1
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
2
|
Hernández-Echeagaray E, Miranda-Barrientos JA, Nieto-Mendoza E, Torres-Cruz FM. Exploring the role of Cdk5 on striatal synaptic plasticity in a 3-NP-induced model of early stages of Huntington's disease. Front Mol Neurosci 2024; 17:1362365. [PMID: 39569019 PMCID: PMC11576431 DOI: 10.3389/fnmol.2024.1362365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Impaired mitochondrial function has been associated with the onset of neurodegenerative diseases. Specifically, certain mitochondrial toxins, such as 3-nitropropionic acid (3-NP), initiate cellular changes within the striatum that closely resemble the pathology observed in Huntington's disease (HD). Among the pivotal signaling molecules contributing to neurodegeneration, cyclin-dependent kinase 5 (Cdk5) stands out. In particular, Cdk5 has been implicated not only in cellular pathology but also in the modulation of synaptic plasticity. Given its widespread presence in the striatum, this study seeks to elucidate the potential role of Cdk5 in the induction of corticostriatal synaptic plasticity in murine striatal cells subjected to subchronic doses of 3-NP in vivo, aiming to mimic the early stages of HD. Immunostaining analyses revealed an increase in Cdk5 in tissues from animals treated with 3-NP, without a significant change in protein levels. Regarding striatal plasticity, long-term depression (LTD) was induced in both control and 3-NP cells when recorded in voltage clamp mode. The Cdk5 inhibitor roscovitine-reduced LTD in most cells. A minority subset of cells exhibited long-term potentiation (LTP) generation in the presence of roscovitine. The inhibitor of D1 receptors SCH23390 prevented LTP in three of nine cells, implying that MSN cells lacking D1/PKA activation were capable of LTP induction when Cdk5 was also blocked. Nevertheless, the co-administration of H89, a PKA inhibitor, along with roscovitine, prevented the generation of any type of plasticity in all recorded cells. These findings show the impact of 3-NP treatment on striatal plasticity and suggest that Cdk5 during early neurodegeneration may attenuate signaling pathways that lead neurons to increase their activity.
Collapse
Affiliation(s)
- Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Elizabeth Nieto-Mendoza
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Izaki A, Verbeke WJMI, Vrticka P, Ein-Dor T. A narrative on the neurobiological roots of attachment-system functioning. COMMUNICATIONS PSYCHOLOGY 2024; 2:96. [PMID: 39406946 PMCID: PMC11480372 DOI: 10.1038/s44271-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Attachment theory is one of the most comprehensive frameworks in social and developmental psychology. It describes how selective, enduring emotional bonds between infants and their caregivers are formed and maintained throughout life. These attachment bonds exhibit distinct characteristics that are intimately tied to fundamental aspects of mammalian life, including pregnancy, birth, lactation, and infant brain development. However, there is a lack of a cohesive biological narrative that explains the psychological forces shaping attachment behavior and the emergence and consolidation of attachment patterns at a neurobiological level. Here, we propose a theoretical narrative focusing on organized attachment patterns that systematically link the two primary purposes of the attachment behavioral system: the provision of tangible protection or support and the corresponding subjective feeling of safety or security. We aim for this detailed delineation of neurobiological circuits to foster more comprehensive and interdisciplinary future research.
Collapse
|
4
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
5
|
Kim JW, Yong AJH, Aisenberg EE, Lobel JH, Wang W, Dawson TM, Dawson VL, Gao R, Jan YN, Bateup HS, Ingolia NT. Molecular recording of calcium signals via calcium-dependent proximity labeling. Nat Chem Biol 2024; 20:894-905. [PMID: 38658655 DOI: 10.1038/s41589-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
Collapse
Affiliation(s)
- J Wren Kim
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Adeline J H Yong
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
| | - Joseph H Lobel
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Wei Wang
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixuan Gao
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Yuh Nung Jan
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Rosier N, Mönnich D, Nagl M, Schihada H, Sirbu A, Konar N, Reyes-Resina I, Navarro G, Franco R, Kolb P, Annibale P, Pockes S. Shedding Light on the D 1 -Like Receptors: A Fluorescence-Based Toolbox for Visualization of the D 1 and D 5 Receptors. Chembiochem 2024; 25:e202300658. [PMID: 37983731 DOI: 10.1002/cbic.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.
Collapse
Affiliation(s)
- Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Alexei Sirbu
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Nergis Konar
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Scotland, UK
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
7
|
Sartori SB, Keil TMV, Kummer KK, Murphy CP, Gunduz-Cinar O, Kress M, Ebner K, Holmes A, Singewald N. Fear extinction rescuing effects of dopamine and L-DOPA in the ventromedial prefrontal cortex. Transl Psychiatry 2024; 14:11. [PMID: 38191458 PMCID: PMC10774374 DOI: 10.1038/s41398-023-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas M V Keil
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Conor P Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Carr KD, Weiner SP, Vasquez C, Schmidt AM. Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats. Physiol Behav 2023; 271:114337. [PMID: 37625475 PMCID: PMC10592025 DOI: 10.1016/j.physbeh.2023.114337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Clinical and basic science investigation indicates a link between insulin resistance and anhedonia. Previous results of this laboratory point to impaired nucleus accumbens (NAc) insulin signaling as an underpinning of diet-induced anhedonia, based on use of a glucose lick microstructure assay. The present study evaluated whether advanced glycation end products (AGEs) and their receptor (RAGE), known to mediate obesogenic diet-induced inflammation and pathological metabolic conditions, are involved in this behavioral change. Six weeks maintenance of male and female rats on a high fat-high sugar liquid diet (chocolate Ensure) increased body weight gain, and markedly increased circulating insulin and leptin, but induced anhedonia (decreased first minute lick rate and lick burst size) in males only. In these subjects, anhedonia correlated with plasma concentrations of insulin. Although the diet did not alter plasma or NAc AGEs, or the expression of RAGE in the NAc, marginally significant correlations were seen between anhedonia and plasma content of several AGEs and NAc RAGE. Importantly, a small molecule RAGE antagonist, RAGE229, administered twice daily by oral gavage, prevented diet-induced anhedonia. This beneficial effect was associated with improved adipose function, reflected in the adiponectin/leptin ratio, and increased pCREB/total CREB in the NAc, and a shift in the pCREB correlation with pThr34-DARPP-32 from near-zero to strongly positive, such that both phospho-proteins correlated with the rescued hedonic response. This set of findings suggests that the receptor/signaling pathway and cell type underlying the RAGE229-mediated increase in pCREB may mediate anhedonia and its prevention. The possible role of adipose tissue as a locus of diet-induced RAGE signaling, and source of circulating factors that target NAc to modify hedonic reactivity are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
9
|
Naumova AA, Oleynik EA, Khramtsova AV, Nikolaeva SD, Chernigovskaya EV, Glazova MV. Short-term hindlimb unloading negatively affects dopaminergic transmission in the nigrostriatal system of mice. Dev Neurobiol 2023; 83:205-218. [PMID: 37489016 DOI: 10.1002/dneu.22924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The nigrostriatal system composed of the dorsal striatum and the substantia nigra (SN) is highly involved in the control of motor behavior. Various extremal and pathological conditions as well as social isolation (SI) may cause an impairment of locomotor function; however, corresponding alterations in the nigrostriatal dopaminergic pathway are far from full understanding. Here, we analyzed the effect of 3-day hindlimb unloading (HU) and SI on the key players of dopamine transmission in the nigrostriatal system of CD1 mice. Three groups of mice were analyzed: group-housed (GH), SI, and HU animals. Our data showed a significant decrease in the expression and phosphorylation of tyrosine hydroxylase (TH) in the SN and dorsal striatum of HU mice that suggested attenuation of dopamine synthesis in response to HU. In the dorsal striatum of HU mice, the downregulation of TH expression was also observed indicating the effect of unloading; however, TH phosphorylation at Ser40 was mainly affected by SI pointing on an impact of isolation too. Expression of dopamine receptors D1 in the dorsal striatum of HU mice was increased suggesting a compensatory response, but the activity of downstream signaling pathways involving protein kinase A and cAMP response element-binding protein was inhibited. At the same time, SI alone did not affect expression of DA receptors and activity of downstream signaling in the dorsal striatum. Obtained data let us to conclude that HU was the main factor which impaired dopamine transmission in the nigrostriatal system but SI made some contribution to its negative effects.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna V Khramtsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
Phillips RA, Tuscher JJ, Fitzgerald ND, Wan E, Zipperly ME, Duke CG, Ianov L, Day JJ. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. Mol Cell Neurosci 2023; 125:103849. [PMID: 36965548 PMCID: PMC10898607 DOI: 10.1016/j.mcn.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023] Open
Abstract
Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.
Collapse
Affiliation(s)
- Robert A Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N Dalton Fitzgerald
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Phillips RA, Tuscher JJ, Fitzgerald ND, Wan E, Zipperly ME, Duke CG, Ianov L, Day JJ. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523845. [PMID: 36711527 PMCID: PMC9882178 DOI: 10.1101/2023.01.12.523845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.
Collapse
Affiliation(s)
- Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N. Dalton Fitzgerald
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G. Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
13
|
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn AC, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochem Int 2023; 162:105438. [PMID: 36351540 DOI: 10.1016/j.neuint.2022.105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.
Collapse
Affiliation(s)
- Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan; Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, 06519, United States
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
14
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
15
|
Kim MJ, Kaang BK. Distinct cell populations of ventral tegmental area process motivated behavior. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:307-312. [PMID: 36039731 PMCID: PMC9437368 DOI: 10.4196/kjpp.2022.26.5.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Min Jung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Stubbs T, Koemeter-Cox A, Bingman JI, Zhao F, Kalyanasundaram A, Rowland LA, Periasamy M, Carter CS, Sheffield VC, Askwith CC, Mykytyn K. Disruption of Dopamine Receptor 1 Localization to Primary Cilia Impairs Signaling in Striatal Neurons. J Neurosci 2022; 42:6692-6705. [PMID: 35882560 PMCID: PMC9436016 DOI: 10.1523/jneurosci.0497-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G-protein-coupled receptors (GPCRs) and their downstream effectors, suggesting that they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding, we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, the loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G-protein-coupled receptors (GPCRs), suggesting that they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either an abnormal accumulation of D1 in cilia or a loss of D1 ciliary localization become obese. In both cases, the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.
Collapse
Affiliation(s)
- Toneisha Stubbs
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Andrew Koemeter-Cox
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - James I Bingman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Calvin S Carter
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Candice C Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
17
|
Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T, McLaughlin M, Lees-Murdock DJ, Ward M, Murphy M, Lamers Y, Pentieva K, McNulty H, Walsh CP. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenetics 2022; 14:63. [PMID: 35578268 PMCID: PMC9112484 DOI: 10.1186/s13148-022-01282-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously showed that continued folic acid (FA) supplementation beyond the first trimester of pregnancy appears to have beneficial effects on neurocognitive performance in children followed for up to 11 years, but the biological mechanism for this effect has remained unclear. Using samples from our randomized controlled trial of folic acid supplementation in second and third trimester (FASSTT), where significant improvements in cognitive and psychosocial performance were demonstrated in children from mothers supplemented in pregnancy with 400 µg/day FA compared with placebo, we examined methylation patterns from cord blood (CB) using the EPIC array which covers approximately 850,000 cytosine-guanine (CG) sites across the genome. Genes showing significant differences were verified using pyrosequencing and mechanistic approaches used in vitro to determine effects on transcription. RESULTS FA supplementation resulted in significant differences in methylation, particularly at brain-related genes. Further analysis showed these genes split into two groups. In one group, which included the CES1 gene, methylation changes at the promoters were important for regulating transcription. We also identified a second group which had a characteristic bimodal profile, with low promoter and high gene body (GB) methylation. In the latter, loss of methylation in the GB is linked to decreases in transcription: this group included the PRKAR1B/HEATR2 genes and the dopamine receptor regulator PDE4C. Overall, methylation in CB also showed good correlation with methylation profiles seen in a published data set of late gestation foetal brain samples. CONCLUSION We show here clear alterations in DNA methylation at specific classes of neurodevelopmental genes in the same cohort of children, born to FA-supplemented mothers, who previously showed improved cognitive and psychosocial performance. Our results show measurable differences at neural genes which are important for transcriptional regulation and add to the supporting evidence for continued FA supplementation throughout later gestation. This trial was registered on 15 May 2013 at www.isrctn.com as ISRCTN19917787.
Collapse
Affiliation(s)
- Miroslava Ondičová
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Rachelle E Irwin
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Sara-Jayne Thursby
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Luke Hilman
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Aoife Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Tony Cassidy
- Psychology Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Marian McLaughlin
- Psychology Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Michelle Murphy
- Unitat de Medicina Preventiva i Salut Pública, Facultat de Medicina i Ciències de La Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK.
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.
| |
Collapse
|
18
|
Dagher M, Perrotta KA, Erwin SA, Hachisuka A, Iyer R, Masmanidis SC, Yang H, Andrews AM. Optogenetic Stimulation of Midbrain Dopamine Neurons Produces Striatal Serotonin Release. ACS Chem Neurosci 2022; 13:946-958. [PMID: 35312275 PMCID: PMC9040469 DOI: 10.1021/acschemneuro.1c00715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.
Collapse
Affiliation(s)
- Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Katie A. Perrotta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Sara A. Erwin
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ayaka Hachisuka
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 94720
| | - Sotiris C. Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
19
|
Wopara I, Adebayo OG, Umoren EB, Aduema W, Iwueke AV, Etim O, Pius EA, James WB, Wodo J. Involvement of striatal oxido-inflammatory, nitrosative and decreased cholinergic activity in neurobehavioral alteration in adult rat model with oral co-exposure to erythrosine and tartrazine. Heliyon 2021; 7:e08454. [PMID: 34888423 PMCID: PMC8637136 DOI: 10.1016/j.heliyon.2021.e08454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/25/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Overuse or overconsumption of food additive or colorant cannot be ignored in our society and there are several reports of it harmful effect on the body system. This study investigated the toxicity effect of tartrazine and erythrosine (ET, 50:50) on neurobehavioral alteration, striatal oxido-nitrosative and pro-inflammatory stress and striatal acetylcholinesterase activity in experimental rat model. Rats were co-exposed to ET (2 mg/kg, 6 mg/kg and 10 mg/kg) and distilled water (control), p.o for 6 weeks. The change in neurobehavioral function (Open field test, Forced swimming test and Tail suspension test), Lipid peroxidation (Malonaldehyde, MDA), Antioxidants (Glutathione, GSH; Catalase, CAT) Nitrite, Pro-inflammatory cytokine (Tumor necrosis factor-alpha, TNF-α) and Acetylcholinesterase (AChE) activity were evaluated. Results showed significant decrease in neurobehavioral functions after co-exposure to ET. Moreover, there were significant increase in MDA and Nitrite level, significant decrease in the concentration of GSH and CAT and a significant increase TNF-α concentration and AChE activity after co-exposure to ET. Oral co-exposure to tartrazine and erythrosine induced decrease in locomotion and exploration, increase anxiety and depression-like behavior and altered the cholinergic system through upregulation of oxido-nitrosative stress, pro-inflammatory cytokine and acetylcholinesterase activity.
Collapse
Affiliation(s)
- Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Olusegun G. Adebayo
- Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Rivers State, Nigeria
| | - Elizabeth B. Umoren
- Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Rivers State, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Adaku V. Iwueke
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Rivers State, Nigeria
| | - O.E. Etim
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Rivers State, Nigeria
| | - Egelege Aziemeola. Pius
- Department of Public Health, Faculty of Health Sciences, Imo State University, Owerri, Nigeria
| | - Woha Boobondah James
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Rivers State University, Rivers State, Nigeria
| | - Joel Wodo
- Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Rivers State, Nigeria
| |
Collapse
|
20
|
Neef J, Palacios DS. Progress in mechanistically novel treatments for schizophrenia. RSC Med Chem 2021; 12:1459-1475. [PMID: 34671731 PMCID: PMC8459322 DOI: 10.1039/d1md00096a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Currently available pharmacological treatments for schizophrenia derive their activity mainly by directly modulating the D2 receptor. This mode of action can alleviate the positive symptoms of schizophrenia but do not address the negative or cognitive symptoms of the disease and carry a heavy side effect burden that leads to high levels of patient non-compliance. Novel mechanisms to treat the positive symptoms of schizophrenia with improved tolerability, as well as medicines to treat negative and cognitive symptoms are urgently required. Recent efforts to identify small molecules for schizophrenia with non-D2 mechanisms will be highlighted, with a focus on those that have reached clinical development. Finally, the potential for disease modifying treatments for schizophrenia will also be discussed.
Collapse
Affiliation(s)
- James Neef
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| | - Daniel S Palacios
- Novartis Institutes for BioMedical Research Inc 22 Windsor St Cambridge MA 02139 USA
| |
Collapse
|
21
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
22
|
Sugiyama K, Kuroiwa M, Shuto T, Ohnishi YN, Kawahara Y, Miyamoto Y, Fukuda T, Nishi A. Subregion-Specific Regulation of Dopamine D1 Receptor Signaling in the Striatum: Implication for L-DOPA-Induced Dyskinesia. J Neurosci 2021; 41:6388-6414. [PMID: 34131032 PMCID: PMC8318081 DOI: 10.1523/jneurosci.0373-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
The striatum is the main structure of the basal ganglia. The striatum receives inputs from various cortical areas, and its subregions play distinct roles in motor and emotional functions. Recently, striatal maps based on corticostriatal connectivity and striosome-matrix compartmentalization were developed, and we were able to subdivide the striatum into seven subregions. Dopaminergic modulation of the excitability of medium spiny neurons (MSNs) is critical for striatal function. In this study, we investigated the functional properties of dopamine signaling in seven subregions of the striatum from male mice. By monitoring the phosphorylation of PKA substrates including DARPP-32 in mouse striatal slices, we identified two subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Low D1 receptor signaling in the two subregions was maintained by phosphodiesterase (PDE)10A and muscarinic M4 receptors. In an animal model of 6-hydroxydopamine (6-OHDA)-induced hemi-parkinsonism, D1 receptor signaling was upregulated in almost all subregions including the DL-IR, but not in the IC. When L-DOPA-induced dyskinesia (LID) was developed, D1 receptor signaling in the IC was upregulated and correlated with the severity of LID. Our results suggest that the function of the striatum is maintained through the subregion-specific regulation of dopamine D1 receptor signaling and that the aberrant activation of D1 receptor signaling in the IC is involved in LID. Future studies focusing on D1 receptor signaling in the IC of the striatum will facilitate the development of novel therapeutics for LID.SIGNIFICANCE STATEMENT Recent progress in striatal mapping based on corticostriatal connectivity and striosome-matrix compartmentalization allowed us to subdivide the striatum into seven subregions. Analyses of D1 receptor signaling in the seven subregions identified two unique subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Aberrant activation of D1 receptor signaling in the IC is involved in L-DOPA-induced dyskinesia (LID). Previous studies of LID have mainly focused on the DL-IR, but not on the IC of the striatum. Future studies to clarify aberrant D1 receptor signaling in the IC are required to develop novel therapeutics for LID.
Collapse
Affiliation(s)
- Keita Sugiyama
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
23
|
Cordone P, Namballa HK, Muniz B, Pal RK, Gallicchio E, Harding WW. New tetrahydroisoquinoline-based D 3R ligands with an o-xylenyl linker motif. Bioorg Med Chem Lett 2021; 42:128047. [PMID: 33882273 DOI: 10.1016/j.bmcl.2021.128047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
The effect of rigidification of the n-butyl linker region of tetrahydroisoquinoline-containing D3R ligands via inclusion of an o-xylenyl motif was examined in this study. Generally, rigidification with an o-xylenyl linker group reduces D3R affinity and negatively impacts selectivity versus D2R for compounds possessing a 6-methoxy-1,2,3,4,-tetrahydroisoquinolin-7-ol primary pharmacophore group. However, D3R affinity appears to be regulated by the primary pharmacophore group and high affinity D3R ligands with 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline primary pharmacophore groups were identified. The results of this study also indicate that D3R selectivity versus the σ2R is dictated by the benzamide secondary pharmacophore group, this being facilitated with 4-substituted benzamides. Compounds 5s and 5t were identified as high affinity (Ki < 4 nM) D3R ligands. Docking studies revealed that the added phenyl ring moiety interacts with the Cys181 in D3R which partially accounts for the strong D3R affinity of the ligands.
Collapse
Affiliation(s)
- Pierpaolo Cordone
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Bryant Muniz
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Rajat K Pal
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Emilio Gallicchio
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States.
| |
Collapse
|
24
|
Umbricht D, Abt M, Tamburri P, Chatham C, Holiga Š, Frank MJ, Collins AG, Walling DP, Mofsen R, Gruener D, Gertsik L, Sevigny J, Keswani S, Dukart J. Proof-of-Mechanism Study of the Phosphodiesterase 10 Inhibitor RG7203 in Patients With Schizophrenia and Negative Symptoms. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:70-77. [PMID: 36324430 PMCID: PMC9616307 DOI: 10.1016/j.bpsgos.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Background Reduced activation of dopamine D1 receptor signaling may be implicated in reward functioning as a potential driver of negative symptoms in schizophrenia. Phosphodiesterase 10A (PDE10A), an enzyme that is highly expressed in the striatum, modulates both dopamine D2- and D1-dependent signaling. Methods We assessed whether augmentation of D1 signaling by the PDE10 inhibitor RG7203 enhances imaging and behavioral markers of reward functions in patients with schizophrenia and negative symptoms. In a 3-period, double-blind, crossover study, we investigated the effects of RG7203 (5 mg and 15 mg doses) and placebo as adjunctive treatment to stable background antipsychotic treatment in patients with chronic schizophrenia with moderate levels of negative symptoms. Effects on reward functioning and reward-based effortful behavior were evaluated using the monetary incentive delay task during functional magnetic resonance imaging and the effort-cost-benefit and working memory reinforcement learning tasks. Results Patients (N = 33; 30 male, mean age ± SD 36.6 ± 7.0 years; Positive and Negative Syndrome Scale negative symptom factor score 23.0 ± 3.5 at screening) were assessed at three study centers in the United States; 24 patients completed the study. RG7203 at 5 mg significantly increased reward expectation–related activity in the monetary incentive delay task, but in the context of significantly decreased overall activity across all task conditions. Conclusions In contrast to our expectations, RG7203 significantly worsened reward-based effortful behavior and indices of reward learning. The results do not support the utility of RG7203 as adjunctive treatment for negative symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Daniel Umbricht
- Roche Pharma and Early Development, Basel, Switzerland
- Address correspondence to Daniel Umbricht, M.D.
| | - Markus Abt
- Roche Pharma and Early Development, Basel, Switzerland
| | | | | | - Štefan Holiga
- Roche Pharma and Early Development, Basel, Switzerland
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Anne G.E. Collins
- Department of Psychology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - David P. Walling
- Collaborative Neuroscience Network, LLC, Garden Grove, California
| | - Rick Mofsen
- Translational Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Gruener
- Evolution Research Group, LLC, New Providence, New Jersey
| | - Lev Gertsik
- California Clinical Trials Medical Group, Glendale, California
| | | | | | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Liu PP, Chao CC, Liao RM. Task-Dependent Effects of SKF83959 on Operant Behaviors Associated With Distinct Changes of CaMKII Signaling in Striatal Subareas. Int J Neuropsychopharmacol 2021; 24:721-733. [PMID: 34049400 PMCID: PMC8453300 DOI: 10.1093/ijnp/pyab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SKF83959, an atypical dopamine (DA) D1 receptor agonist, has been used to test the functions of DA-related receptor complexes in vitro, but little is known about its impact on conditioned behavior. The present study examined the effects of SKF83959 on operant behaviors and assayed the neurochemical mechanisms involved. METHODS Male rats were trained and maintained on either a fixed-interval 30-second (FI30) schedule or a differential reinforcement of low-rate response 10-second (DRL10) schedule of reinforcement. After drug treatment tests, western blotting assayed the protein expressions of the calcium-/calmodulin-dependent protein kinase II (CaMKII) and the transcription factor cyclic AMP response element binding protein (CREB) in tissues collected from 4 selected DA-related areas. RESULTS SKF83959 disrupted the performance of FI30 and DRL10 behaviors in a dose-dependent manner by reducing the total number of responses in varying magnitudes. Moreover, the distinct profiles of the behavior altered by the drug were manifested by analyzing qualitative and quantitative measures on both tasks. Western-blot results showed that phospho-CaMKII levels decreased in the nucleus accumbens and the dorsal striatum of the drug-treated FI30 and DRL10 subjects, respectively, compared with their vehicle controls. The phospho-CREB levels decreased in the nucleus accumbens and the hippocampus of drug-treated FI30 subjects but increased in the nucleus accumbens of drug-treated DRL10 subjects. CONCLUSIONS Our results provide important insight into the neuropsychopharmacology of SKF83959, indicating that the drug-altered operant behavior is task dependent and related to regional-dependent changes of CaMKII-CREB signaling in the mesocorticolimbic DA systems.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Chih-Chang Chao, PhD, Institute of Neuroscience ()
| | - Ruey-Ming Liao
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Ruey-Ming Liao, PhD, Department of Psychology, National Cheng-Chi University, 64, Sec. 2, Zhinan Road, Taipei City 116011, Taiwan ()
| |
Collapse
|
26
|
Soman SK, Tingle D, Dagda RY, Torres M, Dagda M, Dagda RK. Cleaved PINK1 induces neuronal plasticity through PKA-mediated BDNF functional regulation. J Neurosci Res 2021; 99:2134-2155. [PMID: 34046942 DOI: 10.1002/jnr.24854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKβ. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKβ. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David Tingle
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Mariana Torres
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
27
|
Al-Nema MY, Gaurav A. Phosphodiesterase as a Target for Cognition Enhancement in Schizophrenia. Curr Top Med Chem 2021; 20:2404-2421. [PMID: 32533817 DOI: 10.2174/1568026620666200613202641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a severe mental disorder that affects more than 1% of the population worldwide. Dopamine system dysfunction and alterations in glutamatergic neurotransmission are strongly implicated in the aetiology of schizophrenia. To date, antipsychotic drugs are the only available treatment for the symptoms of schizophrenia. These medications, which act as D2-receptor antagonist, adequately address the positive symptoms of the disease, but they fail to improve the negative symptoms and cognitive impairment. In schizophrenia, cognitive impairment is a core feature of the disorder. Therefore, the treatment of cognitive impairment and the other symptoms related to schizophrenia remains a significant unmet medical need. Currently, phosphodiesterases (PDEs) are considered the best drug target for the treatment of schizophrenia since many PDE subfamilies are abundant in the brain regions that are relevant to cognition. Thus, this review aims to illustrate the mechanism of PDEs in treating the symptoms of schizophrenia and summarises the encouraging results of PDE inhibitors as anti-schizophrenic drugs in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mayasah Y Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Adenosine Signaling and Clathrin-Mediated Endocytosis of Glutamate AMPA Receptors in Delayed Hypoxic Injury in Rat Hippocampus: Role of Casein Kinase 2. Mol Neurobiol 2021; 58:1932-1951. [PMID: 33415682 PMCID: PMC8018935 DOI: 10.1007/s12035-020-02246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
Chronic adenosine A1R stimulation in hypoxia leads to persistent hippocampal synaptic depression, while unopposed adenosine A2AR receptor stimulation during hypoxia/reperfusion triggers adenosine-induced post-hypoxia synaptic potentiation (APSP) and increased neuronal death. Still, the mechanisms responsible for this adenosine-mediated neuronal damage following hypoxia need to be fully elucidated. We tested the hypothesis that A1R and A2AR regulation by protein kinase casein kinase 2 (CK2) and clathrin-dependent endocytosis of AMPARs both contribute to APSPs and neuronal damage. The APSPs following a 20-min hypoxia recorded from CA1 layer of rat hippocampal slices were abolished by A1R and A2AR antagonists and by broad-spectrum AMPAR antagonists. The inhibitor of GluA2 clathrin-mediated endocytosis Tat-GluA2-3Y peptide and the dynamin-dependent endocytosis inhibitor dynasore both significantly inhibited APSPs. The CK2 antagonist DRB also inhibited APSPs and, like hypoxic treatment, caused opposite regulation of A1R and A2AR surface expression. APSPs were abolished when calcium-permeable AMPAR (CP-AMPAR) antagonist (IEM or philanthotoxin) or non-competitive AMPAR antagonist perampanel was applied 5 min after hypoxia. In contrast, perampanel, but not CP-AMPAR antagonists, abolished APSPs when applied during hypoxia/reperfusion. To test for neuronal viability after hypoxia, propidium iodide staining revealed significant neuroprotection of hippocampal CA1 pyramidal neurons when pretreated with Tat-GluA2-3Y peptide, CK2 inhibitors, dynamin inhibitor, CP-AMPAR antagonists (applied 5 min after hypoxia), and perampanel (either at 5 min hypoxia onset or during APSP). These results suggest that the A1R-CK2-A2AR signaling pathway in hypoxia/reperfusion injury model mediates increased hippocampal synaptic transmission and neuronal damage via calcium-permeable AMPARs that can be targeted by perampanel for neuroprotective stroke therapy.
Collapse
|
29
|
Wang Y, Liu YJ, Xu DF, Zhang H, Xu CF, Mao YF, Lv Z, Zhu XY, Jiang L. DRD1 downregulation contributes to mechanical stretch-induced lung endothelial barrier dysfunction. Am J Cancer Res 2021; 11:2505-2521. [PMID: 33456556 PMCID: PMC7806475 DOI: 10.7150/thno.46192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/05/2020] [Indexed: 01/11/2023] Open
Abstract
Rationale: The lung-protective effects of dopamine and its role in the pathology of ventilator-induced lung injury (VILI) are emerging. However, the underlying mechanisms are still largely unknown. Objective: To investigate the contribution of dopamine receptor dysregulation in the pathogenesis of VILI and therapeutic potential of dopamine D1 receptor (DRD1) agonist in VILI. Methods: The role of dopamine receptors in mechanical stretch-induced endothelial barrier dysfunction and lung injury was studied in DRD1 knockout mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in lung samples from patients who underwent pulmonary lobectomy with mechanical ventilation for different time periods. Measurements and Main Results: DRD1 was downregulated in both surgical patients and mice exposed to mechanical ventilation. Prophylactic administration of dopamine or DRD1 agonist attenuated mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. By contrast, pulmonary knockdown or global knockout of DRD1 exacerbated these effects. Prophylactic administration of dopamine attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent endothelial hyperpermeability through DRD1 signaling. We identified that cyclic stretch-induced glycogen-synthase-kinase-3β activation led to phosphorylation and activation of histone deacetylase 6 (HDAC6), which resulted in deacetylation of α-tubulin. Upon activation, DRD1 signaling attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent lung endothelial barrier dysfunction through cAMP/exchange protein activated by cAMP (EPAC)-mediated inactivation of HDAC6. Conclusions: This work identifies a novel protective role for DRD1 against mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. Further study of the mechanisms involving DRD1 in the regulation of microtubule stability and interference with DRD1/cAMP/EPAC/HDAC6 signaling may provide insight into therapeutic approaches for VILI.
Collapse
|
30
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
31
|
Du T, Chen Y, Shi L, Liu D, Liu Y, Yuan T, Zhang X, Zhu G, Zhang J. Deep brain stimulation of the anterior nuclei of the thalamus relieves basal ganglia dysfunction in monkeys with temporal lobe epilepsy. CNS Neurosci Ther 2020; 27:341-351. [PMID: 33085171 PMCID: PMC7871793 DOI: 10.1111/cns.13462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Aims Deep brain stimulation of the anterior nuclei of the thalamus (ANT‐DBS) is effective in temporal lobe epilepsy (TLE). Previous studies have shown that the basal ganglia are involved in seizure propagation in TLE, but the effects of ANT‐DBS on the basal ganglia have not been clarified. Methods ANT‐DBS was applied to monkeys with kainic acid–induced TLE using a robot‐assisted system. Behavior was monitored continuously. Immunofluorescence analysis and Western blotting were used to estimate protein expression levels in the basal ganglia and the effects of ANT stimulation. Results The seizure frequency decreased after ANT‐DBS. D1 and D2 receptor levels in the putamen and caudate were significantly higher in the ANT‐DBS group than in the epilepsy (EP) model. Neuronal loss and apoptosis were less severe in the ANT‐DBS group. Glutamate receptor 1 (GluR1) in the nucleus accumbens (NAc) shell and globus pallidus internus (GPi) increased in the EP group but decreased after ANT‐DBS. γ‐Aminobutyric acid receptor A (GABAA‐R) decreased and glutamate decarboxylase 67 (GAD67) increased in the GPi of the EP group, whereas the reverse tendencies were observed after ANT‐DBS. Conclusion ANT‐DBS exerts neuroprotective effects on the caudate and putamen, enhances D1 and D2 receptor expression, and downregulates GPi overactivation, which enhanced the antiepileptic function of the basal ganglia.
Collapse
Affiliation(s)
- Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
32
|
Roh M, Lee H, Seo H, Lim CS, Park P, Choi JE, Kwak JH, Lee J, Kaang BK, McHugh TJ, Lee K. Perseverative stereotypic behavior of Epac2 KO mice in a reward-based decision making task. Neurosci Res 2020; 161:8-17. [PMID: 33007326 DOI: 10.1016/j.neures.2020.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 11/18/2022]
Abstract
Successfully navigating dynamic environments requires balancing the decision to stay at an optimal choice with that to switch to an alternative to acquire new knowledge. However, the genetic factors and cellular activity shaping this "stay or switch" action decision remains largely unidentified. Here we find that mice carrying a deletion of the exchange protein directly activated by cAMP 2 (Epac2) gene, a putative autism locus, exhibit perseverative "stay" behavior in a dynamic foraging task. Anatomical analysis found that the loss of Epac2 resulted in a significant decrease in the density of PV-expressing interneurons in the ventrolateral orbitofrontal cortex (OFC) and dorsal striatum (dSTR). Further, in vitro whole cell patch clamp recordings of PV+ GABAergic interneurons in the dSTR revealed altered neural activity in Epac2 KO mice in response to dopamine. Our findings highlight a potential role of Epac2 in structural changes and neural responses of PV-expressing GABAergic interneurons in the ventrolateral OFC and dSTR during value-based reinforcement learning and link Epac2 function to abnormal decision-making processes and perseverative behaviors seen in autism.
Collapse
Affiliation(s)
- Mootaek Roh
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
| | - Hyunjung Lee
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
| | - Hyunhyo Seo
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
| | - Chae-Seok Lim
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, South Korea; Department of Pharmacology, Wonkwang University School of Medicine, 460 Iksandae-ro, Iksan, Jeonbuk 54538, South Korea
| | - Pojeong Park
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, South Korea
| | - Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-Hye Kwak
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
| | - Juhyun Lee
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, South Korea
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kyungmin Lee
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea.
| |
Collapse
|
33
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
34
|
Świerczek A, Jankowska A, Chłoń-Rzepa G, Pawłowski M, Wyska E. Advances in the Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 2: Focus on Schizophrenia. Curr Drug Targets 2020; 20:1652-1669. [PMID: 31368871 DOI: 10.2174/1389450120666190801114210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a debilitating mental disorder with relatively high prevalence (~1%), during which positive manifestations (such as psychotic states) and negative symptoms (e.g., a withdrawal from social life) occur. Moreover, some researchers consider cognitive impairment as a distinct domain of schizophrenia symptoms. The imbalance in dopamine activity, namely an excessive release of this neurotransmitter in the striatum and insufficient amounts in the prefrontal cortex is believed to be partially responsible for the occurrence of these groups of manifestations. Second-generation antipsychotics are currently the standard treatment of schizophrenia. Nevertheless, the existent treatment is sometimes ineffective and burdened with severe adverse effects, such as extrapyramidal symptoms. Thus, there is an urgent need to search for alternative treatment options of this disease. This review summarizes the results of recent preclinical and clinical studies on phosphodiesterase 10A (PDE10A), which is highly expressed in the mammalian striatum, as a potential drug target for the treatment of schizophrenia. Based on the literature data, not only selective PDE10A inhibitors but also dual PDE2A/10A, and PDE4B/10A inhibitors, as well as multifunctional ligands with a PDE10A inhibitory potency are compounds that may combine antipsychotic, precognitive, and antidepressant functions. Thus, designing such compounds may constitute a new direction of research for new potential medications for schizophrenia. Despite failures of previous clinical trials of selective PDE10A inhibitors for the treatment of schizophrenia, new compounds with this mechanism of action are currently investigated clinically, thus, the search for new inhibitors of PDE10A, both selective and multitarget, is still warranted.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
35
|
Jones-Tabah J, Mohammad H, Hadj-Youssef S, Kim LEH, Martin RD, Benaliouad F, Tanny JC, Clarke PBS, Hébert TE. Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci Rep 2020; 10:14426. [PMID: 32879346 PMCID: PMC7468292 DOI: 10.1038/s41598-020-71121-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
As with many G protein-coupled receptors (GPCRs), the signalling pathways regulated by the dopamine D1 receptor (D1R) are dynamic, cell type-specific, and can change in the face of disease or drug exposures. In striatal neurons, the D1R activates cAMP/protein kinase A (PKA) signalling. However, in Parkinson's disease (PD), alterations in this pathway lead to functional upregulation of extracellular regulated kinases 1/2 (ERK1/2), contributing to L-DOPA-induced dyskinesia (LID). In order to detect D1R activation in vivo and to study the progressive dysregulation of D1R signalling in PD and LID, we developed ratiometric fiber-photometry with Förster resonance energy transfer (FRET) biosensors and optically detected PKA and ERK1/2 signalling in freely moving rats. We show that in Parkinsonian animals, D1R signalling through PKA and ERK1/2 is sensitized, but that following chronic treatment with L-DOPA, these pathways become partially desensitized while concurrently D1R activation leads to greater induction of dyskinesia.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Hanan Mohammad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Shadi Hadj-Youssef
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Lucy E H Kim
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Faïza Benaliouad
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
36
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
37
|
Hadoush H, Lababneh T, Banihani SA, Al-Jarrah M, Jamous M. Melatonin and dopamine serum level associations with motor, cognitive, and sleep dysfunctions in patients with Parkinson's disease: A cross-sectional research study. NeuroRehabilitation 2020; 46:539-549. [PMID: 32538881 DOI: 10.3233/nre-203075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a multisystem-progressive neurodegenerative disease characterized by dopaminergic neurons, however, the role of the non-dopaminergic system (such as melatonin hormone) in the pathogenesis of PD is now emerging. OBJECTIVE To identify any potential correlation between the dopamine and melatonin serum levels, and motor, cognitive, and sleep dysfunctions in patients with PD. METHOD Cross-sectional piloting study conducted with a sample of 34 patients with PD (aged 50-72 yrs old). Correlation tests performed to identify any potential correlations between the biomarkers' serum levels and motor, cognitive, and sleep dysfunctional levels in "on-medication" status. RESULTS Spearman's test showed significant correlations between the melatonin serum level and sleep dysfunctions including overall sleep quality (P = 0.010) and subjective sleep quality sub-score (P = 0.001). On the other hand, spearman's test showed significant correlations between the dopamine serum level and motor dysfunctions including Berg Balance Scale (P = 0.026), 10-Meter Walk Test (P = 0.016), and Fear of Falling Index (P = 0.007), as well as comparisons between the dopamine serum level and cognitive dysfunction (P = 0.048). CONCLUSIONS Melatonin serum level would serve as a potential biomarker in understanding the PD pathogenesis, and the melatonin serum level should be considered in future studies related to PD besides the dopamine serum level.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology. Irbid, Jordan
| | - Tamara Lababneh
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology. Irbid, Jordan
| | - Saleem A Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology. Irbid, Jordan
| | - Muhammed Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences at Jordan University of Science and Technology. Irbid, Jordan.,Department of Physiotherapy, Fatima College of Health Sciences. Abu Dhabi. UAE
| | - Mohammed Jamous
- Department of Neurosurgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
38
|
Gatto EM, Rojas NG, Persi G, Etcheverry JL, Cesarini ME, Perandones C. Huntington disease: Advances in the understanding of its mechanisms. Clin Park Relat Disord 2020; 3:100056. [PMID: 34316639 PMCID: PMC8298812 DOI: 10.1016/j.prdoa.2020.100056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/01/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
Huntington disease (HD) is a devastating monogenic autosomal dominant disorder. HD is caused by a CAG expansion in exon 1 of the gene coding for huntingtin, placed in the short arm of chromosome 4. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Also, we present a modern view on the molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons. The main pathogenetic mechanisms of neurodegeneration in HD are discussed in detail, such as autophagy, impaired mitochondrial biogenesis, lysosomal dysfunction, organelle and protein transport, inflammation, oxidative stress, and transcription factor modulation. However, other unraveling mechanisms are still unknown. This practical and brief review summarizes some of the currently known functions of the wild-type huntingtin protein and the recent findings related to the mechanisms involved in HD pathogenesis.
Collapse
Affiliation(s)
- Emilia M Gatto
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | - Gabriel Persi
- Institute of Neuroscience Buenos Aires (INEBA), Argentina.,Sanatorio de la Trinidad Mitre, Argentina
| | | | | | - Claudia Perandones
- National Administration of Laboratories and Institutes of Health, ANLIS, Dr. Carlos G. Malbrán, Argentina
| |
Collapse
|
39
|
Neurotransmission through dopamine D1 receptors is required for aversive memory formation and Arc activation in the cerebral cortex. Neurosci Res 2020; 156:58-65. [PMID: 32380131 DOI: 10.1016/j.neures.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Dopaminergic neurotransmission is considered to play an important role not only in reward-based learning, but also in aversive learning. Here, we investigated the role of dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) in aversive memory formation in a passive avoidance test using D1R knockdown (KD) mice, in which the expression of D1Rs can conditionally and reversibly be controlled by doxycycline (Dox) treatment. We also performed whole-brain imaging after aversive footshock stimulation in activity-regulated cytoskeleton protein (Arc)-dVenus D1RKD mice, which were crossbred from Arc-dVenus transgenic mice and D1RKD mice, to examine the distribution of Arc-controlled dVenus expression in the hippocampus and cerebral cortex during aversive memory formation. Knockdown of D1R expression following Dox treatment resulted in impaired performance in the passive avoidance test and was associated with a decrease in dVenus expression in the cerebral cortex (visual, somatosensory, and motor cortices), but not the hippocampus, compared with control mice without Dox treatment. These findings indicate that D1R-mediated dopaminergic transmission is critical for aversive memory formation, specifically by influencing Arc expression in the cerebral cortex.
Collapse
|
40
|
Babenko VN, Galyamina AG, Rogozin IB, Smagin DA, Kudryavtseva NN. Dopamine response gene pathways in dorsal striatum MSNs from a gene expression viewpoint: cAMP-mediated gene networks. BMC Neurosci 2020; 21:12. [PMID: 32216748 PMCID: PMC7099774 DOI: 10.1186/s12868-020-00560-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | - Igor B Rogozin
- National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
41
|
Silva B, Hidalgo S, Campusano JM. Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion. PLoS One 2020; 15:e0229671. [PMID: 32101569 PMCID: PMC7043742 DOI: 10.1371/journal.pone.0229671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
As in vertebrates, dopaminergic neural systems are key regulators of motor programs in insects, including the fly Drosophila melanogaster. Dopaminergic systems innervate the Mushroom Bodies (MB), an important association area in the insect brain primarily associated to olfactory learning and memory, but that has been also implicated with the execution of motor programs. The main objectives of this work is to assess the idea that dopaminergic systems contribute to the execution of motor programs in Drosophila larvae, and then, to evaluate the contribution of specific dopaminergic receptors expressed in MB to these programs. Our results show that animals bearing a mutation in the dopamine transporter show reduced locomotion, while mutants for the dopaminergic biosynthetic enzymes or the dopamine receptor Dop1R1 exhibit increased locomotion. Pan-neuronal expression of an RNAi for the Dop1R1 confirmed these results. Further studies show that animals expressing the RNAi for Dop1R1 in the entire MB neuronal population or only in the MB γ-lobe forming neurons, exhibit an increased motor output, as well. Interestingly, our results also suggest that other dopaminergic receptors do not contribute to larval motor behavior. Thus, our data support the proposition that CNS dopamine systems innervating MB neurons modulate larval locomotion and that Dop1R1 mediates this effect.
Collapse
Affiliation(s)
- Bryon Silva
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Sergio Hidalgo
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Jorge M. Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
42
|
Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, Chłoń-Rzepa G. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets 2020; 20:122-143. [PMID: 30091414 DOI: 10.2174/1389450119666180808105056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is a double substrate enzyme that hydrolyzes second messenger molecules such as cyclic-3',5'-adenosine monophosphate (cAMP) and cyclic-3',5'-guanosine monophosphate (cGMP). Through this process, PDE10A controls intracellular signaling pathways in the mammalian brain and peripheral tissues. Pharmacological, biochemical, and anatomical data suggest that disorders in the second messenger system mediated by PDE10A may contribute to impairments in the central nervous system (CNS) function, including cognitive deficits as well as disturbances of behavior, emotion processing, and movement. This review provides a detailed description of PDE10A and the recent advances in the design of selective PDE10A inhibitors. The results of preclinical studies regarding the potential utility of PDE10A inhibitors for the treatment of CNS-related disorders, such as schizophrenia as well as Huntington's and Parkinson's diseases are also summarized.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
43
|
Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Neural Plast 2020; 2020:5859098. [PMID: 32399024 PMCID: PMC7204111 DOI: 10.1155/2020/5859098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adenosine acts as a key regulator of striatum activity, in part, through the antagonistic modulation of dopamine activity. Exercise can increase adenosine activity in the brain, which may impair dopaminergic functions in the striatum. Therefore, long-term repeated bouts of exercise may subsequently generate plasticity in striatal adenosine systems in a manner that promotes dopaminergic activity. This study investigated the effects of long-term voluntary wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor protein expression in adult mouse dorsal and ventral striatum structures using immunohistochemistry. In addition, equilibrative nucleoside transporter 1 (ENT1) protein expression was examined after wheel running, as ENT1 regulates the bidirectional flux of adenosine between intra- and extracellular space. The results suggest that eight weeks of running wheel access spared age-related increases of A1R and A2AR protein concentrations across the dorsal and ventral striatal structures. Wheel running mildly reduced ENT1 protein levels in ventral striatum subregions. Moreover, wheel running mildly increased D2R protein density within striatal subregions in the dorsal medial striatum, nucleus accumbens core, and the nucleus accumbens shell. However, D1R protein expression in the striatum was unchanged by wheel running. These data suggest that exercise promotes adaptations to striatal adenosine systems. Exercise-reduced A1R and A2AR and exercise-increased D2R protein levels may contribute to improved dopaminergic signaling in the striatum. These findings may have implications for cognitive and behavioral processes, as well as motor and psychiatric diseases that involve the striatum.
Collapse
|
44
|
Harada A, Kaushal N, Suzuki K, Nakatani A, Bobkov K, Vekich JA, Doyle JP, Kimura H. Balanced Activation of Striatal Output Pathways by Faster Off-Rate PDE10A Inhibitors Elicits Not Only Antipsychotic-Like Effects But Also Procognitive Effects in Rodents. Int J Neuropsychopharmacol 2019; 23:96-107. [PMID: 31689714 PMCID: PMC7098246 DOI: 10.1093/ijnp/pyz056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Faster off-rate competitive enzyme inhibitors are generally more sensitive than slower off-rate ones to binding inhibition by enzyme substrates. We previously reported that the cyclic adenosine monophosphate concentration in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) may be higher than that in D2-MSNs. Consequently, compared with slower off-rate phosphodiesterase 10A inhibitors, faster off-rate ones comparably activated D2-MSNs but partially activated D1-MSNs. We further investigated the pharmacological profiles of phosphodiesterase 10A inhibitors with different off-rates. METHODS Phosphodiesterase 10A inhibitors with slower (T-609) and faster (T-773) off-rates were used. D1- and D2-MSN activation was assessed by substance P and enkephalin mRNA induction, respectively, in rodents. Antipsychotic-like effects were evaluated by MK-801- and methamphetamine-induced hyperactivity and prepulse inhibition in rodents. Cognition was assessed by novel object recognition task and radial arm maze in rats. Prefrontal cortex activation was evaluated by c-Fos immunohistochemistry in rats. Gene translations in D1- and D2-MSNs were evaluated by translating ribosome affinity purification and RNA sequencing in mice. RESULTS Compared with T-609, T-773 comparably activated D2-MSNs but partially activated D1-MSNs. Haloperidol (a D2 antagonist) and T-773, but not T-609, produced antipsychotic-like effects in all paradigms. T-773, but not T-609 or haloperidol, activated the prefrontal cortex and improved cognition. Overall gene translation patterns in D2-MSNs by all drugs and those in D1-MSNs by T-773 and T-609 were qualitatively similar. CONCLUSIONS Differential pharmacological profiles among those drugs could be attributable to activation balance of D1- and D2-MSNs. The "balanced activation" of MSNs by faster off-rate phosphodiesterase 10A inhibitors may be favorable to treat schizophrenia.
Collapse
Affiliation(s)
- Akina Harada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Nidhi Kaushal
- Neuroscience Drug Discovery Unit Research, Takeda California Inc., San Diego, CA
| | - Kazunori Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Konstantin Bobkov
- Early Target Discovery, Research, Takeda California Inc., San Diego, CA
| | - John A Vekich
- Early Target Discovery, Research, Takeda California Inc., San Diego, CA
| | - Joseph P Doyle
- Early Target Discovery, Research, Takeda California Inc., San Diego, CA
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan,Correspondence: Haruhide Kimura, PhD, 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-8555, Japan ()
| |
Collapse
|
45
|
Moreno-Rius J. Opioid addiction and the cerebellum. Neurosci Biobehav Rev 2019; 107:238-251. [DOI: 10.1016/j.neubiorev.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023]
|
46
|
Yu-Taeger L, Ott T, Bonsi P, Tomczak C, Wassouf Z, Martella G, Sciamanna G, Imbriani P, Ponterio G, Tassone A, Schulze-Hentrich JM, Goodchild R, Riess O, Pisani A, Grundmann-Hauser K, Nguyen HP. Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia. Neurobiol Dis 2019; 134:104634. [PMID: 31678405 DOI: 10.1016/j.nbd.2019.104634] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/-) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal-/-) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/-) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/- rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/- rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Thomas Ott
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Core Facility Transgenic Animals, University Clinics Tuebingen, Tuebingen, Germany
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Celina Tomczak
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Rose Goodchild
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Dept. Neurosciences, Leuven, Belgium
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata,Rome, Italy
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
47
|
The striatal-enriched protein Rhes is a critical modulator of cocaine-induced molecular and behavioral responses. Sci Rep 2019; 9:15294. [PMID: 31653935 PMCID: PMC6814836 DOI: 10.1038/s41598-019-51839-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Previous evidence pointed out a role for the striatal-enriched protein Rhes in modulating dopaminergic transmission. Based on the knowledge that cocaine induces both addiction and motor stimulation, through its ability to enhance dopaminergic signaling in the corpus striatum, we have now explored the involvement of Rhes in the effects associated with this psychostimulant. Our behavioral data showed that a lack of Rhes in knockout animals caused profound alterations in motor stimulation following cocaine exposure, eliciting a significant leftward shift in the dose-response curve and triggering a dramatic hyperactivity. We also found that Rhes modulated either short- or long-term motor sensitization induced by cocaine, since lack of this protein prevents both of them in mutants. Consistent with this in vivo observation, we found that lack of Rhes in mice caused a greater increase in striatal cocaine-dependent D1R/cAMP/PKA signaling, along with considerable enhancement of Arc, zif268, and Homer1 mRNA expression. We also documented that lack of Rhes in mice produced cocaine-related striatal alterations in proteomic profiling, with a differential expression of proteins clustering in calcium homeostasis and cytoskeletal protein binding categories. Despite dramatic striatal alterations associated to cocaine exposure, our data did not reveal any significant changes in midbrain dopaminergic neurons as a lack of Rhes did not affect: (i) DAT activity; (ii) D2R-dependent regulation of GIRK; and (iii) D2R-dependent regulation of dopamine release. Collectively, our results strengthen the view that Rhes acts as a pivotal physiological “molecular brake” for striatal dopaminergic system overactivation induced by psychostimulants, thus making this protein of interest in regulating the molecular mechanism underpinning cocaine-dependent motor stimulatory effects.
Collapse
|
48
|
Pinky PD, Bloemer J, Smith WD, Moore T, Hong H, Suppiramaniam V, Reed MN. Prenatal cannabinoid exposure and altered neurotransmission. Neuropharmacology 2019; 149:181-194. [PMID: 30771373 DOI: 10.1016/j.neuropharm.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
Abstract
Marijuana is one of the most commonly used illicit drugs worldwide. In addition, use of synthetic cannabinoids is increasing, especially among adolescents and young adults. Although human studies have shown that the use of marijuana during pregnancy leads to adverse behavioral effects, such as deficiencies in attention and executive function in affected offspring, the rate of marijuana use among pregnant women is steadily increasing. Various aspects of human behavior including emotion, learning, and memory are dependent on complex interactions between multiple neurotransmitter systems that are especially vulnerable to alterations during the developmental period. Thus, exploration of neurotransmitter changes in response to prenatal cannabinoid exposure is crucial to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral deficits manifest following the abuse of marijuana or other synthetic cannabinoids during pregnancy. Current literature confirms that vast alterations to neurotransmitter systems are present following prenatal cannabinoid exposure, and many of these alterations within the brain are region specific, time-dependent, and sexually dimorphic. In this review, we aim to provide a summary of observed changes to various neurotransmitter systems following cannabinoid exposure during pregnancy and to draw possible correlations to reported behavioral alterations in affected offspring.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Warren D Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
49
|
Abe Y, Komaki Y, Seki F, Shibata S, Okano H, Tanaka KF. Correlative study using structural MRI and super-resolution microscopy to detect structural alterations induced by long-term optogenetic stimulation of striatal medium spiny neurons. Neurochem Int 2019; 125:163-174. [PMID: 30825601 DOI: 10.1016/j.neuint.2019.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/27/2022]
Abstract
Striatal medium spiny neurons (MSNs) control motor function. Hyper- or hypo-activity of MSNs coincides with basal ganglia-related movement disorders. Based on the assumption that lasting alterations in neuronal activity lead to structural changes in the brain, understanding these structural alterations may be used to infer MSN functional abnormalities. To infer MSN function from structural data, understanding how long-lasting alterations in MSN activity affect brain morphology is essential. To address this, we utilized a simplified model of functional induction by stimulating MSNs expressing channelrhodopsin 2 (ChR2). Subsequent structural alterations which induced long-term activity changes in these MSNs were investigated in the striatal pathway and its associated regions by diffusion tensor imaging (DTI) and histological assessment with super-resolution microscopy. DTI detected changes in the striatum, substantia nigra, and motor cortex. Histological assessment found a reduction in the diameter of myelinated cortical axons as well as MSN dendrites and axons. The structural changes showed a high correlation between DTI parameters and histological data. These results demonstrated that long-term neural activation in the MSNs alters the diameter of MSN and cortical neurons fibers. This study provides a tool for understanding the causal relationship between functional and structural alterations.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Japan.
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Japan; Live Imaging Center, Central Institute for Experimental Animals, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Japan; Live Imaging Center, Central Institute for Experimental Animals, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Japan; Electron Microscope Laboratory, Keio University School of Medicine, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan; Electron Microscope Laboratory, Keio University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
| |
Collapse
|
50
|
Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem Int 2019; 122:8-18. [DOI: 10.1016/j.neuint.2018.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
|