A Scientometric and bibliometric analysis. Front Aging Neurosci 2023; 15:999594. [PMID: 36845653 PMCID: PMC9947251 DOI: 10.3389/fnagi.2023.999594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Cognitive neuroscience of aging (CNA) is a relatively young field compared with other branches of cognitive aging (CA). From the beginning of this century, scholars in CNA have contributed many valuable research to explain the cognitive ability decline in aging brains in terms of functional changes, neuromechanism, and neurodegenerative diseases. However, very few studies have systematically reviewed the research in the domain of CAN, with regard to its primary research topics, theories, findings, and future development. Therefore, this study used CiteSpace to conduct a bibliometric analysis of 1,462 published articles in CNA from Web of Science (WOS) and investigated the highly influential and potential research topics and theories of CNA, as well as important brain areas involved in CAN during 2000-2021. The results revealed that: (1) the research topics of "memory" and "attention" have been the focus of most studies, progressing into a fMRI-oriented stage; (2) the scaffolding theory and hemispheric asymmetry reduction in older adults model hold a key status in CNA, characterizing aging as a dynamic process and presenting compensatory relationships between different brain areas; and (3) age-related changes always occur in temporal (especially the hippocampus), parietal, and frontal lobes and the cognitive declines establish the compensation relationship between the anterior and posterior regions.
Collapse
Affiliation(s)
- Jiaxing Jiang
- Research Institute of Foreign Language, Beijing Foreign Studies University, Haidian, Beijing, China
| | - Lin Fan
- National Research Center for Foreign Language Education, Beijing Foreign Studies University, Haidian, Beijing, China,*Correspondence: Lin Fan,
| | - Jia Liu
- School of Foreign Studies, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
18
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
19
|
Coulborn S, Fernández-Espejo D. Prefrontal tDCS is unable to modulate mind wandering propensity or underlying functional or effective brain connectivity. Sci Rep 2022; 12:18021. [PMID: 36289366 PMCID: PMC9606118 DOI: 10.1038/s41598-022-22893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
There is conflicting evidence over the ability to modulate mind-wandering propensity with anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (prefrontal tDCS). Here, 20 participants received 20-min of active and sham prefrontal tDCS while in the MRI scanner, in two separate sessions (counterbalanced). In each session, they completed two runs of a sustained attention to response task (before and during tDCS), which included probes recording subjective responses of mind-wandering. We assessed the effects of tDCS on behavioural responses as well as functional and effective dynamics, via dynamic functional network connectivity (dFNC) and dynamic causal modelling analyses over regions of the default mode, salience and executive control networks. Behavioural results provided substantial evidence in support of no effect of tDCS on task performance nor mind-wandering propensity. Similarly, we found no effect of tDCS on frequency (how often) or dwell time (time spent) of underlying brain states nor effective connectivity. Overall, our results suggest that prefrontal tDCS is unable to modulate mind-wandering propensity or influence underlying brain function. This expands previous behavioural replication failures in suggesting that prefrontal tDCS may not lead to even subtle (i.e., under a behavioural threshold) changes in brain activity during self-generated cognition.
Collapse
Affiliation(s)
- Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- University of California, Berkeley, USA
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
20
|
Figeys M, Villarey S, Leung AWS, Raso J, Buchan S, Kammerer H, Rawani D, Kohls-Wiebe M, Kim ES. tDCS over the left prefrontal Cortex improves mental flexibility and inhibition in geriatric inpatients with symptoms of depression or anxiety: A pilot randomized controlled trial. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:997531. [PMID: 36386776 PMCID: PMC9641275 DOI: 10.3389/fresc.2022.997531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Patients with depression and/or anxiety are commonly seen in inpatient geriatric settings. Both disorders are associated with an increased risk of cognitive impairments, notably in executive functioning. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, involves the administration of a low-dose electrical current to induce neuromodulation, which ultimately may act on downstream cognitive processing. OBJECTIVE The purpose of this study was to determine the effects of tDCS on executive functioning in geriatric inpatients with symptoms of depression and/or anxiety. DESIGN Pilot Randomized Controlled Trial. SETTING Specialized geriatric wards in a tertiary rehabilitation hospital. METHODS Thirty older-aged adults were recruited, of which twenty completed ten-to-fifteen sessions of 1.5 mA anodal or sham tDCS over the left dorsolateral prefrontal cortex. Cognitive assessments were administered at baseline and following the tDCS protocol; analyses examined the effects of tDCS on cognitive performance between groups (anodal or sham tDCS). RESULTS tDCS was found to increase inhibitory processing and cognitive flexibility in the anodal tDCS group, with significant changes on the Stroop test and Trail Making Test-Part B. No significant changes were observed on measures of attention or working memory. DISCUSSION These results provide preliminary evidence that tDCS-induced neuromodulation may selectively improve cognitive processing in older adults with symptoms of depression and/or anxiety. CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov, NCT04558177.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Alberta Health Services, Edmonton, AB, Canada,Correspondence: Mathieu Figeys
| | - Sheryn Villarey
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ada W. S. Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Occupational Therapy, University of Alberta, Edmonton, AB, Canada
| | - Jim Raso
- Alberta Health Services, Edmonton, AB, Canada
| | - Steven Buchan
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | | | - David Rawani
- Alberta Health Services, Edmonton, AB, Canada,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Esther S. Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada,Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Lu H, Zhang Y, Huang P, Zhang Y, Cheng S, Zhu X. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Front Neurosci 2022; 16:931265. [PMID: 35911997 PMCID: PMC9327643 DOI: 10.3389/fnins.2022.931265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Effective teamwork among military pilots is key to successful mission completion. The underlying neural mechanism of teamwork is thought to be inter-brain synchronization (IBS). IBS could also be explained as an incidental phenomenon of cooperative behavior, but the causality between IBS and cooperative behavior could be clarified by directly producing IBS through extra external stimuli applied to functional brain regions. As a non-invasive technology for altering brain function, transcranial electrical stimulation might have the potential to explore whether top-down enhancement of the synchronization of multiple brains can change cooperative behavioral performance among members of a team. This review focuses on the characteristic features of teamwork among military pilots and variations in neuroimaging obtained by hyper-scanning. Furthermore, we discuss the possibility that transcranial electrical stimulation could be used to improve teamwork among military pilots, try to provide a feasible design for doing so, and emphasize crucial aspects to be addressed by future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
22
|
Qu X, Li L, Zhou X, Dong Q, Liu H, Liu H, Yang Q, Han Y, Niu H. Repeated transcranial photobiomodulation improves working memory of healthy older adults: behavioral outcomes of poststimulation including a three-week follow-up. NEUROPHOTONICS 2022; 9:035005. [PMID: 36177151 PMCID: PMC9514540 DOI: 10.1117/1.nph.9.3.035005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Decline in cognitive ability is a significant issue associated with healthy aging. Transcranial photobiomodulation (tPBM) is an emerging non-invasive neuromodulation technique and has shown promise to overcome this challenge. AIM This study aimed to investigate the effects of seven-day repeated tPBM, compared to those of single tPBM and baseline, on improving N -back working memory in healthy older adults and to evaluate the persistent efficacy of repeated tPBM. APPROACH In a sham-controlled and within-subject design, 61 healthy older adults were recruited to participate in a longitudinal study involving an experimental baseline, seven days of tPBM treatment (12 min daily, 1064-nm laser, 250 mW / cm 2 ) in the left dorsolateral prefrontal cortex and three weeks of follow-ups. Behavioral performance in the N -back ( N = 1,2 , 3 ) was recorded poststimulation during the baseline, the first and seventh days of the tPBM session, and the three weekly follow-ups. A control group with 25 participants was included in this study to rule out the practice and placebo effects. The accuracy rate and response time were used in the statistical analysis. RESULTS Repeated and single tPBM significantly improved accuracy rate in 1- and 3-back tasks and decreased response time in 3-back compared to the baseline. Moreover, the repeated tPBM resulted in a significantly higher improvement in accuracy rate than the single tPBM. These improvements in accuracy rate and response time lasted at least three weeks following repeated tPBM. In contrast, the control group showed no significant improvement in behavioral performance. CONCLUSIONS This study demonstrated that seven-day repeated tPBM improved the working memory of healthy older adults more efficiently, with the beneficial effect lasting at least three weeks. These findings provide fundamental evidence that repeated tPBM may be a potential intervention for older individuals with memory decline.
Collapse
Affiliation(s)
- Xiujuan Qu
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Lexuan Li
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Xiaohan Zhou
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Qi Dong
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Hesheng Liu
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Qin Yang
- Xuanwu Hospital of Capital Medical University, Department of Neurology, Beijing, China
| | - Ying Han
- Xuanwu Hospital of Capital Medical University, Department of Neurology, Beijing, China
- Hainan University, School of Biomedical Engineering, Haikou, China
- Beijing Institute for Brain Disorders, Center of Alzheimer’s Disease, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haijing Niu
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| |
Collapse
|
23
|
Patel R, Suwa Y, Kinross J, von Roon A, Woods AJ, Darzi A, Singh H, Leff DR. Neuroenhancement of surgeons during robotic suturing. Surg Endosc 2022; 36:4803-4814. [PMID: 34724587 PMCID: PMC9160107 DOI: 10.1007/s00464-021-08823-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The initial phases of robotic surgical skills acquisition are associated with poor technical performance, such as low knot-tensile strength (KTS). Transcranial direct-current stimulation (tDCS) can improve force and accuracy in motor tasks but research in surgery is limited to open and laparoscopic tasks in students. More recently, robotic surgery has gained traction and is now the most common approach for certain procedures (e.g. prostatectomy). Early-phase robotic suturing performance is dependent on prefrontal cortex (PFC) activation, and this study aimed to determine whether performance can be improved with prefrontal tDCS. METHODS Fifteen surgical residents were randomized to either active then sham tDCS or sham then active tDCS, in two counterbalanced sessions in a double-blind crossover study. Within each session, participants performed a robotic suturing task repeated in three blocks: pre-, intra- and post-tDCS. During the intra-tDCS block, participants were randomized to either active tDCS (2 mA for 15 min) to the PFC or sham tDCS. Primary outcome measures of technical quality included KTS and error scores. RESULTS Significantly faster completion times were observed longitudinally, regardless of active (p < 0.001) or sham stimulation (p < 0.001). KTS was greater following active compared to sham stimulation (median: active = 44.35 N vs. sham = 27.12 N, p < 0.001). A significant reduction in error scores from "pre-" to "post-" (p = 0.029) were only observed in the active group. CONCLUSION tDCS could reduce error and enhance KTS during robotic suturing and warrants further exploration as an adjunct to robotic surgical training.
Collapse
Affiliation(s)
- Ronak Patel
- Deparment of Surgery and Cancer, Imperial College London, London, UK.
| | - Yusuke Suwa
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | - James Kinross
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | | | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ara Darzi
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | - Harsimrat Singh
- Deparment of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
24
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
25
|
Johnson EL, Arciniega H, Jones KT, Kilgore-Gomez A, Berryhill ME. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage 2022; 250:118939. [PMID: 35104647 PMCID: PMC8923157 DOI: 10.1016/j.neuroimage.2022.118939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
A primary goal of translational neuroscience is to identify the neural mechanisms of age-related cognitive decline and develop protocols to maximally improve cognition. Here, we demonstrate how interventions that apply noninvasive neurostimulation to older adults improve working memory (WM). We found that one session of sham-controlled transcranial direct current stimulation (tDCS) selectively improved WM in older adults with more education, extending earlier work and underscoring the importance of identifying individual predictors of tDCS responsivity. Improvements in WM were associated with two distinct electrophysiological signatures. First, a broad enhancement of theta network synchrony tracked improvements in behavioral accuracy, with tDCS effects moderated by education level. Further analysis revealed that accuracy dynamics reflected an anterior-posterior network distribution regardless of cathode placement. Second, specific enhancements of theta-gamma phase-amplitude coupling (PAC) reflecting tDCS current flow tracked improvements in reaction time (RT). RT dynamics further explained inter-individual variability in WM improvement independent of education. These findings illuminate theta network synchrony and theta-gamma PAC as distinct but complementary mechanisms supporting WM in aging. Both mechanisms are amenable to intervention, the effectiveness of which can be predicted by individual demographic factors.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, 60611, United States.
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, United States
| | - Kevin T Jones
- Department of Neurology, Neuroscape, University of California-San Francisco, San Francisco, CA, 94158, United States
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States
| | - Marian E Berryhill
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States.
| |
Collapse
|
26
|
Jor’dan AJ, Bernad-Elazari H, Mirelman A, Gouskova NA, Lo OY, Hausdorff JM, Manor B. Transcranial Direct Current Stimulation May Reduce Prefrontal Recruitment During Dual Task Walking in Functionally Limited Older Adults – A Pilot Study. Front Aging Neurosci 2022; 14:843122. [PMID: 35360209 PMCID: PMC8963782 DOI: 10.3389/fnagi.2022.843122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (dlPFC) improves dual task walking in older adults, when tested just after stimulation. The acute effects of tDCS on the cortical physiology of walking, however, remains unknown. Methods In a previous study, older adults with slow gait and executive dysfunction completed a dual task walking assessment before and after 20 min of tDCS targeting the left dlPFC or sham stimulation. In a subset of seven participants per group, functional near-infrared spectroscopy (fNIRS) was used to quantify left and right prefrontal recruitment defined as the oxygenated hemoglobin response to usual and dual task walking (ΔHbO2), as well as the absolute change in this metric from usual to dual task conditions (i.e., ΔHbO2cost). Paired t-tests examined pre- to post-stimulation differences in each fNIRS metric within each group. Results The tDCS group exhibited pre- to post-stimulation reduction in left prefrontal ΔHbO2cost (p = 0.03). This mitigation of dual task “cost” to prefrontal recruitment was induced primarily by a reduction in left prefrontal ΔHbO2 specifically within the dual task condition (p = 0.001), an effect that was observed in all seven participants within this group. Sham stimulation did not influence ΔHbO2cost or ΔHbO2 in either walking condition (p > 0.35), and neither tDCS nor sham substantially influenced right prefrontal recruitment (p > 0.16). Discussion This preliminary fNIRS data suggests that tDCS over the left dlPFC may modulate prefrontal recruitment, as reflected by a relative reduction in the oxygen consumption of this brain region in response to dual task walking.
Collapse
Affiliation(s)
- Azizah J. Jor’dan
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Azizah J. Jor’dan,
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia A. Gouskova
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Greeley B, Barnhoorn JS, Verwey WB, Seidler RD. Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Front Hum Neurosci 2022; 16:814204. [PMID: 35280208 PMCID: PMC8907426 DOI: 10.3389/fnhum.2022.814204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with declines in sensorimotor function. Several studies have demonstrated that transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, can be combined with training to mitigate age-related cognitive and motor declines. However, in some cases, the application of tDCS disrupts performance and learning. Here, we applied anodal tDCS either over the left prefrontal cortex (PFC), right PFC, supplementary motor complex (SMC), the left M1, or in a sham condition while older adults (n = 63) practiced a Discrete Sequence Production (DSP), an explicit motor sequence, task across 3 days. We hypothesized that stimulation to either the right or left PFC would enhance motor learning for older adults, based on the extensive literature showing increased prefrontal cortical activity during motor task performance in older adults. Contrary to our predictions, stimulation to the right and left PFC resulted in slowed motor learning, as evidenced by a slower reduction rate of reduction of reaction time and the number of sequence chunks across trials relative to sham in session one and session two, respectively. These findings suggest an integral role of the right PFC early in sequence learning and a role of the left PFC in chunking in older adults, and contribute to mounting evidence of the difficultly of using tDCS in an aging population.
Collapse
Affiliation(s)
- Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan S. Barnhoorn
- Department of Learning, Data-Analytics and Technology, University of Twente, Enschede, Netherlands
| | - Willem B. Verwey
- Department of Learning, Data-Analytics and Technology, University of Twente, Enschede, Netherlands
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- *Correspondence: Rachael D. Seidler,
| |
Collapse
|
28
|
Yaqub MA, Hong KS, Zafar A, Kim CS. Control of Transcranial Direct Current Stimulation Duration by Assessing Functional Connectivity of Near-Infrared Spectroscopy Signals. Int J Neural Syst 2021; 32:2150050. [PMID: 34609264 DOI: 10.1142/s0129065721500507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to create neuroplasticity in healthy and diseased populations. The control of stimulation duration by providing real-time brain state feedback using neuroimaging is a topic of great interest. This study presents the feasibility of a closed-loop modulation for the targeted functional network in the prefrontal cortex. We hypothesize that we cannot improve the brain state further after reaching a specific state during a stimulation therapy session. A high-definition tDCS of 1[Formula: see text]mA arranged in a ring configuration was applied at the targeted right prefrontal cortex of 15 healthy male subjects for 10[Formula: see text]min. Functional near-infrared spectroscopy was used to monitor hemoglobin chromophores during the stimulation period continuously. The correlation matrices obtained from filtered oxyhemoglobin were binarized to form subnetworks of short- and long-range connections. The connectivity in all subnetworks was analyzed individually using a new quantification measure of connectivity percentage based on the correlation matrix. The short-range network in the stimulated hemisphere showed increased connectivity in the initial stimulation phase. However, the increase in connection density reduced significantly after 6[Formula: see text]min of stimulation. The short-range network of the left hemisphere and the long-range network gradually increased throughout the stimulation period. The connectivity percentage measure showed a similar response with network theory parameters. The connectivity percentage and network theory metrics represent the brain state during the stimulation therapy. The results from the network theory metrics, including degree centrality, efficiency, and connection density, support our hypothesis and provide a guideline for feedback on the brain state. The proposed neuro-feedback scheme is feasible to control the stimulation duration to avoid overdosage.
Collapse
Affiliation(s)
- M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Amad Zafar
- Department of Electrical Engineering, University of Lahore, Sihala Zone V, Islamabad, Pakistan
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
29
|
Lee JH, Lee TL, Kang N. Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Res Rev 2021; 70:101377. [PMID: 34089900 DOI: 10.1016/j.arr.2021.101377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/18/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This systematic review and meta-analysis investigated the effects of transcranial direct current stimulation (tDCS) on the cognitive functions of healthy older adults by focusing on the changes in reaction time during cognitive tasks. METHOD A total of 31 studies qualified for this meta-analysis, and we acquired 36 comparisons from the included studies for data synthesis. The individual effect sizes were calculated by comparing the altered reaction time during the performance of a specific cognitive task between the active tDCS and sham groups. In two moderator variable analyses, we examined the potentially different effects of the tDCS protocols on the cognition-related reaction time based on the tDCS protocol used (i.e., online vs. offline tDCS) and the five cognitive domains: (a) perceptual-motor function, (b) learning and memory, (c) executive function / complex attention, (d) language, and (e) social cognition. Meta-regression analyses were conducted to estimate the relationship between demographic and tDCS parameter characteristics and the changes in reaction time. RESULTS The random-effects model meta-analysis revealed significant small effects of tDCS on cognition-related reaction time. Specifically, providing online tDCS significantly reduced the reaction time, and these patterns were observed during learning and memory and executive function / complex attention tasks. However, applying offline tDCS failed to find any significant reduction of reaction time across various cognitive tasks. The meta-regression analysis revealed that the effects of tDCS on the reaction time during the performance of cognitive tasks increased for the older people. CONCLUSIONS These findings suggest that providing online tDCS may effectively improve the ageing-induced reaction time related to specific cognitive functions of elderly people.
Collapse
|
30
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Chow R, Noly-Gandon A, Moussard A, Ryan JD, Alain C. Effects of transcranial direct current stimulation combined with listening to preferred music on memory in older adults. Sci Rep 2021; 11:12638. [PMID: 34135392 PMCID: PMC8209223 DOI: 10.1038/s41598-021-91977-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Listening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults' subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64-81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.
Collapse
Affiliation(s)
- Ricky Chow
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest Centre, Toronto, ON Canada
| | - Alix Noly-Gandon
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest Centre, Toronto, ON Canada
| | - Aline Moussard
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest Centre, Toronto, ON Canada
| | - Jennifer D. Ryan
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Claude Alain
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON Canada
| |
Collapse
|
32
|
Sergiou CS, Santarnecchi E, Romanella SM, Wieser MJ, Franken IHA, Rassin EGC, van Dongen JDM. Transcranial Direct Current Stimulation Targeting the Ventromedial Prefrontal Cortex Reduces Reactive Aggression and Modulates Electrophysiological Responses in a Forensic Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:95-107. [PMID: 34087482 DOI: 10.1016/j.bpsc.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies have shown that impairments in the ventromedial prefrontal cortex play a crucial role in violent behavior in forensic patients who also abuse cocaine and alcohol. Moreover, interventions that aimed to reduce violence risk in those patients are found not to be optimal. A promising intervention might be to modulate the ventromedial prefrontal cortex by high-definition (HD) transcranial direct current stimulation (tDCS). The current study aimed to examine HD-tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance dependent offenders. In addition, using electroencephalography, we examined the effects on the P3 and the late positive potential of the event-related potentials in reaction to situations that depict victims of aggression. METHODS Fifty male forensic patients with a substance dependence were tested in a double-blind, placebo-controlled randomized study. The patients received HD-tDCS 2 times a day for 20 minutes for 5 consecutive days. Before and after the intervention, the patients completed self-reports and performed the Point Subtraction Aggression Paradigm, and electroencephalography was recorded while patients performed an empathy task. RESULTS Results showed a decrease in aggressive responses on the Point Subtraction Aggression Paradigm and in self-reported reactive aggression in the active tDCS group. Additionally, we found a general increase in late positive potential amplitude after active tDCS. No effects on trait empathy and the P3 were found. CONCLUSIONS Current findings are the first to find positive effects of HD-tDCS in reducing aggression and modulating electrophysiological responses in forensic patients, showing the potential of using tDCS as an intervention to reduce aggression in forensic mental health care.
Collapse
Affiliation(s)
- Carmen S Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sara M Romanella
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Matthias J Wieser
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Eric G C Rassin
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Cognitive Aftereffects of Acute tDCS Coupled with Cognitive Training: An fMRI Study in Healthy Seniors. Neural Plast 2021; 2021:6664479. [PMID: 33953741 PMCID: PMC8057875 DOI: 10.1155/2021/6664479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Enhancing cognitive functions through noninvasive brain stimulation is of enormous public interest, particularly for the aging population in whom processes such as working memory are known to decline. In a randomized double-blind crossover study, we investigated the acute behavioral and neural aftereffects of bifrontal and frontoparietal transcranial direct current stimulation (tDCS) combined with visual working memory (VWM) training on 25 highly educated older adults. Resting-state functional connectivity (rs-FC) analysis was performed prior to and after each stimulation session with a focus on the frontoparietal control network (FPCN). The bifrontal montage with anode over the left dorsolateral prefrontal cortex enhanced VWM accuracy as compared to the sham stimulation. With the rs-FC within the FPCN, we observed significant stimulation × time interaction using bifrontal tDCS. We found no cognitive aftereffects of the frontoparietal tDCS compared to sham stimulation. Our study shows that a single bifrontal tDCS combined with cognitive training may enhance VWM performance and rs-FC within the relevant brain network even in highly educated older adults.
Collapse
|
34
|
Figeys M, Zeeman M, Kim ES. Effects of Transcranial Direct Current Stimulation (tDCS) on Cognitive Performance and Cerebral Oxygen Hemodynamics: A Systematic Review. Front Hum Neurosci 2021; 15:623315. [PMID: 33897392 PMCID: PMC8058208 DOI: 10.3389/fnhum.2021.623315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: There is increasing evidence to support the efficacy of transcranial direct current stimulation (tDCS) applications in cognitive augmentation and rehabilitation. Neuromodulation achieved with tDCS may further regulate regional cerebral perfusion affiliated through the neurovascular unit; however, components of cerebral perfusion decrease across aging. A novel neuroimaging approach, functional near-infrared spectroscopy (fNIRS), can aid in quantifying these regional perfusional changes. To date, the interaction of the effects of tDCS on cognitive performance across the lifespan and obtained fNIRS hemodynamic responses remain unknown. Objective: This review aims to examine the effects of tDCS on cognitive performance and fNIRS hemodynamic responses within the context of cognitive aging. Methods: Six databases were searched for studies. Quality appraisal and data extraction were conducted by two independent reviewers. Meta-analysis was carried out to determine overall and subgroup effect sizes. Results: Eight studies met inclusion criteria. The overall effect size demonstrates that tDCS can alter cognitive performance and fNIRS signals, with aging being a potential intermediary in tDCS efficacy. Conclusion: From the studies included, the effects of tDCS on cognitive performance and fNIRS metrics are most prominent in young healthy adults and appear to become less robust with increasing age. Given the small number of studies included in this review further investigation is recommended.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Zeeman
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Esther Sung Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Indahlastari A, Hardcastle C, Albizu A, Alvarez-Alvarado S, Boutzoukas EM, Evangelista ND, Hausman HK, Kraft J, Langer K, Woods AJ. A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults. Neuropsychiatr Dis Treat 2021; 17:971-990. [PMID: 33824591 PMCID: PMC8018377 DOI: 10.2147/ndt.s259499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proposed as a possible method for remediating age-associated cognitive decline in the older adult population. While tDCS has shown potential for improving cognitive functions in healthy older adults, stimulation outcomes on various cognitive domains have been mixed. METHODS A systematic search was performed in four databases: PubMed, EMBASE, Web of Science, and PsychInfo. Search results were then screened for eligibility based on inclusion/exclusion criteria to only include studies where tDCS was applied to improve cognition in healthy older adults 65 years and above. Eligible studies were reviewed and demographic characteristics, tDCS dose parameters, study procedures, and cognitive outcomes were extracted. Reported effect sizes for active compared to sham group in representative cognitive domain were converted to Hedges' g. MAIN RESULTS A total of thirteen studies involving healthy older adults (n=532, mean age=71.2+5.3 years) were included in the meta-analysis. The majority of included studies (94%) targeted the prefrontal cortex with stimulation intensity 1-2 mA using various electrode placements with anodes near the frontal region. Across all studies, we found Hedges' g values ranged from -0.31 to 1.85 as reported group effect sizes of active stimulation compared to sham. CONCLUSION While observed outcomes varied, overall findings indicated promising effects of tDCS to remediate cognitive aging and thus deserves further exploration. Future characterization of inter-individual variability in tDCS dose response and applications in larger cohorts are warranted to further validate benefits of tDCS for cognition in healthy older adults.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stacey Alvarez-Alvarado
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jessica Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kailey Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Prefrontal transcranial direct-current stimulation improves early technical skills in surgery. Brain Stimul 2020; 13:1834-1841. [DOI: 10.1016/j.brs.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
|
37
|
Albizu A, Fang R, Indahlastari A, O'Shea A, Stolte SE, See KB, Boutzoukas EM, Kraft JN, Nissim NR, Woods AJ. Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimul 2020; 13:1753-1764. [PMID: 33049412 PMCID: PMC7731513 DOI: 10.1016/j.brs.2020.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that electric current delivery to the brain can vary significantly across individuals. Quantification of this variability could enable person-specific optimization of tDCS outcomes. This pilot study used machine learning and MRI-derived electric field models to predict working memory improvements as a proof of concept for precision cognitive intervention. METHODS Fourteen healthy older adults received 20 minutes of 2 mA tDCS stimulation (F3/F4) during a two-week cognitive training intervention. Participants performed an N-back working memory task pre-/post-intervention. MRI-derived current models were passed through a linear Support Vector Machine (SVM) learning algorithm to characterize crucial tDCS current components (intensity and direction) that induced working memory improvements in tDCS responders versus non-responders. MAIN RESULTS SVM models of tDCS current components had 86% overall accuracy in classifying treatment responders vs. non-responders, with current intensity producing the best overall model differentiating changes in working memory performance. Median current intensity and direction in brain regions near the electrodes were positively related to intervention responses (r=0.811,p<0.001 and r=0.774,p=0.001). CONCLUSIONS This study provides the first evidence that pattern recognition analyses of MRI-derived tDCS current models can provide individual prognostic classification of tDCS treatment response with 86% accuracy. Individual differences in current intensity and direction play important roles in determining treatment response to tDCS. These findings provide important insights into mechanisms of tDCS response as well as proof of concept for future precision dosing models of tDCS intervention.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Skylar E Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Kyle B See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.
| |
Collapse
|
38
|
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Front Psychol 2020; 11:570030. [PMID: 33154728 PMCID: PMC7591503 DOI: 10.3389/fpsyg.2020.570030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on working memory (WM) performance are promising but variable and contested. In particular, designs involving one session of tDCS are prone to variable outcomes with notable effects of individual differences. Some participants benefit, whereas others are impaired by the same tDCS protocol. In contrast, protocols including multiple sessions of tDCS more consistently report WM improvement across participants. The objective of the current project was to test whether differences in resting-state connectivity between stimulation site and two WM-relevant networks [default mode network (DMN) and central executive network (CEN)] could account for initial and longitudinal responses to tDCS. Healthy young adults completed 5 days of visual WM training during sham or anodal right frontal tDCS. The behavioral data showed that only the active tDCS group significantly improved over the visual WM training period. There were no significant correlations between initial response to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly correlated with WM training slope. These data underscore the importance of sampling in studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) may produce more consistent data in a single experiment with limited power, whereas heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization and translational value.
Collapse
Affiliation(s)
- Adelle G B Cerreta
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| | - Ryan E B Mruczek
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| | - Marian E Berryhill
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| |
Collapse
|
39
|
Kraft JN, O'Shea A, Albizu A, Evangelista ND, Hausman HK, Boutzoukas E, Nissim NR, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, Porges E, DeKosky S, Hishaw GA, Wu S, Marsiske M, Cohen R, Alexander GE, Woods AJ. Structural Neural Correlates of Double Decision Performance in Older Adults. Front Aging Neurosci 2020; 12:278. [PMID: 33117145 PMCID: PMC7493680 DOI: 10.3389/fnagi.2020.00278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Speed of processing is a cognitive domain that encompasses the speed at which an individual can perceive a given stimulus, interpret the information, and produce a correct response. Speed of processing has been shown to decline more rapidly than other cognitive domains in an aging population, suggesting that this domain is particularly vulnerable to cognitive aging (Chee et al., 2009). However, given the heterogeneity of neuropsychological measures used to assess the domains underpinning speed of processing, a diffuse pattern of brain regions has been implicated. The current study aims to investigate the structural neural correlates of speed of processing by assessing cortical volume and speed of processing scores on the POSIT Double Decision task within a healthy older adult population (N = 186; mean age = 71.70 ± 5.32 years). T1-weighted structural images were collected via a 3T Siemens scanner. The current study shows that less cortical thickness in right temporal, posterior frontal, parietal and occipital lobe structures were significantly associated with poorer Double Decision scores. Notably, these include the lateral orbitofrontal gyrus, precentral gyrus, superior, transverse, and inferior temporal gyrus, temporal pole, insula, parahippocampal gyrus, fusiform gyrus, lingual gyrus, superior and inferior parietal gyrus and lateral occipital gyrus. Such findings suggest that speed of processing performance is associated with a wide array of cortical regions that provide unique contributions to performance on the Double Decision task.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Emanuel Boutzoukas
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Nicole R Nissim
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Steven DeKosky
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, United States
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Michael Marsiske
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Gene E Alexander
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, United States
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Nissim NR, Moberg PJ, Hamilton RH. Efficacy of Noninvasive Brain Stimulation (tDCS or TMS) Paired with Language Therapy in the Treatment of Primary Progressive Aphasia: An Exploratory Meta-Analysis. Brain Sci 2020; 10:E597. [PMID: 32872344 PMCID: PMC7563447 DOI: 10.3390/brainsci10090597] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), paired with behavioral language therapy, have demonstrated the capacity to enhance language abilities in primary progressive aphasia (PPA), a debilitating degenerative neurological syndrome that leads to declines in communication abilities. The aim of this meta-analysis is to systematically evaluate the efficacy of tDCS and TMS in improving language outcomes in PPA, explore the magnitude of effects between stimulation modalities, and examine potential moderators that may influence treatment effects. Standard mean differences for change in performance from baseline to post-stimulation on language-related tasks were evaluated. Six tDCS studies and two repetitive TMS studies met inclusion criteria and provided 22 effects in the analysis. Random effect models revealed a significant, heterogeneous, and moderate effect size for tDCS and TMS in the enhancement of language outcomes. Findings demonstrate that naming ability significantly improves due to brain stimulation, an effect found to be largely driven by tDCS. Future randomized controlled trials are needed to determine long-term effectiveness of noninvasive brain stimulation techniques on language abilities, further delineate the efficacy of tDCS and TMS, and identify optimal parameters to enable the greatest gains for persons with PPA.
Collapse
Affiliation(s)
- Nicole R. Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Paul J. Moberg
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Otorhinolaryngology: Head & Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Clark DJ, Chatterjee SA, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ. Combining Frontal Transcranial Direct Current Stimulation With Walking Rehabilitation to Enhance Mobility and Executive Function: A Pilot Clinical Trial. Neuromodulation 2020; 24:950-959. [PMID: 32808403 DOI: 10.1111/ner.13250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This pilot study assessed whether frontal lobe transcranial direct current stimulation (tDCS) combined with complex walking rehabilitation is feasible, safe, and shows preliminary efficacy for improving walking and executive function. MATERIALS AND METHODS Participants were randomized to one of the following 18-session interventions: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Active tDCS was delivered over F3 (cathode) and F4 (anode) scalp locations for 20 min at 2 mA intensity. Outcome measures included tests of walking function, executive function, and prefrontal activity measured by functional near infrared spectroscopy. RESULTS Ninety percent of participants completed the intervention protocol successfully. tDCS side effects of tingling or burning sensations were low (average rating less than two out of 10). All groups demonstrated gains in walking performance based on within-group effect sizes (d ≥ 0.50) for one or more assessments. The Sham/Typical group showed the greatest gains for walking based on between-group effect sizes. For executive function, the Active/Complex group showed the greatest gains based on moderate to large between-group effect sizes (d = 0.52-1.11). Functional near-infrared spectroscopy (fNIRS) findings suggest improved prefrontal cortical activity during walking. CONCLUSIONS Eighteen sessions of walking rehabilitation combined with tDCS is a feasible and safe intervention for older adults. Preliminary effects size data indicate a potential improvement in executive function by adding frontal tDCS to walking rehabilitation. This study justifies future larger clinical trials to better understand the benefits of combining tDCS with walking rehabilitation.
Collapse
Affiliation(s)
- David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Sudeshna A Chatterjee
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jared W Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dorian K Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Caulfield KA, Badran BW, Li X, Bikson M, George MS. Can transcranial electrical stimulation motor threshold estimate individualized tDCS doses over the prefrontal cortex? Evidence from reverse-calculation electric field modeling. Brain Stimul 2020; 13:1150-1152. [PMID: 32439562 PMCID: PMC7891110 DOI: 10.1016/j.brs.2020.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Bashar W Badran
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Xingbao Li
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
43
|
Indahlastari A, Albizu A, O'Shea A, Forbes MA, Nissim NR, Kraft JN, Evangelista ND, Hausman HK, Woods AJ. Modeling transcranial electrical stimulation in the aging brain. Brain Stimul 2020; 13:664-674. [PMID: 32289695 PMCID: PMC7196025 DOI: 10.1016/j.brs.2020.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Varying treatment outcomes in transcranial electrical stimulation (tES) recipients may depend on the amount of current reaching the brain. Brain atrophy associated with normal aging may affect tES current delivery to the brain. Computational models have been employed to compute predicted tES current inside the brain. This study is the largest study that uses computational models to investigate tES field distribution in healthy older adults. METHODS Individualized head models from 587 healthy older adults (mean = 73.9years, 51-95 years) were constructed to create field maps. Two electrode montages (F3-F4, M1-SO) with 2 mA input current were modeled using ROAST with modified codes. A customized template of healthy older adults, the UFAB-587, was created from the same dataset and used to warp individual brains into the same space. Warped models were analyzed to determine the relationship between computed field measures, brain atrophy and age. MAIN RESULTS Computed field measures were inversely correlated with brain atrophy (R2 = 0.0829, p = 1.14e-12). Field pattern showed negative correlation with age in brain sub-regions including part of DLPFC and precentral gyrus. Mediation analysis revealed that the negative correlation between age and current density is partially mediated by brain-to-CSF ratio. CONCLUSIONS Computed field measures showed decreasing amount of tES current reaching the brain with increasing atrophy. Therefore, adjusting current dose by modifying tES stimulation parameters in older adults based on degree of atrophy may be necessary to achieve desired stimulation benefits. Results from this study may inform future tES application in healthy older adults.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Alejandro Albizu
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Megan A Forbes
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica N Kraft
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
45
|
Sergiou CS, Woods AJ, Franken IHA, van Dongen JDM. Transcranial direct current stimulation (tDCS) as an intervention to improve empathic abilities and reduce violent behavior in forensic offenders: study protocol for a randomized controlled trial. Trials 2020; 21:263. [PMID: 32169111 PMCID: PMC7069186 DOI: 10.1186/s13063-020-4074-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies show that changes in one of the brain areas related to empathic abilities (i.e. the ventromedial prefrontal cortex (vmPFC)) plays an important role in violent behavior in abusers of alcohol and cocaine. According to the models of James Blair, empathy is a potential inhibitor of violent behavior. Individuals with less empathic abilities may be less susceptible and motivated to inhibit violent behavior, which causes a higher risk of violence. Recent neuroscientific research shows that modulating (stimulation or inhibition) certain brain areas could be a promising new intervention for substance abuse and to reduce violent behavior, such as the neurostimulation technique transcranial direct current stimulation (tDCS). This study aims to investigate tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance use offenders. METHODS/DESIGN A total sample of 50 male forensic substance abuse patients (25 active and 25 sham stimulation) will be tested in a double-blind placebo-controlled study, from which half of the patients will receive an active stimulation plus treatment as usual (TAU) and the other half will receive sham stimulation (placebo) plus TAU. The patients in the active condition will receive multichannel tDCS targeting the bilateral vmPFC two times a day for 20 min for five consecutive days. Before and after the stimulation period, the patients will complete self-report measurements, perform the Point Subtraction Aggression Paradigm (PSAP) and a passive viewing empathy task. Resting state electroencephalography (rsEEG) will be performed before and after the treatment period. A follow up will be conducted after 6 months. The primary outcome is to investigate multichannel tDCS as a new intervention to increase empathic abilities and reduce violent behavior in offenders with substance abuse problems. In addition, we will determine whether electrophysiological responses in the brain are affected by the tDCS intervention. Finally, the effects of tDCS on reducing craving will be investigated. DISCUSSION This study is one of the first studies using multichannel tDCS targeting the vmPFC in a forensic sample. This study will explore the opportunities to introduce a new intervention to improve empathic abilities and reduce violence in forensic substance use offenders. Specifically, this study may give insight into how to implement the tDCS intervention in the setting of daily clinical practice in this complex, multiple-problem target group and with that contribute to reduction of recidivism. TRIAL REGISTRATION Dutch Trial Register, NTR7701. Registered on 12 January 2019. Prospectively registered before the recruitment phase. https://www.trialregister.nl/trial/7459. Recruitment started on the 1st of February 2019 and will be finished approximately in the winter of 2019. Protocol version 1. 22 May 2019.
Collapse
Affiliation(s)
- Carmen S Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
46
|
Brooks SJ, Mackenzie-Phelan R, Tully J, Schiöth HB. Review of the Neural Processes of Working Memory Training: Controlling the Impulse to Throw the Baby Out With the Bathwater. Front Psychiatry 2020; 11:512761. [PMID: 33132926 PMCID: PMC7511702 DOI: 10.3389/fpsyt.2020.512761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Smartphone technology has enabled the creation of many working memory training (WMT) Apps, with those peer-reviewed described in a recent review. WMT claims to improve working memory, attention deficits, hyperactivity and fluid intelligence, in line with plasticity brain changes. Critics argue that WMT is unable to achieve "far-transfer"-the attainment of benefits to cognition from one taught context to another dissimilar context-associated with improved quality of life. However, brain changes after a course of WMT in frontoparietal and striatal circuits-that often occur prior to behavioral changes-may be a better indicator of far-transfer efficacy, especially to improve impulse control commonly dysregulated in those with addictive disorders, yet not commonly examined in WMT studies. METHOD In contrast to previous reviews, the aim here is to focus on the findings of brain imaging WMT training studies across various imaging modalities that use various paradigms, published via PubMed, Scopus, Medline, and Google Scholar. RESULTS 35 brain imaging studies utilized fMRI, structural imaging (MRI, DTI), functional connectivity, EEG, transcranial direct current stimulation (tDCS), cerebral perfusion, and neurogenetic analyses with tasks based on visuospatial and auditory working memory, dual and standard n-back. DISCUSSION Evidence suggests that repeated WMT reduces brain activation in frontoparietal and striatal networks reflective of increased neural circuitry efficiency via myelination and functional connectivity changes. Neural effects of WMT may persist months after training has ended, lead to non-trained task transfer, be strengthened by auxiliary methods such as tDCS and be related to COMT polymorphisms. WMT could be utilized as an effective, non-invasive intervention for working memory deficits to treat impulse and affective control problems in people with addictive disorders.
Collapse
Affiliation(s)
- Samantha J Brooks
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom.,Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Rhiannon Mackenzie-Phelan
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jamie Tully
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B Schiöth
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
47
|
Nissim NR, O'Shea A, Indahlastari A, Kraft JN, von Mering O, Aksu S, Porges E, Cohen R, Woods AJ. Effects of Transcranial Direct Current Stimulation Paired With Cognitive Training on Functional Connectivity of the Working Memory Network in Older Adults. Front Aging Neurosci 2019; 11:340. [PMID: 31998111 PMCID: PMC6961663 DOI: 10.3389/fnagi.2019.00340] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
Background Working memory, a fundamental short-term cognitive process, is known to decline with advanced age even in healthy older adults. Normal age-related declines in working memory can cause loss of independence and decreased quality of life. Cognitive training has shown some potential at enhancing certain cognitive processes, although, enhancements are variable. Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has shown promise at enhancing working memory abilities, and may further the benefits from cognitive training interventions. However, the neural mechanisms underlying tDCS brain-based enhancements remain unknown. Objective/Hypothesis Assess the effects of a 2-week intervention of active-tDCS vs. sham paired with cognitive training on functional connectivity of the working memory network during an N-Back working memory task. Methods Healthy older adults (N = 28; mean age = 74 ± 7.3) completed 10-sessions of cognitive training paired with active or sham-tDCS. Functional connectivity was evaluated at baseline and post-intervention during an N-Back task (2-Back vs. 0-Back). Results Active-tDCS vs. sham demonstrated a significant increase in connectivity between the left dorsolateral prefrontal cortex and right inferior parietal lobule at post-intervention during 2-Back. Target accuracy on 2-Back was significantly improved for active vs. sham at post-intervention. Conclusion These results suggest pairing tDCS with cognitive training enhances functional connectivity and working memory performance in older adults, and thus may hold promise as a method for remediating age-related cognitive decline. Future studies evaluating optimal dose and long-term effects of tDCS on brain function will help to maximize potential clinical impacts of tDCS paired with cognitive training in older adults. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02137122.
Collapse
Affiliation(s)
- Nicole R Nissim
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Olivia von Mering
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Serkan Aksu
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|