1
|
Coleman PD, Delvaux E, Kordower JH, Boehringer A, Huseby CJ. Massive changes in gene expression and their cause(s) can be a unifying principle in the pathobiology of Alzheimer's disease. Alzheimers Dement 2025; 21:e14555. [PMID: 39912452 PMCID: PMC11851168 DOI: 10.1002/alz.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Understanding of the biology of Alzheimer's disease (AD) has long been fragmented, with various investigators concentrating on amyloid beta (Aβ) or tau, inflammation, cell death pathways, misfolded proteins, glia, and more. Yet data from multiple authors has repeatedly shown altered expression of myriad genes related to these seemingly disparate phenomena. In 2022, Morgan et al. organized the massive data on changes in AD in a meticulous survey of the literature and related these changes to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Their data showed that 91% of the known KEGG pathways are involved in AD and that many of these pathways are represented by the known cellular/molecular phenomena of AD. Such data then raise the fundamental question: What mechanism(s) may be responsible for such widespread changes in gene expression? We review evidence for a unifying model based on sequestrations in stress granules and alteration of nucleocytoplasmic transport in AD. HIGHLIGHTS: In Alzheimer's disease (AD), critical changes take place in neurons before the appearance of plaques or tangles. Addressing these early changes provides a path to early detection and effective intervention in AD.
Collapse
Affiliation(s)
- Paul D. Coleman
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Elaine Delvaux
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Jeffrey H. Kordower
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ashley Boehringer
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Carol J. Huseby
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| |
Collapse
|
2
|
Abu-Elfotuh K, Mahran Y, Bayoumie El Gazzar W, Youssef HS, Hamdan AME, Albalawi TM, Alsunbul M, ALQahtani R, Mohammed AA. Targeting Ferroptosis/Nrf2 Pathway Ameliorates AlCl 3-Induced Alzheimer's Disease in Rats: Neuroprotective Effect of Morin Hydrate, Zeolite Clinoptilolite, and Physical Plus Mental Activities. Int J Mol Sci 2025; 26:1260. [PMID: 39941034 PMCID: PMC11818523 DOI: 10.3390/ijms26031260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a significant health challenge in the 21st century. In spite of the approval of many new disease-modifying therapies for AD, the clinical advantages of these new treatments are less certain. AIM This investigation was intended to determine the potential neuroprotective impact of morin hydrate (MH), zeolite clinoptilolite (ZC), and/or physical and mental activities (PhM) on an aluminum chloride (AlCl3)-induced AD rat model. METHODS Male Sprague Dawley rats were randomly allocated into seven groups. Group I was the control group. Groups II-VII were treated with AlCl3 for 5 weeks. Groups III-VII were tested for the effects of MH, ZC, and/or PhM. Biochemical, brain histopathological, and behavioral studies were performed. RESULTS PhM, MH, and ZC combined therapy exhibited a significant neuroprotective effect demonstrated by corrected catecholamines and tau and β-amyloid levels, as well as the antioxidant and anti-ferroptotic effects probably through Nrf2/HO-1/GPX4 and ACSL4 signaling pathways. In addition, combined therapy counteracted the inflammatory responses through modulating the TLR4/NF-κβ/NLRP3 inflammasome expression. Moreover, combined therapy groups showed the maximum improvement of both APOE4/LRP1 and Wnt3/β-catenin/GSK-3β signaling expressions. CONCLUSION This research highlights the neuroprotective impact of MH and ZC plus PhM against AlCl3-induced AD via modulation of Nrf2/HO-1/GPX4, TLR4/NF-κβ/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways. It is the first to point out the inclusion of ferroptosis-Nrf2/inflammasomes cross-talk in the neuroprotection mechanism of MH/ZC against the AlCl3-mediated AD model.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Yasmin Mahran
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Qalyubia 13518, Egypt
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Qalyubia 13518, Egypt;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (R.A.)
| | - Reem ALQahtani
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (R.A.)
| | - Asmaa A. Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
3
|
Zhang KX, Sheng N, Ding PL, Zhang JW, Xu XQ, Wang YH. Danggui Shaoyao San Alleviates Early Cognitive Impairment in Alzheimer's Disease Mice Through IRS1/GSK3β/Wnt3a-β-Catenin Pathway. Brain Behav 2024; 14:e70056. [PMID: 39344343 PMCID: PMC11440033 DOI: 10.1002/brb3.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease characterized by Amyloid plaques and neurofibrillary tangles. We explored the potential mechanism by which Danggui Shaoyao San (DSS) modulates central glucose metabolism via the insulin receptor substrate 1 (IRS1)/glycogen synthase kinase-3β (GSK3β)/Wnt3a-β-catenin pathway, thereby exerting protective effects on cognitive functions. METHODS In vitro, HT22 cells were induced with streptozotocin (STZ) to investigate the impact of GSK3β on pathway transduction. The active components in the DSS stock solution were validated using mass spectrometry. Subsequently, an AD model in C57BL/6J mice was established through STZ injection into both ventricles. The success of the model was validated behaviorally and pathologically. The Morris Water Maze (MWM) test, immunohistochemistry, Western blotting, quantitative reverse transcription-PCR, and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) were employed to evaluate the influence of DSS on memory and pathological changes in AD. RESULTS The DSS stock solution, rich in active components, ameliorated the memory deficits in AD mice in the MWM. In vitro, GSK3β exhibited regulatory control over Wnt and β-catenin, with GSK3β inhibition mitigating β-amyloid and tau redundancies at protein and gene levels, facilitating signal transduction. In vivo, DSS impacted key targets in the IRS1/GSK3β/Wnt3a-β-catenin pathway, mitigated senile plaques resulting from amyloid β (Aβ) deposition and neurofiber tangles induced by tau hyperphosphorylation, and alleviated the decline in central glucose metabolism observed in FDG-PET. CONCLUSIONS Our findings suggest that DSS potentially confers cognitive protection by alleviating central hypoglycemia through the IRS1/GSK3β/Wnt3a-β-catenin pathway. This may serve as a promising therapeutic avenue for AD.
Collapse
Affiliation(s)
- Kai-Xin Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Sheng
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, China
| | - Peng-Li Ding
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Wei Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Chauhan A, Dubey S, Jain S. Association Between Type 2 Diabetes Mellitus and Alzheimer's Disease: Common Molecular Mechanism and Therapeutic Targets. Cell Biochem Funct 2024; 42:e4111. [PMID: 39228117 DOI: 10.1002/cbf.4111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aβ) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3β in AD is intriguing. These proteins' association with T2DM and pancreatic β-cell failure suggests they might be therapeutic targets for both disorders.
Collapse
Affiliation(s)
- Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Sachin Dubey
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
5
|
Dei Cas A, Micheli MM, Aldigeri R, Gardini S, Ferrari-Pellegrini F, Perini M, Messa G, Antonini M, Spigoni V, Cinquegrani G, Vazzana A, Moretti V, Caffarra P, Bonadonna RC. Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. J Endocrinol Invest 2024; 47:2339-2349. [PMID: 38565814 PMCID: PMC11368991 DOI: 10.1007/s40618-024-02320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE According to preclinical evidence, GLP-1 receptor may be an actionable target in neurodegenerative disorders, including Alzheimer's disease (AD). Previous clinical trials of GLP-1 receptor agonists were conducted in patients with early AD, yielding mixed results. The aim was to assess in a proof-of-concept study whether slow-release exenatide, a long-acting GLP-1 agonist, can benefit the cognitive performance of people with mild cognitive impairment (MCI). METHODS Thirty-two (16 females) patients were randomized to either slow-release exenatide (n = 17; 2 mg s.c. once a week) or no treatment (n = 15) for 32 weeks. The primary endpoint was the change in ADAS-Cog11 cognitive test score at 32 weeks vs baseline. Secondary endpoints herein reported included additional cognitive tests and plasma readouts of GLP-1 receptor engagement. Statistical analysis was conducted by intention to treat. RESULTS No significant between-group effects of exenatide on ADAS-Cog11 score (p = 0.17) were detected. A gender interaction with treatment was observed (p = 0.04), due to worsening of the ADAS-Cog11 score in women randomized to exenatide (p = 0.018), after correction for age, scholar level, dysglycemia, and ADAS-Cog score baseline value. Fasting plasma glucose (p = 0.02) and body weight (p = 0.03) decreased in patients randomized to exenatide. CONCLUSION In patients with MCI, a 32-week trial with slow-release exenatide had no beneficial effect on cognitive performance. TRIAL REGISTRATION NUMBER NCT03881371, registered on 21 July, 2016.
Collapse
Affiliation(s)
- A Dei Cas
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - M M Micheli
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R Aldigeri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Gardini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - F Ferrari-Pellegrini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - M Perini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Messa
- Center for Cognitive Disorders, AUSL Parma, Via Verona 36, Parma, Italy
| | - M Antonini
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Spigoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Cinquegrani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - A Vazzana
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Moretti
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - P Caffarra
- Department of Medicine and Surgery, Section of Neuroscience, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
6
|
Ишмуратова АН, Абрамов МА, Кузнецов КО, Иванюта МВ, Шакирова ЗФ, Китапова АИ, Усмонов МД, Черноусова ЛМ, Валеева ЛИ, Кузнецова АЮ, Баисламов АС, Шайхетдинова АР, Миргалиев АА, Орозбердиев СТ, Якупова КИ. [The role of antidiabetic drugs in the treatment of Alzheimer's disease: systematic review]. PROBLEMY ENDOKRINOLOGII 2023; 69:73-83. [PMID: 37968954 PMCID: PMC10680548 DOI: 10.14341/probl13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 11/17/2023]
Abstract
Recent studies show that Alzheimer's disease (AD) has many common links with conditions associated with insulin resistance, including neuroinflammation, impaired insulin signaling, oxidative stress, mitochondrial dysfunction and metabolic syndrome. The authors conducted an electronic search for publications in the PubMed/MEDLINE and Google Scholar databases using the keywords "amyloid beta", "Alzheimer type-3-diabetes", "intranasal insulin", "metformin", "type 2 diabetes mellitus", "incretins" and "PPARy agonists». A systematic literature search was conducted among studies published between 2005 and 2022. The authors used the following inclusion criteria: 1) Subjects who received therapy for AD and/or DM2, if the expected result concerned the risk of cognitive decline or the development of dementia; 2) The age of the study participants is > 50 years; 3) The type of studies included in this review were randomized clinical trials, population-based observational studies or case-control studies, prospective cohort studies, as well as reviews and meta-analyses; 4) The included articles were written in English. In recent years, there has been considerable interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in AD. Human studies involving patients with mild cognitive impairment and Alzheimer's disease have shown that the administration of certain antidiabetic drugs, such as intranasal insulin, metformin, incretins and thiazolidinediones, can improve cognitive function and memory. The purpose of this study is to evaluate the effectiveness of antidiabetic drugs in the treatment of AD. According to the results of the study, metformin, intranasal insulin, thiazolidinediones and incretins showed a positive effect both in humans and in animal models. Recent studies show that thiazolidinediones can activate pathways in the brain that are regulated by IGF-1; however, rosiglitazone may pose a significant risk of side effects. The results of clinical studies on the use of metformin in AD are limited and contradictory.
Collapse
Affiliation(s)
| | | | | | - М. В. Иванюта
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vaňková M, Velíková M, Vejražková D, Včelák J, Lukášová P, Rusina R, Vaňková H, Jarolímová E, Kancheva R, Bulant J, Horáčková L, Bendlová B, Hill M. The Role of Steroidomics in the Diagnosis of Alzheimer's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24108575. [PMID: 37239922 DOI: 10.3390/ijms24108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Epidemiological studies suggest an association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). This study aimed to investigate the pathophysiological markers of AD vs. T2DM for each sex separately and propose models that would distinguish control, AD, T2DM, and AD-T2DM comorbidity groups. AD and T2DM differed in levels of some circulating steroids (measured mostly by GC-MS) and in other observed characteristics, such as markers of obesity, glucose metabolism, and liver function tests. Regarding steroid metabolism, AD patients (both sexes) had significantly higher sex hormone binding globulin (SHBG), cortisol, and 17-hydroxy progesterone, and lower estradiol and 5α-androstane-3α,17β-diol, compared to T2DM patients. However, compared to healthy controls, changes in the steroid spectrum (especially increases in levels of steroids from the C21 group, including their 5α/β-reduced forms, androstenedione, etc.) were similar in patients with AD and patients with T2DM, though more expressed in diabetics. It can be assumed that many of these steroids are involved in counter-regulatory protective mechanisms that mitigate the development and progression of AD and T2DM. In conclusion, our results demonstrated the ability to effectively differentiate AD, T2DM, and controls in both men and women, distinguish the two pathologies from each other, and differentiate patients with AD and T2DM comorbidities.
Collapse
Affiliation(s)
- Markéta Vaňková
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Marta Velíková
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | | | - Josef Včelák
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Petra Lukášová
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Ruská 2411, 100 00 Prague, Czech Republic
| | - Hana Vaňková
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Eva Jarolímová
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Radmila Kancheva
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Josef Bulant
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Lenka Horáčková
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Běla Bendlová
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Národní 8, 110 00 Prague, Czech Republic
| |
Collapse
|
8
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Motsinger-Reif AA, Ward-Caviness CK, Schladweiler MC, Alewel DI, Miller CN, Farraj AK, Hazari MS, Grindstaff R, Diaz-Sanchez D, Ghio AJ, Kodavanti UP. Stress Drivers of Glucose Dynamics during Ozone Exposure Measured Using Radiotelemetry in Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127006. [PMID: 36542476 PMCID: PMC9770052 DOI: 10.1289/ehp11088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.
Collapse
Affiliation(s)
- Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J. Snow
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - John S. House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mette C. Schladweiler
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Colette N. Miller
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aimen K. Farraj
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mehdi S. Hazari
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Rachel Grindstaff
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andrew J. Ghio
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Urmila P. Kodavanti
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Myette-Côté É, Soto-Mota A, Cunnane SC. Ketones: potential to achieve brain energy rescue and sustain cognitive health during ageing. Br J Nutr 2022; 128:407-423. [PMID: 34581265 DOI: 10.1017/s0007114521003883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer’s disease (AD) is the most common major neurocognitive disorder of ageing. Although largely ignored until about a decade ago, accumulating evidence suggests that deteriorating brain energy metabolism plays a key role in the development and/or progression of AD-associated cognitive decline. Brain glucose hypometabolism is a well-established biomarker in AD but was mostly assumed to be a consequence of neuronal dysfunction and death. However, its presence in cognitively asymptomatic populations at higher risk of AD strongly suggests that it is actually a pre-symptomatic component in the development of AD. The question then arises as to whether progressive AD-related cognitive decline could be prevented or slowed down by correcting or bypassing this progressive ‘brain energy gap’. In this review, we provide an overview of research on brain glucose and ketone metabolism in AD and its prodromal condition – mild cognitive impairment (MCI) – to provide a clearer basis for proposing keto-therapeutics as a strategy for brain energy rescue in AD. We also discuss studies using ketogenic interventions and their impact on plasma ketone levels, brain energetics and cognitive performance in MCI and AD. Given that exercise has several overlapping metabolic effects with ketones, we propose that in combination these two approaches might be synergistic for brain health during ageing. As cause-and-effect relationships between the different hallmarks of AD are emerging, further research efforts should focus on optimising the efficacy, acceptability and accessibility of keto-therapeutics in AD and populations at risk of AD.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Adrian Soto-Mota
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Burlando B. A general hypothesis of multistable systems in pathophysiology. F1000Res 2022; 11:906. [PMID: 36226044 PMCID: PMC9530619 DOI: 10.12688/f1000research.123183.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 09/19/2023] Open
Abstract
Despite intensive investigations numerous diseases remain etiologically puzzling and recalcitrant to treatments. A hypothesis is proposed here assuming that these difficulties are due to an unsuitable approach to the mechanisms of life, which is subjugated by an apparent complexity and fails to grasp the uniformity that lays behind. The stability of metabolism, despite the enormous complex of chemical reactions, suggests that reciprocal control is a prerequisite of life. Negative feedback loops have been known for a long time to maintain homeostasis, while more recently, different life processes involved in transitions or changes have been modeled by positive loops giving rise to bistable switches, also including various diseases. The present hypothesis makes a generalization, by assuming that any functional element of a biological system is involved in a positive or a negative feedback loop. Consequently, the hypothesis holds that the starting mechanism of any disease that affects a healthy human can be conceptually reduced to a bistable or multistationary loop system, thus providing a unifying model leading to the discovery of critical therapeutic targets.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genoa, Genoa, 16132, Italy
| |
Collapse
|
11
|
Burlando B. A general theory of multistable systems in pathophysiology. F1000Res 2022; 11:906. [PMID: 36226044 PMCID: PMC9530619 DOI: 10.12688/f1000research.123183.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 09/19/2023] Open
Abstract
Despite intensive investigations numerous diseases remain etiologically puzzling and recalcitrant to treatments. A theory is proposed here assuming that these difficulties are due to an unsuitable approach to the mechanisms of life, which is subjugated by an apparent complexity and fails to grasp the uniformity that lays behind. The stability of metabolism, despite the enormous complex of chemical reactions, suggests that reciprocal control is a prerequisite of life. Negative feedback loops have been known for a long time to maintain homeostasis, while more recently, different life processes involved in transitions or changes have been modeled by positive loops giving rise to bistable switches, also including various diseases. The present theory makes a generalization, by assuming that any functional element of a biological system is involved in a positive or a negative feedback loop. Consequently, the theory holds that the starting mechanism of any disease that affects a healthy human can be conceptually reduced to a bistable or multistationary loop system, thus providing a unifying model leading to the discovery of critical therapeutic targets.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genoa, Genoa, 16132, Italy
| |
Collapse
|
12
|
Burlando B. A general hypothesis of multistable systems in pathophysiology. F1000Res 2022; 11:906. [PMID: 36226044 PMCID: PMC9530619 DOI: 10.12688/f1000research.123183.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Despite intensive investigations numerous diseases remain etiologically puzzling and recalcitrant to treatments. A hypothesis is proposed here assuming that these difficulties are due to an unsuitable approach to the mechanisms of life, which is subjugated by an apparent complexity and fails to grasp the uniformity that lays behind. The stability of metabolism, despite the enormous complex of chemical reactions, suggests that reciprocal control is a prerequisite of life. Negative feedback loops have been known for a long time to maintain homeostasis, while more recently, different life processes involved in transitions or changes have been modeled by positive loops giving rise to bistable switches, also including various diseases. The present hypothesis makes a generalization, by assuming that any functional element of a biological system is involved in a positive or a negative feedback loop. Consequently, the hypothesis holds that the starting mechanism of any disease that affects a healthy human can be conceptually reduced to a bistable or multistationary loop system, thus providing a unifying model leading to the discovery of critical therapeutic targets.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genoa, Genoa, 16132, Italy
| |
Collapse
|
13
|
Ketogenic therapy for Parkinson's disease: A systematic review and synthesis without meta-analysis of animal and human trials. Maturitas 2022; 163:46-61. [PMID: 35714419 DOI: 10.1016/j.maturitas.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of the present systematic review was to assess the efficacy of ketogenic therapy in Parkinson's disease (PD), using all available data from randomized controlled trials (RCTs) on humans and animal studies with PD models. DESIGN Systematic review of in vivo studies. METHODS Studies related to the research question were identified through searches in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, clinicaltrials.gov and the gray literature, from inception until November 2021. Rayyan was employed to screen and identify all studies fulfilling the inclusion criteria. Cochrane's revised Risk of Bias 2.0 and SYRCLE tools evaluated bias in RCTs and animal studies, respectively. An effect direction plot was developed to synthesize the evidence of the RCTs. RESULTS Twelve studies were identified and included in the qualitative synthesis (4 RCTs and 8 animal trials). Interventions included ketogenic diets (KDs), supplementation with medium-chain triglyceride (MCT) oil, caprylic acid administration and ketone ester drinks. The animal research used zebrafish and rodents, and PD was toxin-induced. Based on the available RCTs, ketogenic therapy does not improve motor coordination and functioning, cognitive impairment, anthropometrics, blood lipids and glycemic control, exercise performance or voice disorders in patients with PD. The evidence is scattered and heterogenous, with single trials assessing different outcomes; thus, a synthesis of the evidence cannot be conclusive regarding the efficacy of ketogenic therapy. On the other hand, animal studies tend to demonstrate more promising results, with marked improvements in locomotor activity, dopaminergic activity, redox status, and inflammatory markers. CONCLUSIONS Although animal studies indicate promising results, research on the effect of ketogenic therapy in PD is still in its infancy, with RCTs conducted on humans being heterogeneous and lacking PD-specific outcomes. More studies are required to recommend or refute the use of ketogenic therapy in PD.
Collapse
|
14
|
Michailidis M, Tata DA, Moraitou D, Kavvadas D, Karachrysafi S, Papamitsou T, Vareltzis P, Papaliagkas V. Antidiabetic Drugs in the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:4641. [PMID: 35563031 PMCID: PMC9102472 DOI: 10.3390/ijms23094641] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The public health burden of type 2 diabetes mellitus and Alzheimer's disease is steadily increasing worldwide, especially in the population of older adults. Epidemiological and clinical studies suggest a possible shared pathophysiology between the two diseases and an increased risk of AD in patients with type 2 diabetes mellitus. Therefore, in recent years, there has been a substantial interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in Alzheimer's disease. Human studies in patients with mild cognitive impairment and Alzheimer's disease have shown that administration of some antidiabetic medications, such as intranasal insulin, metformin, incretins, and thiazolidinediones, can improve cognition and memory. This review aims to examine the latest evidence on antidiabetic medications as a potential candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despina A. Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.A.T.); (D.M.)
| | - Despina Moraitou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.A.T.); (D.M.)
| | - Dimitrios Kavvadas
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Sofia Karachrysafi
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Patroklos Vareltzis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
15
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
16
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
17
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
18
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Takaichi Y, Chambers JK, Ano Y, Takashima A, Nakayama H, Uchida K. Deposition of Phosphorylated α-Synuclein and Activation of GSK-3β and PP2A in the PS19 Mouse Model of Tauopathy. J Neuropathol Exp Neurol 2021; 80:731-740. [PMID: 34151989 DOI: 10.1093/jnen/nlab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The simultaneous accumulation of multiple pathological proteins, such as hyperphosphorylated tau (hp-tau) and phosphorylated α-synuclein (p-αSyn), has been reported in the brains of patients with various neurodegenerative diseases. We previously demonstrated that hp-tau-dependent p-αSyn accumulation was associated with the activation of GSK-3β in the brains of P301L tau transgenic mice. To confirm the effects of another mutant tau on p-αSyn accumulation in vivo, we herein examined the brains of PS19 mice that overexpress human P301S mutant tau. Immunohistochemically, hp-tau and p-αSyn aggregates were detected in the same neuronal cells in the cerebrum and brain stem of aged PS19 mice. A semiquantitative analysis showed a positive correlation between hp-tau and p-αSyn accumulation. Furthermore, an activated form of GSK-3β was detected within cells containing both hp-tau and p-αSyn aggregates in PS19 mice. Western blotting showed a decrease in inactivated PP2A levels in PS19 mice. The present results suggest that the overexpression of human P301S mutant tau induces p-αSyn accumulation that is accompanied by not only GSK-3β, but also PP2A activation in PS19 mice, and highlight the synergic effects between tau and αSyn in the pathophysiology of neurodegenerative diseases that show the codeposition of tau and αSyn.
Collapse
Affiliation(s)
| | - James K Chambers
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Yasuhisa Ano
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Akihiko Takashima
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Hiroyuki Nakayama
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Kazuyuki Uchida
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| |
Collapse
|
21
|
Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients 2021; 13:nu13041362. [PMID: 33921683 PMCID: PMC8073598 DOI: 10.3390/nu13041362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
The ApoE4 allele is the most well-studied genetic risk factor for Alzheimer’s disease, a condition that is increasing in prevalence and remains without a cure. Precision nutrition targeting metabolic pathways altered by ApoE4 provides a tool for the potential prevention of disease. However, no long-term human studies have been conducted to determine effective nutritional protocols for the prevention of Alzheimer’s disease in ApoE4 carriers. This may be because relatively little is yet known about the precise mechanisms by which the genetic variant confers an increased risk of dementia. Fortunately, recent research is beginning to shine a spotlight on these mechanisms. These new data open up the opportunity for speculation as to how carriers might ameliorate risk through lifestyle and nutrition. Herein, we review recent discoveries about how ApoE4 differentially impacts microglia and inflammatory pathways, astrocytes and lipid metabolism, pericytes and blood–brain barrier integrity, and insulin resistance and glucose metabolism. We use these data as a basis to speculate a precision nutrition approach for ApoE4 carriers, including a low-glycemic index diet with a ketogenic option, specific Mediterranean-style food choices, and a panel of seven nutritional supplements. Where possible, we integrate basic scientific mechanisms with human observational studies to create a more complete and convincing rationale for this precision nutrition approach. Until recent research discoveries can be translated into long-term human studies, a mechanism-informed practical clinical approach may be useful for clinicians and patients with ApoE4 to adopt a lifestyle and nutrition plan geared towards Alzheimer’s risk reduction.
Collapse
|
22
|
Takaichi Y, Chambers JK, Takahashi K, Soeda Y, Koike R, Katsumata E, Kita C, Matsuda F, Haritani M, Takashima A, Nakayama H, Uchida K. Amyloid β and tau pathology in brains of aged pinniped species (sea lion, seal, and walrus). Acta Neuropathol Commun 2021; 9:10. [PMID: 33413691 PMCID: PMC7792306 DOI: 10.1186/s40478-020-01104-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ) as senile plaques and cerebral amyloid angiopathy, and hyperphosphorylated tau (hp-tau) as neurofibrillary tangles in the brain. The AD-related pathology has been reported in several non-human animals, and most animals develop only the Aβ or tau pathology. We herein describe the Aβ and hp-tau pathology in the brains of aged pinniped species (seal, sea lion, and walrus). Molecular analyses revealed that the sequence of pinniped Aβ was identical to that of human Aβ. Histopathological examinations detected argyrophilic plaques composed of Aβ associated with dystrophic neurites in the cerebral cortex of aged pinnipeds. Astrogliosis and microglial infiltration were identified around Aβ plaques. Aβ deposits were observed in the blood vessel walls of the meninges and cerebrum. Pinniped tau protein was physiologically subjected to alternative splicing at exons 2, 3, and 10, and presented as five isoforms: two 3-repeat tau isoforms (1N3R, 2N3R) and three 4-repeat tau isoforms (0N4R, 1N4R, 2N4R); 0N3R tau isoform was absent. Histopathological examinations revealed argyrophilic fibrillar aggregates composed of hp-tau in the neuronal somata and neurites of aged pinniped brains. Few hp-tau aggregates were found in oligodendrocytes and microglia. Biochemically, hp-tau of the 3-repeat and 4-repeat isoforms was detected in brain sarkosyl-insoluble fractions. Aβ and hp-tau both predominantly accumulated in the neocortex, particularly the frontal cortex. Furthermore, the activation of GSK-3β was detected within cells containing hp-tau aggregates, and activated GSK-3β was strongly expressed in cases with severe hp-tau pathologies. The present results suggest that, in association with Aβ deposition, the activation of GSK-3β contributes to hp-tau accumulation in pinniped brains. Here, we report that pinniped species naturally accumulate Aβ and tau with aging, similar to the human AD pathology.
Collapse
|
23
|
Abstract
Despite the overwhelming prevalence of anxiety disorders in modern society, medications and psychotherapy often fail to achieve complete symptom resolution. A complementary approach to medicating symptoms is to address the underlying metabolic pathologies associated with mental illnesses and anxiety. This may be achieved through nutritional interventions. In this perspectives piece, we highlight the roles of the microbiome and inflammation as influencers of anxiety. We further discuss the evidence base for six specific nutritional interventions: avoiding artificial sweeteners and gluten, including omega-3 fatty acids and turmeric in the diet, supplementation with vitamin D, and ketogenic diets. We attempt to integrate insights from the nutrition science-literature in order to highlight some practices that practitioners may consider when treating individual patients. Notably, this piece is not meant to serve as a comprehensive review of the literature, but rather argue our perspective that nutritional interventions should be more widely considered among clinical psychiatrists. Nutritional psychiatry is in its infancy and more research is needed in this burgeoning low-risk and potentially high-yield field.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Boston, MA, United States
| | - Uma Naidoo
- Harvard Medical School, Boston, MA, United States.,Department of Nutrition and Lifestyle Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Ketogenic diets, which have been used to treat drug-refractory paediatric epilepsy for over 100 years, are becoming increasingly popular for the treatment of other neurological conditions, including mental illnesses. We aim to explain how ketogenic diets can improve mental illness biopathology and review the recent clinical literature. RECENT FINDINGS Psychiatric conditions, such as schizophrenia, depression, bipolar disorder and binge eating disorder, are neurometabolic diseases that share several common mechanistic biopathologies. These include glucose hypometabolism, neurotransmitter imbalances, oxidative stress and inflammation. There is strong evidence that ketogenic diets can address these four fundamental diseases, and now complementary clinical evidence that ketogenic diets can improve the patients' symptoms. SUMMARY It is important that researchers and clinicians are made aware of the trajectory of the evidence for the implementation of ketogenic diets in mental illnesses, as such a metabolic intervention provides not only a novel form of symptomatic treatment, but one that may be able to directly address the underlying disease mechanisms and, in so doing, also treat burdensome comorbidities (see Video, Supplementary Digital Content 1, http://links.lww.com/COE/A16, which summarizes the contents of this review).
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Shebani Sethi
- Metabolic Psychiatry Clinic, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Christopher M Palmer
- Department of Postgraduate and Continuing Education, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
26
|
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are, respectively, the most prevalent and fastest growing neurodegenerative diseases worldwide. The former is primarily characterized by memory loss and the latter by the motor symptoms of tremor and bradykinesia. Both AD and PD are progressive diseases that share several key underlying mitochondrial, inflammatory, and other metabolic pathologies. This review will detail how these pathologies intersect with ketone body metabolism and signaling, and how ketone bodies, particularly d-β-hydroxybutyrate (βHB), may serve as a potential adjunctive nutritional therapy for two of the world's most devastating conditions.
Collapse
|
27
|
Norwitz NG, Querfurth H. mTOR Mysteries: Nuances and Questions About the Mechanistic Target of Rapamycin in Neurodegeneration. Front Neurosci 2020; 14:775. [PMID: 32903821 PMCID: PMC7438931 DOI: 10.3389/fnins.2020.00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 01/25/2023] Open
Abstract
The mechanistic target of rapamycin protein complex, mTORC1, has received attention in recent years for its role in aging and neurodegenerative diseases, such as Alzheimer's disease. Numerous excellent reviews have been written on the pathways and drug targeting of this keystone regulator of metabolism. However, none have specifically highlighted several important nuances of mTOR regulation as relates to neurodegeneration. Herein, we focus on six such nuances/open questions: (1) "Antagonistic pleiotropy" - Should we weigh the beneficial anabolic functions of mTORC1 against its harmful inhibition of autophagy? (2) "Early/late-stage specificity" - Does the relative importance of these neuroprotective/neurotoxic actions change as a disease progresses? (3) "Regional specificity" - Does mTOR signaling respond differently to the same interventions in different brain regions? (4) "Disease specificity" - Could the same intervention to inhibit mTORC1 help in one disease and cause harm in another disease? (5) "Personalized therapy" - Might genetically-informed personalized therapies that inhibit particular nodes in the mTORC1 regulatory network be more effective than generalized therapies? (6) "Lifestyle interventions" - Could specific diets, micronutrients, or exercise alter mTORC1 signaling to prevent or improve the progression neurodegenerative diseases? This manuscript is devoted to discussing recent research findings that offer insights into these gaps in the literature, with the aim of inspiring further inquiry.
Collapse
Affiliation(s)
- Nicholas G. Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
28
|
Huang Y, Sun L, Zhu S, Xu L, Liu S, Yuan C, Guo Y, Wang X. Neuroprotection Against Parkinson's Disease Through the Activation of Akt/GSK3β Signaling Pathway by Tovophyllin A. Front Neurosci 2020; 14:723. [PMID: 32742256 PMCID: PMC7364155 DOI: 10.3389/fnins.2020.00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and life-threatening neurodegenerative disease and mainly characterized by lack of sufficient dopaminergic neurons in the substantia nigra pars compacta (SNc). Although current treatments help to alleviate clinical symptoms, effective therapies preventing neuronal loss remain scarce. Tovophyllin A (TA), one of the xanthones extracted from Garcinia mangostana L. (GM), has recently been reported to play a beneficial role in the therapy of neurodegenerative diseases. In our research, we explored whether TA has protective effects on dopaminergic neurons in PD models. We found that TA significantly reduced apoptotic cell death in primary cortical neurons treated with 1-methyl-4-phenyl pyridinium (MPP+) or paraquat (PQ) in the in vitro PD model. In an in vivo acute PD model induced by 1-methyl4-phenyl-1,2,3,5-tetrahydropyridine (MPTP) treatment, TA also attenuated the resulting behavioral dysfunctions and dopaminergic neuron loss. In the collected brain tissues, TA increased the phosphorylation of Akt and GSK-3β, which may be related to TA-mediated dopaminergic neuronal protective effects. In summary, our results illustrated that TA is a powerful cytoprotective agent for dopaminergic neurons in the MPTP-induced PD model, suggesting TA as a possible therapeutic candidate for PD.
Collapse
Affiliation(s)
- Yanjun Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lirong Sun
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Xu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunhua Yuan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanwu Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Takaichi Y, Chambers JK, Inoue H, Ano Y, Takashima A, Nakayama H, Uchida K. Phosphorylation and oligomerization of α-synuclein associated with GSK-3β activation in the rTg4510 mouse model of tauopathy. Acta Neuropathol Commun 2020; 8:86. [PMID: 32560668 PMCID: PMC7304163 DOI: 10.1186/s40478-020-00969-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of specific phosphorylated protein aggregates in the brain, such as hyperphosphorylated tau (hp-tau) in tauopathies and phosphorylated α-synuclein (p-αSyn) in α-synucleinopathies. The simultaneous accumulation of different proteins is a common event in many neurodegenerative diseases. We herein describe the detection of the phosphorylation and dimerization of αSyn and activation of GSK-3β, a major kinase known to phosphorylate tau and αSyn, in the brains of rTg4510 mice that overexpress human P301L mutant tau. Immunohistochemistry showed p-αSyn aggregates in rTg4510 mice, which were suppressed by doxycycline-mediated decreases in mutant tau expression levels. A semi-quantitative analysis revealed a regional correlation between hp-tau and p-αSyn accumulation in rTg4510 mice. Furthermore, proteinase K-resistant αSyn aggregates were found in the region with excessive hp-tau accumulation in rTg4510 mice, and these aggregates were morphologically different from proteinase K-susceptible p-αSyn aggregates. Western blotting revealed decreases in p-αSyn monomers in TBS- and sarkosyl-soluble fractions and increases in ubiquitinated p-αSyn dimers in sarkosyl-soluble and insoluble fractions in rTg4510 mice. Furthermore, an activated form of GSK-3β was immunohistochemically detected within cells containing both hp-tau and p-αSyn aggregates. A semi-quantitative analysis revealed that increased GSK-3β activity strongly correlated with hp-tau and p-αSyn accumulation in rTg4510 mice. Collectively, the present results suggest that the overexpression of human P301L mutant tau promoted the phosphorylation and dimerization of endogenous αSyn by activating GSK-3β in rTg4510 mice. This synergic effect between tau, αSyn, and GSK-3β may be involved in the pathophysiology of several neurodegenerative diseases that show the accumulation of both tau and αSyn.
Collapse
|
30
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
31
|
Raimundo AF, Ferreira S, Martins IC, Menezes R. Islet Amyloid Polypeptide: A Partner in Crime With Aβ in the Pathology of Alzheimer's Disease. Front Mol Neurosci 2020; 13:35. [PMID: 32265649 PMCID: PMC7103646 DOI: 10.3389/fnmol.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with β-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood–brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.
Collapse
Affiliation(s)
- Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|