1
|
Sharma P, Daksh R, Khanna S, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression. Eur J Pharmacol 2025; 995:177422. [PMID: 39988094 DOI: 10.1016/j.ejphar.2025.177422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Depression, often stress-induced, is closely related to neuroinflammation, in which microglia, the brain's immune cells, are the leading players. Microglia shift between a quiescent and an active state, promoting both pro- and anti-inflammatory responses. Cannabinoid type 2 (CB2) receptor encoded by the CNR2 gene is a key player to modulate inflammatory activity. CB2 receptor is highly controlled at the epigenetic level, especially in response to stressful stimuli, positioning it between stress, neuroinflammation, and depression. The following review addresses how epigenetic regulation of CNR2 expression affects depression and the dissection, further, of molecular pathways driving neuroinflammation-related depressive states. The present study emphasizes the therapeutic potential of CB2 receptor agonists that selectively interact with activated microglia and opens a new avenue for the treatment of depression associated with neuroinflammation. The review, therefore, provides a framework of underlying mechanisms for developing novel therapeutic strategies that focus on relieving symptoms by modulating the neuroinflammatory response. Finally, this review underlines the possibilities of therapeutic interventions taking into account CB2 receptors in combating depression.
Collapse
Affiliation(s)
- Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Lau F, Binacchi R, Brugnara S, Cumplido-Mayoral A, Savino SD, Khan I, Orso A, Sartori S, Bellosta P, Carl M, Poggi L, Provenzano G. Using Single-Cell RNA sequencing with Drosophila, Zebrafish, and mouse models for studying Alzheimer's and Parkinson's disease. Neuroscience 2025; 573:505-517. [PMID: 40154937 DOI: 10.1016/j.neuroscience.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Alzheimer's and Parkinson's disease are the most common neurodegenerative diseases, significantly affecting the elderly with no current cure available. With the rapidly aging global population, advancing research on these diseases becomes increasingly critical. Both disorders are often studied using model organisms, which enable researchers to investigate disease phenotypes and their underlying molecular mechanisms. In this review, we critically discuss the strengths and limitations of using Drosophila, zebrafish, and mice as models for Alzheimer's and Parkinson's research. A focus is the application of single-cell RNA sequencing, which has revolutionized the field by providing novel insights into the cellular and transcriptomic landscapes characterizing these diseases. We assess how combining animal disease modeling with high-throughput sequencing and computational approaches has advanced the field of Alzheimer's and Parkinson's disease research. Thereby, we highlight the importance of integrative multidisciplinary approaches to further our understanding of disease mechanisms and thus accelerating the development of successful therapeutic interventions.
Collapse
Affiliation(s)
- Frederik Lau
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Rebecca Binacchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Brugnara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Alba Cumplido-Mayoral
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Serena Di Savino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Ihsanullah Khan
- Department of Civil, Environmental and Mechanical Engineering, University of Trento 38123 Trento, Italy
| | - Angela Orso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy; Department of Medicine NYU Grossman School of Medicine, 550 First Avenue, 10016 NY, USA.
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| |
Collapse
|
3
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Palanivelu L, Chang CW, Li SJ, Liang YW, Lo YC, Chen YY. Interplay of Neuroinflammation and Gut Microbiota Dysbiosis in Alzheimer's Disease Using Diffusion Kurtosis Imaging Biomarker in 3 × Tg-AD Mouse Models. ACS Chem Neurosci 2025; 16:1511-1528. [PMID: 40195658 PMCID: PMC12006996 DOI: 10.1021/acschemneuro.5c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
The relationship between alterations in brain microstructure and dysbiosis of gut microbiota in Alzheimer's disease (AD) has garnered increasing attention, although the functional implications of these changes are not yet fully elucidated. This research examines how neuroinflammation, systemic inflammation, and gut microbiota interact in male 3 × Tg-AD and B6129SF1/J wild-type (WT) mice at 6 months-old (6-MO) and 12 months-old (12-MO). Employing a combination of behavioral assessments, diffusion kurtosis imaging (DKI), microbiota profiling, cytokine analysis, short-chain fatty acids (SCFAs), and immunohistochemistry, we explored the progression of AD-related pathology. Significant memory impairments in AD mice at both assessed ages were correlated with altered DKI parameters that suggest neuroinflammation and microstructural damage. We observed elevated levels of pro-inflammatory cytokines, such as IL-1β, IL-6, TNFα, and IFN-γ, in the serum, which were associated with increased activity of microglia and astrocytes in brain regions critical for memory. Although gut microbiota analysis did not reveal significant changes in alpha diversity, it did show notable differences in beta diversity and a diminished Firmicutes/Bacteroidetes (F/B) ratio in AD mice at 12-MO. Furthermore, a reduction in six kinds of SCFAs were identified at two time points of 6-MO and 12-MO, indicating widespread disruption in gut microbial metabolism. These findings underscore a complex bidirectional relationship between systemic inflammation and gut dysbiosis in AD, highlighting the gut-brain axis as a crucial factor in disease progression. This study emphasizes the potential of integrating DKI metrics, microbiota profiling, and SCFA analysis to enhance our understanding of AD pathology and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International
Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing Street, Xinyi District, Taipei 11031, Taiwan
| | - Ching-Wen Chang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yao-Wen Liang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yu-Chun Lo
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| | - You-Yin Chen
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| |
Collapse
|
5
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Rezaee A, Daglia M, Aschner M, Sanaye PM, Kumar AP, Khan H. Unraveling the role of the IL-20 cytokine family in neurodegenerative diseases: Mechanisms and therapeutic insights. Int Immunopharmacol 2025; 152:114399. [PMID: 40068518 DOI: 10.1016/j.intimp.2025.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
The IL-20 cytokine family, comprising IL-19, IL-20, IL-22, IL-24, and IL-26, has emerged as a critical player in the pathogenesis of neurodegenerative diseases due to its multiple roles in inflammation, tissue repair, and immune modulation. These cytokines signal through IL-20 receptor complexes (IL-20RA/IL-20RB and IL-22RA1/IL-20RB), triggering diverse immune processes. Recent evidence highlights their significant contributions to neuroinflammation and neurodegeneration in central nervous system disorders. IL-20 family cytokines impact microglial activation, which, when dysregulated, exacerbates neuronal damage. Specifically, IL-20 and IL-24 are linked to elevated pro-inflammatory markers in glial cells, promoting neurodegeneration. In contrast, IL-22 exhibits dual functionality, exerting protective and pathological roles depending on the inflammatory milieu. Key mechanisms involve the regulation of blood-brain barrier integrity, oxidative stress, and autophagy. IL-22 and IL-24 also protect neurons by enhancing antioxidant defenses and maintaining epithelial barrier function, while their dysregulation contributes to blood-brain barrier disruption and protein aggregate accumulation, hallmark features of Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Elevated IL-22 levels in Alzheimer's disease and IL-19's regulatory role in multiple sclerosis suggest they may serve as potential biomarkers and therapeutic targets. IL-26's role in amplifying inflammatory cascades further underscores the complexity of this cytokine family in neurodegenerative pathology. Therapeutically, strategies targeting IL-20 cytokines include monoclonal antibodies, receptor modulation, and recombinant cytokine administration. These approaches aim to mitigate neuroinflammation, restore immune balance, and protect neuronal integrity. This review underscores the IL-20 family's emerging relevance in neurodegenerative diseases, highlighting its potential for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
6
|
Ansari S, Maurya VK, Kumar S, Tiwari M, Abdel-Moneime AS, Saxena SK. Neuroprotective effects of Centella asiatica against LPS/amyloid beta-induced neurodegeneration through inhibition of neuroinflammation. Neuroscience 2025; 575:19-35. [PMID: 40204151 DOI: 10.1016/j.neuroscience.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Protein aggregation and microglia-mediated neuroinflammation are the major contributors to the progression of neurodegeneration. Currently, available drugs for neurodegenerative diseases have limited efficacy and are associated with several side effects; suggesting a need to discover novel therapeutic agents. Therefore, we aim to evaluate the neuroprotective effects of C. asiatica against amyloid beta (Aβ) and lipopolysaccharides (LPS)-induced neurodegeneration using human microglia and neuronal cell-based models. To identify potential molecular targets of C. asiatica, network pharmacology-based approaches were used along with molecular docking, followed by experimental validation via indirect ELISA, Western blotting, and indirect immunofluorescence assays. Our results from network pharmacology, molecular docking, and cell-based models, exhibited that AKT1, TNF-α, STAT3, CASP3, PTGS2, MAPK1, APP, and NF-κB are the potential molecular targets of C. asiatica. Further, we have found that C. asiatica treatment reduces LPS/Aβ-induced cell death, NO production, and LDH release in microglia and neuronal cells. The anti-neuroinflammatory effect of C. asiatica was further observed via the reduction of LPS, Aβ, and LPS+Aβ-induced neuroinflammatory markers; TNF-α, IL6, IL-1β, AKT1, INOS, NF-κB, MAPK3, and PTGS2 in microglia cells. Moreover, neurodegenerative and apoptotic markers; APP, α-syn, P-tau STAT3, and CASP3 were reduced upon C. asiatica treatment in neuronal cells, suggesting its neuroprotective properties. For the first time, we have shown the neuroprotective effects of C. asiatica against LPS, Aβ, and LPS+Aβ -induced neurodegeneration via inhibition of neuroinflammation and neurodegenerative markers. The outcomes of the study suggested that C. asiatica could be a promising candidate for neuroinflammation-mediated neurodegenerative diseases like Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Saniya Ansari
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Mohan Tiwari
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA.
| |
Collapse
|
7
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
8
|
Saad HA, Marzouk M, Abdelrahman H, Moradikor N. Mechanisms underlying stress effects on the brain: Basic concepts and clinical implications. PROGRESS IN BRAIN RESEARCH 2025; 291:21-47. [PMID: 40222781 DOI: 10.1016/bs.pbr.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress impacts the brain through complex physiological, neurological, and immunological responses. The stress response involves the activation of the sympathetic-adrenal-medullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis, releasing stress hormones like norepinephrine and cortisol. While these responses are adaptive short-term, chronic stress disrupts homeostasis, increasing the risk of cardiovascular diseases, neurodegenerative disorders, and psychiatric conditions such as depression. This dysregulation is linked to persistent neuroinflammation, oxidative stress, and neurotransmitter imbalances involving dopamine and serotonin, impairing neuroplasticity and leading to structural changes in critical brain areas, such as the hippocampus and prefrontal cortex. Moreover, stress affects gene expression, particularly neuroinflammatory pathways, contributing to long-term cognitive function and emotional regulation alterations. Advancements in neuroimaging and molecular techniques, including MRI, PET, and SPECT, hold promise for identifying biomarkers and better understanding stress-induced brain changes. These insights are critical for developing targeted interventions to mitigate the adverse effects of chronic stress on brain health.
Collapse
Affiliation(s)
- Hager Adel Saad
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt.
| | - Mahmoud Marzouk
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Hla Abdelrahman
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
9
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025; 73:474-494. [PMID: 39751169 PMCID: PMC11784846 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
| | | | - Ruilin Yu
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Connor Beveridge
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Palak Manchanda
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer Science (By Courtesy)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug DiscoveryWest LafayetteIndianaUSA
- Purdue Institute for Integrative NeuroscienceWest LafayetteIndianaUSA
- Purdue Institute of InflammationImmunology and Infectious DiseaseWest LafayetteIndianaUSA
- Purdue Institute for Cancer ResearchWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
10
|
Afridi R, Bhusal A, Lee SE, Hwang EM, Ryu H, Kim JH, Suk K. A microglial kinase ITK mediating neuroinflammation and behavioral deficits in traumatic brain injury. Mol Cell Neurosci 2025; 132:103994. [PMID: 39864680 DOI: 10.1016/j.mcn.2025.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Microglia-mediated neuroinflammation has been implicated in the neuropathology of traumatic brain injuries (TBI). Recently, the expression of interleukin-2-inducible T-cell kinase (ITK) has been detected in brain microglia, regulating their inflammatory activities. However, the role of microglial ITK in TBI has not been investigated. In this study, we demonstrate that ITK expression and activation are upregulated in microglia following an injury caused by controlled cortical impact (CCI) - a mouse model of TBI. Pharmacological inhibition of ITK protein or knockdown of microglial ITK gene expression using adeno-associated virus mitigates neuroinflammation and improves neurological outcomes in the CCI model. Additionally, ITK mRNA expression was found to be increased in the brains of patients with chronic traumatic encephalopathy. An ITK inhibitor reduced the activation of inflammatory responses in both human and mouse microglia in vitro. Collectively, these results suggest that microglial ITK plays a pivotal role in neuroinflammation and mediating behavioral deficits following TBI. Thus, targeting the signaling pathway of microglial ITK may exert protective effects by alleviating neuroinflammation associated with TBI.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Chahin M, Mutschler J, Dzhuleva SP, Dieterle C, Jimenez LR, Bhattarai SR, Van Steenbergen V, Bareyre FM. Repetitive concussions promote microglia-mediated engulfment of presynaptic excitatory input associated with cognitive dysfunction. Commun Biol 2025; 8:335. [PMID: 40021832 PMCID: PMC11871131 DOI: 10.1038/s42003-025-07729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Concussions are a current health concern and account for the vast majority of head trauma. While symptoms after a single impact are usually transient, repetitive concussions, as often occur in sports, are responsible for persistent acute and chronic deficits. Here, we used a model of bilateral midline-centered concussions in mice to show that repetitive concussions selectively induce impairments in learning ability compared to single-impact injuries. Since microglial cells and their activation are considered key factors in degenerative pathology after brain trauma, we examined their structure and function after single and repetitive concussions in the cortex underlying the concussions and in the hippocampus. We found that only repetitive concussions led to a significant long-lasting structural activation of microglia and an increase in microglia-mediated engulfment of presynaptic excitatory synapses, while the elimination of inhibitory synapses was not altered. Since the density of excitatory input did not change during the 6-week study period, we hypothesize that there is a turnover of excitatory synapses following repetitive concussion that can be compensated for, anatomically but not behaviorally.
Collapse
Affiliation(s)
- Maryam Chahin
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Julius Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Stephanie P Dzhuleva
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Clara Dieterle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Leidy Reyes Jimenez
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Srijan Raj Bhattarai
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Valerie Van Steenbergen
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Kaur M, Aran KR. Unraveling the role of Nrf2 in dopaminergic neurons: a review of oxidative stress and mitochondrial dysfunction in Parkinson's disease. Metab Brain Dis 2025; 40:123. [PMID: 39932604 DOI: 10.1007/s11011-025-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcriptional factor, involved in the regulation of countenance of various anti-oxidant enzymes and cytoprotective genes that respond to mitochondrial dysfunctions, oxidative stress, and neuroinflammation, thus potentially contributing to several neurodegenerative diseases (NDDs), including Parkison's disease (PD). PD is the second most prevalent progressive NDD, characterized by gradual neuronal death in substantia nigra pars compacta (SNpc), depletion of dopamine level, and a wide range of motor symptoms, including bradykinesia, tremor, tingling, and muscle fatigue. The etiopathology of PD is caused by multifactorial intertwined with the onset and progression of the disease. In this context, Nrf2 exhibits neuroprotective action by preserving dopaminergic neurons in the striatum and retarding the disease progression; thus, Nrf2 activation plays a crucial role in PD. Additionally, Nrf2 binds with the antioxidant response element, which is located in the promoter region of most of the genes that are responsible for coding antioxidant enzymes. Moreover, protein kinase C (PKC) mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K) are also involved in the regulation of Keap1 pathway-mediated Nrf2 activation. As Nrf2 revealed its defensive and protective role in the central nervous system (CNS), it is gaining enough interest in treating PD. The treatments that are currently available are intended to alleviate the symptoms of PD; however, they are unable to halt the progression and severity of the disease. Therefore, in this review we delve deeper into various molecular mechanisms associated with oxidative stress, mitochondrial dysfunction, and neuroinflammation in PD. Additionally, we elaborated on the substantial role that NRF2 plays in mitigating these adverse effects and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
13
|
Rennie C, Morshed N, Faria M, Collins-Praino L, Care A. Nanoparticle Association with Brain Cells Is Augmented by Protein Coronas Formed in Cerebrospinal Fluid. Mol Pharm 2025; 22:940-957. [PMID: 39805033 DOI: 10.1021/acs.molpharmaceut.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
- Australian Institute for Microbiology and Infection, Sydney 2007, New South Wales, Australia
| | - Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| |
Collapse
|
14
|
Naef V, Damiani D, Licitra R, Marchese M, Vecchia SD, Baggiani M, Brogi L, Galatolo D, Landi S, Santorelli FM. Modeling sacsin depletion in Danio Rerio offers new insight on retinal defects in ARSACS. Neurobiol Dis 2025; 205:106793. [PMID: 39778749 PMCID: PMC11757156 DOI: 10.1016/j.nbd.2025.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells. RNA-seq analysis in embryos revealed dysfunction in proteins related to fat-soluble vitamins (e.g., TTPA, RDH5, VKORC) and suggested a key role of neuroinflammation in driving the retinal defects. Our findings indicate that studying retinal pathology in ARSACS could be crucial for understanding the impact of sacsin depletion and may offer insights into halting disease progression.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| | - Devid Damiani
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Matteo Baggiani
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Daniele Galatolo
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | | |
Collapse
|
15
|
Shehjar F, James AW, Mahajan R, Shah ZA. Inhibition of iron-induced cofilin activation and inflammation in microglia by a novel cofilin inhibitor. J Neurochem 2025; 169:e16260. [PMID: 39556452 PMCID: PMC11808637 DOI: 10.1111/jnc.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Neuroinflammatory conditions linked to iron dysregulation pose significant challenges in neurodegenerative diseases. Iron-loaded microglia are observed in the brains of patients with various neuroinflammatory conditions, yet how iron overload affects microglial function and contributes to various neuroinflammatory processes is poorly understood. This in vitro study elucidates the relationship between excess iron, cofilin activation, and microglial function, shedding light on potential therapeutic avenues. Iron overload was induced in Human Microglial Clone 3 cells using ferrous sulfate, and the expressions of ferritin heavy chain, ferritin light chain, divalent metal transporter 1, cofilin, p-cofilin, nuclear factor-κB (NF-κB), and various inflammatory cytokines were analyzed using real-time quantitative polymerase chain reaction, immunocytochemistry, Western blotting, and enzyme-linked immunosorbent assay. Results revealed a notable increase in cofilin, NF-κB, and inflammatory cytokine expression levels following excess iron exposure. Moreover, treatment with deferoxamine (DFX), a known iron chelator, and a novel cofilin inhibitor (CI) synthesized in our laboratory demonstrate a mitigating effect on iron-induced cofilin expression. Furthermore, both DFX and CI exhibit promising outcomes in mitigating the inflammatory consequences of excess iron, including the expression of pro-inflammatory cytokines and NF-κB activation. These findings suggest that both DFX and CI can potentially alleviate microglia-induced neuroinflammation by targeting both iron dysregulation and cofilin-mediated pathways. Overall, this study provides valuable insights into iron-induced cofilin activation and microglial activation, offering avenues for potential targeted therapies for neuroinflammatory conditions associated with iron and cofilin dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological ChemistryCollege of Pharmacy and Pharmaceutical SciencesToledoOhioUSA
| | - Antonisamy William James
- Department of Medicinal and Biological ChemistryCollege of Pharmacy and Pharmaceutical SciencesToledoOhioUSA
| | - Reetika Mahajan
- Department of Medicinal and Biological ChemistryCollege of Pharmacy and Pharmaceutical SciencesToledoOhioUSA
| | - Zahoor A. Shah
- Department of Medicinal and Biological ChemistryCollege of Pharmacy and Pharmaceutical SciencesToledoOhioUSA
| |
Collapse
|
16
|
Zhang Z, Wang H, Tao B, Shi X, Chen G, Ma H, Peng R, Zhang J. Attenuation of Blood-Brain Barrier Disruption in Traumatic Brain Injury via Inhibition of NKCC1 Cotransporter: Insights into the NF-κB/NLRP3 Signaling Pathway. J Neurotrauma 2025. [PMID: 39879999 DOI: 10.1089/neu.2023.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Following traumatic brain injury (TBI), inhibition of the Na+-K+-Cl- cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI. The TBI model was induced in C57BL/6 mice through a controlled cortical impact device, and an in vitro BBB model was established using Transwell chambers. Western blot (WB) analysis was used to evaluate NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor-kappaB (NF-κB) pathway proteins. Flow cytometry and transendothelial electrical resistance (TEER) were employed to assess endothelial cell apoptosis levels and BBB integrity. ELISA was utilized to measure cytokines interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9). Immunofluorescence techniques were used to evaluate protein levels and the nuclear translocation of the rela (p65) subunit. The Evans blue dye leakage assay and the brain wet-dry weight method were utilized to assess BBB integrity and brain swelling. Inhibition of NKCC1 reduced the level of NLRP3 inflammasome and the secretion of IL-1β and MMP-9 in microglia. Additionally, NKCC1 inhibition suppressed the activation of the NF-κB signaling pathway, which in turn decreased the level of NLRP3 inflammasome. The presence of NLRP3 inflammasome in BV2 cells led to compromised BBB integrity within an inflammatory milieu. Following TBI, an upregulation of NLRP3 inflammasome was observed in microglia, astrocytes, vascular endothelial cells, and neurons. Furthermore, inhibiting NKCC1 resulted in a decrease in the positive rate of NLRP3 inflammasome in microglia and the levels of inflammatory cytokines IL-1β and MMP-9 after TBI, which correlated with BBB damage and the development of cerebral edema. These findings demonstrate that the suppression of the NKCC1 cotransporter protein alleviates BBB disruption through the NF-κB/NLRP3 signaling pathway following TBI.
Collapse
Affiliation(s)
- Zehan Zhang
- Department of Neurosurgery, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Bingyan Tao
- Department of Neurosurgery, 961th Hospital of Joint Logistics Support Force, Qiqihaer, China
| | - Xudong Shi
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guilin Chen
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hengchao Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Olari LR, Liu S, Arnold F, Kühlwein J, Gil Miró M, Updahaya AR, Stürzel C, Thal DR, Walther P, Sparrer KMJ, Danzer KM, Münch J, Kirchhoff F. α-Synuclein fibrils enhance HIV-1 infection of human T cells, macrophages and microglia. Nat Commun 2025; 16:813. [PMID: 39827271 PMCID: PMC11742913 DOI: 10.1038/s41467-025-56099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia. Additionally, an HIV-1 Env-derived amyloidogenic peptide accelerated amyloid formation by α-synuclein and Aβ peptides. Mechanistic studies show that α-synuclein and Aβ fibrils interact with HIV-1 particles and promote virion attachment and fusion with target cells. Despite an overall negative surface charge, these fibrils facilitate interactions between viral and cellular membranes. The enhancing effects of human brain extracts on HIV-1 infection correlated with their binding to Thioflavin T, a dye commonly used to stain amyloids. Our results suggest a detrimental interplay between HIV-1 and brain amyloids that may contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sichen Liu
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Franziska Arnold
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Julia Kühlwein
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Marta Gil Miró
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ajeet Rijal Updahaya
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
18
|
Fu Q, Qiu R, Liang J, Wu S, Huang D, Qin Y, Li Q, Shi X, Xiong X, Jiang Z, Chen Y, Cheng Y. Sugemule-7 alleviates oxidative stress, neuroinflammation, and cell death, promoting synaptic plasticity recovery in mice with postpartum depression. Sci Rep 2025; 15:1426. [PMID: 39789071 PMCID: PMC11718020 DOI: 10.1038/s41598-025-85276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative. To investigate its preventive effects on PPD, we established an animal model and administered the drug Sugemule-7. Our study demonstrated that varying doses of Sugemule-7 effectively alleviated depressive and anxiety-like behaviors in PPD mice, as assessed through a battery of tests, including the open field test, tail suspension test, sucrose preference test, forced swim test, novelty-suppressed feeding test, and elevated plus maze test. Furthermore, Sugemule-7 significantly improved oxidative stress levels in the serum, prefrontal cortex, and hippocampus of PPD-induced mice while also suppressing inflammatory responses and abnormal neuronal death in these brain regions. Transcriptomic sequencing of hippocampal and prefrontal cortex tissues supported our findings, revealing that differential gene expression is primarily involved in regulating synaptic plasticity. Overall, our study confirms the efficacy of Sugemule-7 in treating PPD at different concentrations, potentially alleviating depressive behaviors by enhancing synaptic plasticity, mitigating oxidative stress, reducing inflammation, and protecting neurons.
Collapse
Affiliation(s)
- Qiang Fu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Rui Qiu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
| | - Shuai Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dezhi Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuxiang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiaosheng Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiaojie Shi
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiyue Xiong
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhongyong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Yuewen Chen
- Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences, Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, 518057, Guangdong, China.
- Xili Shenzhen University Town, No.1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China.
| | - Yong Cheng
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- , 27th South Zhongguancun Avenue, Beijing, 100081, China.
| |
Collapse
|
19
|
Bazaz MR, Padhy HP, Dandekar MP. Chitosan lactate improves repeated closed head injury-generated motor and neurological dysfunctions in mice by impacting microbiota gut-brain axis. Metab Brain Dis 2025; 40:81. [PMID: 39751900 DOI: 10.1007/s11011-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis. Adult C57BL/6 mice were exposed to circadian disruption (CD) prior to rmTBI insults. The neurobehavioral changes were assessed by rotarod, open-field test (OFT), elevated zero maze (EZM), forced-swim test (FST), Y-maze, and novel object recognition test (NORT). The inflammatory, neuronal, and synaptic markers in the frontal cortex and hippocampus, and cecal gut microbiota phylum were examined using RT-PCR and western blotting. The goblet cells, tight junction proteins (occludin and zona occludens-1), and short-chain fatty acids (SCFAs) were analyzed using immunohistochemistry, alcian-blue PAS staining, and 1H-NMR methods. Mice exposed to CD + rmTBI (CDR) displayed robust neurological dysfunctions in rotarod, anxiety- and depressive-like behavior in EZM and FST, and cognition deficits in Y-maze and NORT. Administration of CL (1 and 3 mg/kg) mitigated the above neurobehavioral abnormalities. CL treatment also normalized the levels of inflammatory markers (NF-κB, IL-6, IL-18, and TNF-α), brain-derived neurotrophic factor, and neuronal/synaptic proteins (doublecortin, synaptophysin, and postsynaptic density protein-95). Increased goblet cells and tight junction proteins in the colon and SCFAs in the cecal samples indicated improved gut integrity following CL treatment. The results indicate that CL mitigated CDR-inflicted neurological abnormalities in mice by modulating neuroinflammation and gut-brain interactions.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
20
|
Boulton M, Al-Rubaie A. Neuroinflammation and neurodegeneration following traumatic brain injuries. Anat Sci Int 2025; 100:3-14. [PMID: 38739360 PMCID: PMC11725545 DOI: 10.1007/s12565-024-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Traumatic brain injuries (TBI) commonly occur following head trauma. TBI may result in short- and long-term complications which may lead to neurodegenerative consequences, including cognitive impairment post-TBI. When investigating the neurodegeneration following TBI, studies have highlighted the role reactive astrocytes have in the neuroinflammation and degeneration process. This review showcases a variety of markers that show reactive astrocyte presence under pathological conditions, including glial fibrillary acidic protein (GFAP), Crystallin Alpha-B (CRYA-B), Complement Component 3 (C3) and S100A10. Astrocyte activation may lead to white-matter inflammation, expressed as white-matter hyperintensities. Other white-matter changes in the brain following TBI include increased cortical thickness in the white matter. This review addresses the gaps in the literature regarding post-mortem human studies focussing on reactive astrocytes, alongside the potential uses of these proteins as markers in the future studies that investigate the proportions of astrocytes in the post-TBI brain has been discussed. This research may benefit future studies that focus on the role reactive astrocytes play in the post-TBI brain and may assist clinicians in managing patients who have suffered TBI.
Collapse
Affiliation(s)
- Matthew Boulton
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Ali Al-Rubaie
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
21
|
Sessa F, Pomara C, Schembari F, Esposito M, Capasso E, Pesaresi M, Osuna E, Ulas E, Zammit C, Salerno M. MiRNA Dysregulation in Brain Injury: An In Silico Study to Clarify the Role of a MiRNA Set. Curr Neuropharmacol 2025; 23:209-231. [PMID: 39129166 PMCID: PMC11793054 DOI: 10.2174/1570159x22666240808124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes. OBJECTIVE This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a. METHODS After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0). RESULTS Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury. CONCLUSION This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Flavia Schembari
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | | | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Ancona, 60126, Italy
| | - Eduardo Osuna
- Department of Forensic Medicine. University of Murcia. 30120 Murcia, Spain
| | - Efehan Ulas
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirklareli University, Kirklareli, Turkey
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Hajinejad M, Gharaeian Morshed A, Narouiepour A, Izadpanahi M, Taheri MM, Sadeghian MH, Forouzanfar F, Sahab Negah S. NMDA receptors antagonists alleviated the acute phase of traumatic brain injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:181-186. [PMID: 39850115 PMCID: PMC11756730 DOI: 10.22038/ijbms.2024.80887.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 01/25/2025]
Abstract
Objectives Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI. Materials and Methods To conduct the study, a controlled cortical impact model was used to induce TBI in rats. The rats with TBI were then divided into three groups: a group receiving only TBI, a group receiving TBI along with memantine, and a group receiving TBI along with ketamine. After 24 hr, the levels of oxidative stress markers (such as SOD, MDA, and total thiol) in the brain tissue were measured. Immunohistochemical staining was also performed seven days after TBI to assess the activation of glial cells and the TLR-4/NF-κB neuroinflammatory pathway. Results The results indicated that treatment with memantine led to a reduction in MDA levels and an increase in SOD and total thiol levels. Memantine also decreased astrogliosis and down-regulated the TLR-4/NF-κB pathway. On the other hand, ketamine increased the levels of anti-oxidant markers but did not significantly affect the MDA level. Additionally, ketamine decreased the expression of NF-κB seven days after TBI. Conclusion The findings suggest that NMDA receptor antagonists, such as ketamine and memantine, may have therapeutic effects on TBI by inhibiting oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Qaen Faculty of Medical Science, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmadreza Gharaeian Morshed
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Abdolreza Narouiepour
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Sadeghian
- Department of Forensic Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Yan A, Li Z, Gao Y, Hu F, Han S, Liu F, Liu Z, Chen J, Yuan C, Zhou C. Isobicyclogermacrenal ameliorates hippocampal ferroptosis involvement in neurochemical disruptions and neuroinflammation induced by sleep deprivation in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156306. [PMID: 39647468 DOI: 10.1016/j.phymed.2024.156306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sleep deprivation (SLD) is a widespread condition that disrupts physiological functions and may increase mortality risk. Valeriana officinalis, a traditional medicinal herb known for its sedative and hypnotic properties, contains isobicyclogermacrenal (IG), a newly isolated active compound. However, research on the therapeutic potential of IG for treating SLD remains limited. METHODS In this study, IG was extracted and characterized from Valeriana officinalis, and an SLD model was established in rats using p-chlorophenylalanine (PCPA). Behavioral tests and pathological studies were conducted to assess the effects of IG on SLD, and transcriptomic and metabolomic analyses were utilized to investigate its underlying mechanisms. RESULTS IG administration significantly improved the cognitive performance of SLD rats in behavioral tests and ameliorated histological injuries in the hippocampus and cerebral cortex. IG treatment increased the levels of brain-derived neurotrophic factor (BDNF) and neurotransmitters such as serotonin (5-HT) in SLD rats. Additionally, IG directly targets TFRC, thereby improving iron metabolism in the hippocampus. Comprehensive transcriptomic and metabolomic analyses revealed that the improvements from IG stemmed from the mitigation of abnormalities in iron metabolism, cholesterol metabolism, and glutathione metabolism, leading to reduced oxidative stress, ferroptosis, and neuroinflammation in the hippocampus caused by SLD. CONCLUSIONS Collectively, these findings suggest that IG has the potential to ameliorate neurological damage and cognitive impairment caused by SLD, offering a novel strategy for protection against the adverse effects of SLD.
Collapse
Affiliation(s)
- Ao Yan
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhejin Li
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yuanwei Gao
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fanglong Hu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Shuo Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fengjie Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Chengyan Zhou
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
24
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2024:10.1038/s41390-024-03733-z. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
25
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
26
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
27
|
Du H, Lai J, Lin B, Pan J, Zhou Y, Feng Y. LCN2 Regulates Microglia Polarization Through the p38MAPK-PGC-1α-PPARγ Pathway to Alleviate Traumatic Brain Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01642-w. [PMID: 39688655 DOI: 10.1007/s12013-024-01642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Traumatic brain injury (TBI) is a common traumatic event that imposes a significant burden on families and society. Lipocalin (LCN) is a class of multifunctional secreted lipoprotein molecules. This study aimed to explore the role and possible mechanism of LCN2 in TBI. A rat model of TBI was constructed and adeno-associated virus-coated shRNA-LCN2 was used to silence LCN2 expression. The modified neurological severity score (mNSS), learning and memory ability, pathological injury of brain tissue, number of neurons, and expression of neurotrophic factors were analyzed, and the expression of inflammatory factors, M1/M2 polarization of microglia, and p38MAPK-PGC-1α-PPARγ pathway after LCN2 silencing were further detected. Results found that LCN2 was highly expressed in the brain tissue of TBI rats, and there were obvious learning and cognitive impairments and pathological injury of brain tissue. After silencing LCN2, the mNSS was further increased, and the learning and cognitive ability was weakened. Similarly, silencing LCN2 increased the brain tissue water content, aggravated the histopathology degree, decreased the number of surviving neurons, and reduced the expression of neurotrophic factors in TBI model rats. In addition, the expression of M1 proinflammatory cytokines and polarization markers in microglia of TBI was increased, and the expression of M2 cytokines and markers was decreased after silencing LCN2. Silencing LCN2 also inhibited the activation of the p38MAPK-PGC-1α-PPARγ pathway. In conclusion, LCN2 was released by surviving neurons after TBI, and the increased LCN2 activated the p38MAPK-PGC-1α-PPARγ pathway, which promoted M2 polarization of microglia, and secreted neurotrophic factors, thereby alleviating secondary brain injury.
Collapse
Affiliation(s)
- Hanjian Du
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jun Lai
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Bo Lin
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Yanghao Zhou
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Yimo Feng
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
28
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
29
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
30
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
31
|
Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. J Nanobiotechnology 2024; 22:731. [PMID: 39578855 PMCID: PMC11585243 DOI: 10.1186/s12951-024-03023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Oxidative stress (OS) and neuroinflammation are critical pathological processes in secondary brain injury (SBI) after intracerebral hemorrhage(ICH), and their intimate interactions initiate and aggravate brain damage. Thus, targeting oxidative stress and neuroinflammation could be a promising therapeutic strategy for ICH treatment. Here, we report a high-performance platform using polydopamine (PDA)-coated diselenide bridged mesoporous silica nanoparticle (PDA-DSeMSN) as a smart ROS scavenger and ROS-responsive drug delivery system. Caffeic acid phenethyl ester (CAPE) was blocked in the pore of DSeMSN by covering the pore with PDA as a gatekeeper. PDA-DSeMSN @CAPE maintained high stability and underwent reactive oxygen species (ROS)-responsive degradation and drug release. The intelligent nanomaterial effectively eliminated ROS, promoted M1 to M2 microglial conversion and suppressed neuroinflammation in vitro and in vivo. Importantly, intravenous administration of PDA-DSeMSN@CAPE specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model with high biological safety. Taking together, the synergistic effect of ROS-responsive drug delivery ability and ROS scavenging ability of PDA-DSeMSN makes it a powerful drug delivery platform and provided new considerations into the therapeutic action to improve ICH-induce brain injury.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxuan Liu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ranran Tu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Binbin Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
32
|
Kweon B, Oh J, Lim Y, Noh G, Yu J, Kim D, Jang M, Kim D, Bae G. Anti-Inflammatory Effects of Honeysuckle Leaf Against Lipopolysaccharide-Induced Neuroinflammation on BV2 Microglia. Nutrients 2024; 16:3954. [PMID: 39599739 PMCID: PMC11597670 DOI: 10.3390/nu16223954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neurodegenerative disorders have emerged as a major global public health concern, and the burden is predicted to increase over time. Modulating neuroinflammation and microglial activity is considered a promising target for improving neurodegenerative disorders. The leaf of honeysuckle (LH), which has anti-inflammatory properties, has long been collected, regardless of the season, and used for medicinal purposes. However, research on its effects on neuroinflammation is scarce. In this study, we determined the neuroprotective effects of LH water extract by inhibiting microglial activation induced by lipopolysaccharide (LPS). METHODS The production or secretion of pro-inflammatory mediators was examined in LPS-exposed BV2 cells to ascertain the efficacy of LH water extract in improving neuroinflammation. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory κBα (IκBα) were analyzed to elucidate the regulatory mechanisms of LH water extract. Ultra-performance liquid chromatography (UPLC) analysis was conducted to identify the active component of the LH. RESULTS LH water extract suppressed the formation of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α, in LPS-activated BV2 cells. LH impeded the activation of c-Jun N-terminal kinase (JNK). Moreover, chlorogenic acid was found in LH. CONCLUSIONS The above findings suggest that LH water extract could improve neuroinflammation.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Jinyoung Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Yebin Lim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Gyeongran Noh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Jihyun Yu
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Donggu Kim
- Department of Herbology, College of Korean Medicine, Dong-Eui University, 176 Eomgwang-ro, Busan 47340, Republic of Korea
| | - Mikyung Jang
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Donguk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Gisang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| |
Collapse
|
33
|
Du J, Chen C, Chen J. Cirsilineol improves anesthesia/surgery-induced postoperative cognitive dysfunction through attenuating oxidative stress and modulating microglia M1/M2 polarization. PeerJ 2024; 12:e18507. [PMID: 39559329 PMCID: PMC11572359 DOI: 10.7717/peerj.18507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Background Cirsilineol is a trimethoxy and dihydroxy flavonoid isolated from plant species such as Artemisia vestita and has a variety of pharmacological properties. This study analyzed whether cirsilineol could prevent postoperative cognitive dysfunction (POCD). Methods A POCD mouse model induced by anesthesia/surgery induction and a cell model established with hydrogen peroxide (H2O2)-induced microglia BV-2 were employed to explore the efficacy of cirsilineol on POCD. The cognition function of the mice were assessed by carrying out behavioral tests (Morris water maze test and Y-maze test). We assessed the activation and polarization status of microglia using immunofluorescence analysis and detected the expression levels of CD86 and CD206 using the quantitative PCR (qPCR). Subsequently, cell viability was determined by CCK-8 assay and apoptosis was assessed using Calcein-AM/PI staining. Meanwhile, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in plasma and cell culture medium were detected using chemiluminescence. Finally, the phosphorylation levels of JAK/STAT signaling pathway-related proteins were analyzed by Western blot. Results Cirsilineol reduced the escape latency and times of crossing island and increased spontaneous alternation (SA) rate, restoring the cognitive dysfunctions of POCD-modeled mice. Meanwhile, POCD elevated CD86 expression and malondialdehyde content and lowered the level of SOD; however, cirsilineol promoted CD206 expression and generation of SOD and inhibited malondialdehyde production. In H2O2-induced microglia BV-2, cirsilineol treatment increased SOD content and suppressed the generation of reactive oxygen species (ROS) and malondialdehyde, modulating microglia M1/M2 polarization and JAK/STAT pathway. Conclusion Cirsilineol prevented against POCD by attenuating oxidative stress and modulating microglia M1/M2 polarization, providing novel insights for the management of POCD.
Collapse
Affiliation(s)
- Junli Du
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Chen
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- Department of Anesthesiology, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Palanivelu L, Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Lo YC. Investigating brain-gut microbiota dynamics and inflammatory processes in an autistic-like rat model using MRI biomarkers during childhood and adolescence. Neuroimage 2024; 302:120899. [PMID: 39461606 DOI: 10.1016/j.neuroimage.2024.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear. We hypothesized that ASD-related brain microstructural changes and gut dysbiosis induce metabolic dysregulation and proinflammatory responses, which collectively contribute to the social behavioral deficits observed in early childhood. We used an autistic-like rat model that was generated via prenatal valproic acid exposure. We analyzed brain microstructural changes using diffusion tensor imaging (DTI) and examined microbiota, blood, and fecal samples for inflammation biomarkers. The ASD model rats exhibited significant brain microstructural changes in the anterior cingulate cortex, hippocampus, striatum, and thalamus; reduced microbiota diversity (Prevotellaceae and Peptostreptococcaceae); and altered metabolic signatures. The shift in microbiota diversity and density observed at postnatal day (PND) 35, which is a critical developmental period, underscored the importance of early ASD interventions. We identified a unique metabolic signature in the ASD model, with elevated formate and reduced acetate and butyrate levels, indicating a dysregulation in short-chain fatty acid (SCFA) metabolism. Furthermore, increased astrocytic and microglial activation and elevated proinflammatory cytokines-interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)-were observed, indicating immune dysregulation. This study provided insights into the complex interplay between the brain and the gut, and indicated DTI metrics as potential imaging-based biomarkers in ASD, thus emphasizing the need for early childhood interventions.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing St., Xinyi Dist., Taipei city 110, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan.
| |
Collapse
|
35
|
Chen H, Sun H, Yang Y, Wang P, Chen X, Yin J, Li A, Zhang L, Cai J, Huang J, Zhang S, Zhang Z, Feng X, Yin J, Wang Y, Xiong W, Wan B. Engineered melatonin-pretreated plasma exosomes repair traumatic spinal cord injury by regulating miR-138-5p/SOX4 axis mediated microglia polarization. J Orthop Translat 2024; 49:230-245. [PMID: 39512441 PMCID: PMC11541837 DOI: 10.1016/j.jot.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Background Neuroinflammation plays a crucial role in the repair of spinal cord injury (SCI), with microglia, pivotal in neuroinflammation, driving either degeneration or recovery in this pathological process. Recently, plasma-derived exosomes (denoted Exos) have presented a high capacity for promoting functional recovery of SCI through the anti-inflammatory effects, and pretreated exosomes are associated with better outcomes. Thus, we aimed to explore whether melatonin-pretreated plasma-derived exosomes (denoted MExo) could exert superior effects on SCI, and attempted to elucidate the potential mechanisms. Methods Electron microscopy, nanoparticle tracking analysis, and western blot were applied to delineate the distinctions between Exos and MExos. To assess their therapeutic potentials, we established a contusion SCI rat model, complemented by a battery of in vitro experiments comparing both groups. Subsequently, a miRNA microarray analysis was conducted, followed by a series of rescue experiments to elucidate the specific role of miRNAs in MExos. To further delve into the molecular mechanisms involved, we employed western blot analysis and the luciferase reporter gene assay. Results Melatonin promoted the release of exosome from plasma, concurrently amplifying their anti-inflammatory properties. Furthermore, it was discerned that MExos facilitated a transition in microglia polarization from M1 to M2 phenotype, a phenomenon more pronounced than that observed with Exos. In an endeavor to elucidate this variance, we scrutinized miRNAs exhibiting elevated expression levels in MExos, pinpointing miR-138-5p as a pivotal element in this dynamic. Following this, an in-depth investigation into the role of miR-138-5p was undertaken, which uncovered its efficacy in driving phenotypic alterations within microglia. The analysis of downstream genes targeted by miR-138-5p revealed that it exerted a negative regulatory influence on SOX4, which was found to obstruct the generation of M2-type microglia and the secretion of anti-inflammatory cytokines, thereby partially elucidating the mechanism behind miR-138-5p's regulation of microglia polarization. Conclusions We innovatively observed that melatonin enhanced the anti-inflammatory function of Exos, which further decreased the expression of SOX4 by delivering miR-138-5p. This inhibition promoted the conversion of M1 microglia to M2 microglia, thus offering a viable option for the treatment of SCI. The translational potential of this article This study highlights that melatonin enhances the anti-inflammatory function of Exos through delivery of miR-138-5p. Activation of miR-138-5p/SOX4 axis by engineered melatonin-pretreated plasma exosomes may be a potential target for SCI treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huihui Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yaqing Yang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Pingchuan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xizhao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Junxiang Yin
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Aoying Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jun Cai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jijun Huang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Shengfei Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiqiang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinmin Feng
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Orthopedics, the Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Department of Orthopedics, Northern Jiangsu People's Hospital, Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Rezaiezadeh H, Langarizadeh MA, Tavakoli MR, Sabokro M, Banazadeh M, Kohlmeier KA, Shabani M. Therapeutic potential of Bergenin in the management of neurological-based diseases and disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8349-8366. [PMID: 38850305 DOI: 10.1007/s00210-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Originally sourced from plants, Bergenin has been used as a medicinal compound in traditional medicine for centuries, and anecdotal reports suggest a wide range of therapeutic uses. Naturally-occurring and lab-synthesized Bergenin, as well as some of its related compounds, have been shown in in vivo and in vitro studies to alter activity of several enzymes and proteins critical in cellular functioning, including reelin, GSK-3β, Lingo-1, Ten-4, GP-43, Aβ 1-42, P-tau, SOD1,2, GPx, Glx1, NQO1, HO1, PPAR-ɣ, BDNF, VEGF, and STAT6. Additionally, Bergenin alters levels of several cytokines, such as IL-6, IL-1β, TNF-α, and TGF-β. Behavioral and cellular effects of Bergenin have been shown to involve PI3K/Akt, NF-κB, PKC, Nrf2, and Sirt1/FOXO3a pathways. These pathways, enzymes, and proteins have been shown to be important in normal neurological functioning, and/or dysfunctions in these pathways and proteins have been shown to be important in several neuro-based disorders or diseases, which suggests that Bergenin could be therapeutic in management of neuropsychiatric conditions or neurological disorders. In preclinical studies, Bergenin has been shown to be useful for the management of Alzheimer's disease, Parkinson's disease, anxiety, depression, addiction, epilepsy, insomnia, stroke, and potentially, state control. Our review aims to summarize current evidence supporting the conclusion that Bergenin could play a role in treating various neuro-based disorders and that future studies should be conducted to evaluate the mechanisms by which Bergenin could exert its therapeutic effects.
Collapse
Affiliation(s)
- Hojjat Rezaiezadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1583, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marziye Ranjbar Tavakoli
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sabokro
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
37
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
38
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
39
|
Obukohwo OM, Oreoluwa OA, Andrew UO, Williams UE. Microglia-mediated neuroinflammation in traumatic brain injury: a review. Mol Biol Rep 2024; 51:1073. [PMID: 39425760 DOI: 10.1007/s11033-024-09995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, characterized by a complex interplay of primary and secondary injury mechanisms. Microglia, the resident immune cells of the central nervous system, play a crucial role in the inflammatory response following TBI. To review the current understanding of microglia-mediated neuroinflammation in TBI, exploring its dual nature as a protective and detrimental process. A comprehensive literature review was conducted using databases such as PubMed, Scopus, and Google Scholar. Relevant studies investigating the role of microglia in TBI were included. In the early stages of TBI, microglia exhibit a protective response, releasing cytokines and chemokines to promote neuronal survival and tissue repair. However, prolonged or excessive microglial activation can lead to neurotoxicity and exacerbate secondary injury. Microglia-mediated neuroinflammation involves complex signaling pathways, including Toll-like receptors, purinergic receptors, and the complement system. Microglia-mediated neuroinflammation in TBI is a double-edged sword. While acute microglial activation can promote repair, chronic or excessive inflammation contributes to neuronal damage and functional deficits. Understanding the temporal and molecular dynamics of microglial responses is crucial for developing therapeutic strategies to modulate neuroinflammation and improve outcomes after TBI.
Collapse
Affiliation(s)
- Oyovwi Mega Obukohwo
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Oyelere Abosede Oreoluwa
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Udi Onoriode Andrew
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| | - Ugwuishi Emeka Williams
- Department of Physiology, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| |
Collapse
|
40
|
Pellitteri R, La Cognata V, Russo C, Patti A, Sanfilippo C. Protective Role of Eicosapentaenoic and Docosahexaenoic and Their N-Ethanolamide Derivatives in Olfactory Glial Cells Affected by Lipopolysaccharide-Induced Neuroinflammation. Molecules 2024; 29:4821. [PMID: 39459191 PMCID: PMC11510059 DOI: 10.3390/molecules29204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding N-ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation. To verify their anti-inflammatory effect and cell morphological features on OECs, the expression of IL-10 cytokine, and cytoskeletal proteins (vimentin and GFAP) was evaluated by immunocytochemical procedures. In addition, MTT assays, TUNEL, and mitochondrial health tests were carried out to assess their protective effects on OEC viability. Our results highlight a reduction in GFAP and vimentin expression in OECs exposed to LPS and treated with EPA or DHA or EPA-EA or DHA-EA in comparison with OECs exposed to LPS alone. We observed a protective role of EPA and DHA on cell morphology, while the amides EPA-EA and DHA-EA mainly exerted a superior anti-inflammatory effect compared to free acids.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy;
| | - Angela Patti
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Claudia Sanfilippo
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| |
Collapse
|
41
|
Chim SM, Howell K, Kokkosis A, Zambrowicz B, Karalis K, Pavlopoulos E. A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood-Brain Barrier Crossing Therapeutic Strategies. Pharmaceutics 2024; 16:1314. [PMID: 39458643 PMCID: PMC11510380 DOI: 10.3390/pharmaceutics16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis, including cell-specific contributions and cell-cell interactions, and support successful targeting and prediction of drug responses in humans are urgently needed, given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS), such as Organ-Chips, are emerging as a promising approach to address these challenges. Here, we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes, human induced pluripotent stem cell (hiPSC)-derived cortical neurons, and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNFα) to emulate neuroinflammation, we demonstrate that our model recapitulates in vivo-relevant responses. Importantly, we show microglia-derived responses, highlighting the Brain-Chip's sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences, underscoring the model's capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases, adding to the growing evidence supporting the value of MPS in translational research and drug discovery.
Collapse
Affiliation(s)
- Shek Man Chim
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Kristen Howell
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Alexandros Kokkosis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Brian Zambrowicz
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Katia Karalis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Elias Pavlopoulos
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| |
Collapse
|
42
|
Lombardo MT, Gabrielli M, Julien-Marsollier F, Faivre V, Le Charpentier T, Bokobza C, D’Aliberti D, Pelizzi N, Halimi C, Spinelli S, Van Steenwinckel J, Verderio EAM, Gressens P, Piazza R, Verderio C. Human Umbilical Cord-Mesenchymal Stem Cells Promote Extracellular Matrix Remodeling in Microglia. Cells 2024; 13:1665. [PMID: 39404427 PMCID: PMC11475221 DOI: 10.3390/cells13191665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Human mesenchymal stem cells modulate the immune response and are good candidates for cell therapy in neuroinflammatory brain disorders affecting both adult and premature infants. Recent evidence indicates that through their secretome, mesenchymal stem cells direct microglia, brain-resident immune cells, toward pro-regenerative functions, but the mechanisms underlying microglial phenotypic transition are still under investigation. Using an in vitro coculture approach combined with transcriptomic analysis, we identified the extracellular matrix as the most relevant pathway altered by the human mesenchymal stem cell secretome in the response of microglia to inflammatory cytokines. We confirmed extracellular matrix remodeling in microglia exposed to the mesenchymal stem cell secretome via immunofluorescence analysis of the matrix component fibronectin and the extracellular crosslinking enzyme transglutaminase-2. Furthermore, an analysis of hallmark microglial functions revealed that changes in the extracellular matrix enhance ruffle formation by microglia and cell motility. These findings point to extracellular matrix changes, associated plasma membrane remodeling, and enhanced microglial migration as novel mechanisms by which mesenchymal stem cells contribute to the pro-regenerative microglial transition.
Collapse
Affiliation(s)
- Marta Tiffany Lombardo
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
- School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell’ Ateneo Nuovo 1, 20126 Milan, Italy
| | - Martina Gabrielli
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| | - Florence Julien-Marsollier
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Valérie Faivre
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Tifenn Le Charpentier
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Deborah D’Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Nicola Pelizzi
- CARE Franchise, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| | - Camilla Halimi
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Juliette Van Steenwinckel
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Elisabetta A. M. Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Biological Sciences (BIGEA), University of Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Pierre Gressens
- Inserm, NeuroDiderot, Université Paris Cité, 75019 Paris, France; (F.J.-M.); (V.F.); (T.L.C.); (C.B.); (J.V.S.); (P.G.)
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (D.D.); (S.S.); (R.P.)
| | - Claudia Verderio
- Institute of Neuroscience, National Research Council of Italy, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (M.T.L.); (M.G.); (C.H.)
| |
Collapse
|
43
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
44
|
Panda SP, Kesharwani A, Singh M, Kumar S, Mayank, Mallick SP, Guru A. Limonin (LM) and its derivatives: Unveiling the neuroprotective and anti-inflammatory potential of LM and V-A-4 in the management of Alzheimer's disease and Parkinson's disease. Fitoterapia 2024; 178:106173. [PMID: 39117089 DOI: 10.1016/j.fitote.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Neuroinflammation and neuronal apoptosis are central pathogenic consequences associated with Alzheimer's Disease (AD) and Parkinson's Disease (PD). Limonin (LM), a tetracyclic triterpenoid available in citrus fruits, has anti-tumor, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective actions. LM derivative, V-A-4 emerged as a potential neuroprotective drug due to their ability to target multiple molecular pathways intertwined with neuroinflammation and neuronal apoptosis. To date, the treatment of AD and PD is not successful even though the understanding of the mechanism of neuroinflammation and neuronal apoptosis is vast in the literature. Thus, there is an urgent need to identify novel neuroprotective drugs that could target the multiple molecular pathways associated with neuroinflammation and neuronal apoptosis. The various online databases (Google scholar, Pubmed, Scopus) were searched via keywords: limonin, limonin derivatives and neuroprotection. This review highlights the multifunctional nature of LM and derivatives in combating neuroinflammation and neuronal apoptosis by stimulating PI3K/AKT and downregulating TLR4/NF-κB critical pathways. By intervening in the secretion of NO and TNF-α from glial cells, V-A-4 attenuates the damaging cascade of neuroinflammation by suppressing IKK-α and IKK-β. Furthermore, V-A-4 demonstrates its versatility by suppressing the manifestation of miR-146a and miR-155, both intimately linked to neuroinflammation, this review summarized the activities of LM and its derivatives against AD and PD, with a special focus on V-A-4 as an effective neuroprotective drug. V-A-4's ability to stimulate PI3K/AKT signaling further underscores its neuroprotective effect in combating AD and PD. More in-vitro cell line studies are needed to develop V-A-4 as an upcoming neuroprotective compound.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mansi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mayank
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
45
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
46
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Sic A, Cvetkovic K, Manchanda E, Knezevic NN. Neurobiological Implications of Chronic Stress and Metabolic Dysregulation in Inflammatory Bowel Diseases. Diseases 2024; 12:220. [PMID: 39329889 PMCID: PMC11431196 DOI: 10.3390/diseases12090220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic stress is a significant factor affecting modern society, with profound implications for both physical and mental health. Central to the stress response is cortisol, a glucocorticoid hormone produced by the adrenal glands. While cortisol release is adaptive in acute stress, prolonged exposure to elevated levels can result in adverse effects. This manuscript explores the neurobiological implications of chronic stress and its impact on metabolic dysregulation, particularly in the context of inflammatory bowel diseases (IBDs). The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production, which influences metabolism, immune response, and neurobiology. Elevated cortisol levels are associated with the development and exacerbation of metabolic disorders like IBD and contribute to neurodegenerative processes, including cognitive impairments and increased susceptibility to psychiatric conditions. The interaction between cortisol and its receptors, particularly glucocorticoid receptors, underscores the complexity of these effects. This review aims to elucidate the mechanisms through which chronic stress and cortisol dysregulation impact metabolic health and neurobiological function, providing insights into potential therapeutic strategies for mitigating these effects.
Collapse
Affiliation(s)
- Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Kiana Cvetkovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Eshanika Manchanda
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
49
|
Monda A, La Torre ME, Messina A, Di Maio G, Monda V, Moscatelli F, De Stefano M, La Marra M, Padova MD, Dipace A, Limone P, Casillo M, Monda M, Messina G, Polito R. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses. Front Immunol 2024; 15:1425816. [PMID: 39188713 PMCID: PMC11345202 DOI: 10.3389/fimmu.2024.1425816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion of the Telematic University “San Raffaele”, Rome, Italy
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples “Parthenope”, Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Marida De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco La Marra
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Maria Casillo
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
50
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|