1
|
Wang Y, Wang L, Du Y, Yao F, Zhao M, Cai C, Zhu R, Shao S. Metabolomics study reveals DON-induced intestinal toxicity in adult zebrafish through disruption of amino acid metabolism and sphingolipid signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107324. [PMID: 40112585 DOI: 10.1016/j.aquatox.2025.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Deoxynivalenol (DON), a prevalent mycotoxin contaminating cereal crops globally, poses significant threats to animal and human health through its gastrointestinal toxicity. While DON-induced intestinal damage has been documented in mammals, its metabolic mechanisms in aquatic species remain poorly understood, particularly in adult zebrafish models that offer unique advantages for toxicological studies. Multi-omics analysis revealed 16 key differential metabolites (9 upregulated, 7 downregulated) associated with amino acid metabolism and carbohydrate homeostasis. Pathway enrichment analysis identified significant perturbations in 2-oxocarboxylic acid metabolism and sphingolipid signaling, suggesting mitochondrial dysfunction and epithelial barrier disruption as primary toxicity mechanisms. This study establishes the first adult zebrafish model for DON intestinal toxicity evaluation, demonstrating its utility in revealing conserved metabolic targets across species. The identified pathway-specific biomarkers provide novel insights for developing dietary interventions against mycotoxin exposure.
Collapse
Affiliation(s)
- Yuxiang Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Luhan Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Miaomiao Zhao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023;.
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province, PRC, 310023
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada..
| |
Collapse
|
2
|
Li M, Yuan W, Duan S, Li Y, Zhang S, Zhao Y, Xiao S, Zhong K. Rare earth element erbium induces immune toxicity through the ROS/NF-κB pathway in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110129. [PMID: 39828015 DOI: 10.1016/j.fsi.2025.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications. It is primarily utilized in ceramics, glass coloring, optical fibers, laser technology, and the nuclear industry, among others. However, a paucity of information on the health effects and ecotoxicity of erbium is currently available. In this study, we used the zebrafish as experimental animal to investigate the potential impact of the rare earth element erbium on the immune system. We exposed fertilized zebrafish embryos to different concentrations of erbium (0, 4, 8 and 16 mg/L) from 6 hours post-fertilization (hpf) until 72 hpf. We found that with increasing concentrations of erbium exposure, there was an increasing and dispersing trend in the number of zebrafish neutrophils; a decreasing trend in the number of macrophages. Exposure to erbium was demonstrated to impair the phagocytic capability of macrophages, reduce the recruitment of neutrophils to the wound site, and lower the resistance of zebrafish to Escherichia coli infection. Erbium exposure led to macrophage apoptosis and upregulation of oxidative stress in the zebrafish. The individual application of the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine, the IKBKB inhibitor resveratrol and the NF-κB inhibitor andrographolide were demonstrated to alleviate erbium-induced immune toxicity, as confirmed by assays including acridine orange staining, neutrophils enumeration and recruitment, and real-time quantitative PCR. Therefore, the rare earth element erbium induced immune toxicity in zebrafish through the ROS/NF-κB pathway. The findings of this study provide information for assessing the impact of rare earth elements on human health and ecosystems.
Collapse
Affiliation(s)
- Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Yuan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yan Zhao
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou, 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou, 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Kalyn M, Garvey R, Lee H, Mbesha HA, Curry J, Saxena V, Mennigen JA, Ekker M. Differential roles of NR4A2 (NURR1) paralogs in the brain and behavior of zebrafish. J Neurochem 2025; 169:e16234. [PMID: 39388214 DOI: 10.1111/jnc.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Dopaminergic (DAnergic) dysfunction and imbalanced dopamine (DA) levels are known contributors to the pathogenesis of numerous psychiatric and neurodegenerative disorders. Of the many identified risk factors for DA-associated disorders, nuclear receptor subfamily 4 group A2 (NR4A2; or nuclear receptor related-1 protein (NURR1)), a transcription factor involved in DAnergic differentiation, has been associated with Parkinson's disease and attention deficit hyperactive disorder (ADHD). In zebrafish, transient loss of nr4a2 was previously shown to decrease tyrosine hydroxylase (TH) expression and impair locomotion. To further characterize the roles of the two zebrafish nr4a2 paralogs, nr4a2a, and nr4a2b, we produced targeted loss-of-function mutants and examined DAnergic neuron regeneration, oxidative respiration, and behavioral traits. The loss of nr4a2a function more closely recapitulated Parkinsonian phenotypes and affected neurotrophic factor gene expression. Conversely, nr4a2b mutants displayed behavioral symptoms reminiscent of mice deficient in Nr4a2 with increased neurotrophic output. In contrast, nr4a2b mutants also displayed increased metabolic input from non-mitochondrial sources indicative of high cytosolic reactive oxygen species and perturbed mitochondrial function. The nr4a2a mutants also showed increased maximal respiration, which may suggest a compensatory mechanism to meet the metabolic requirements of DAnergic neuron health. Overall, the zebrafish mutants generated in this study helped uncover molecular mechanisms involved in DA-related disease pathologies, and in the regeneration of DAnergic neurons.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Rose Garvey
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jory Curry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Galstyan DS, Lebedev AS, Ilyin NP, Papulova MS, Golushko NI, Tishkina VV, Saklakova DK, Martynov D, Kolesnikova TO, Rosemberg DB, De Abreu MS, Demin KA, Kalueff AV. Acute Behavioral and Neurochemical Effects of Sulpiride in Adult Zebrafish. Neurochem Res 2024; 50:11. [PMID: 39549192 DOI: 10.1007/s11064-024-04268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/18/2024]
Abstract
Affective and psychotic disorders are highly prevalent and severely debilitating mental illnesses that often remain untreated or treatment-resistant. Sulpiride is a common antipsychotic (neuroleptic) drug whose well-established additional (e.g., antidepressant) therapeutic effects call for further studies of a wider spectrum of its CNS effects. Here, we examined effects of acute 20-min exposure to sulpiride (50-200 mg/L) on anxiety- and depression-like behaviors, as well as on brain monoamines, in adult zebrafish (Danio rerio). Overall, sulpiride exerted overt anxiolytic-like effects in the novel tank test and showed tranquilizing-like effects in the zebrafish tail immobilization test, accompanied by lowered whole-brain dopamine and its elevated turnover, without affecting serotonin or norepinephrine levels and their turnover. Taken together, these findings support complex behavioral pharmacology of sulpiride in vivo and reconfirm high sensitivity of zebrafish-based screens to this and, likely, other related clinically active neuroleptics.
Collapse
Affiliation(s)
- David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey S Lebedev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria S Papulova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Valeria V Tishkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daryna K Saklakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daniil Martynov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Dennis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Department of Biolosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
5
|
Hedayatikatouli F, Kalyn M, Elsaid D, Mbesha HA, Ekker M. Neuroprotective Effects of Ascorbic Acid, Vanillic Acid, and Ferulic Acid in Dopaminergic Neurons of Zebrafish. Biomedicines 2024; 12:2497. [PMID: 39595063 PMCID: PMC11592154 DOI: 10.3390/biomedicines12112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a debilitating neurodegenerative disease that targets the nigrostriatal dopaminergic (DAnergic) system residing in the human midbrain and is currently incurable. The aim of this study is to investigate the neuroprotective effects of ascorbic acid, vanillic acid, and ferulic acid in a zebrafish model of PD induced by MPTP by assessing the impact of these compounds on DAnergic neurons, focusing on gene expression, mitochondrial dynamics, and cellular stress responses. Methods/Results: Following exposure and qPCR and immunohistochemical analyses, ascorbic acid enhanced DAnergic function, indicated by an upregulation of the dopamine transporter (dat) gene and increased eGFP+ DAnergic cells, suggesting improved dopamine reuptake and neuroprotection. Ascorbic acid also positively affected mitochondrial dynamics and stress response pathways, countering MPTP-induced dysregulation. Vanillic acid only had modest, if any, neuroprotective effects on DAnergic neurons following MPTP administration. Ferulic acid exhibited the largest neuroprotective effects through the modulation of gene expression related to DAnergic neurons and mitochondrial dynamics. Conclusions: These findings suggest that ascorbic acid and ferulic acid can act as potential protective interventions for DAnergic neuron health, demonstrating various beneficial effects at the molecular and cellular levels. However, further investigation is needed to translate these results into clinical applications. This study enhances the understanding of neuroprotective strategies in neurodegenerative diseases, emphasizing the importance of considering interactions between physiological systems.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Razali K, Kumar J, Mohamed WMY. Characterizing the adult zebrafish model of Parkinson's disease: a systematic review of dynamic changes in behavior and physiology post-MPTP administration. Front Neurosci 2024; 18:1432102. [PMID: 39319314 PMCID: PMC11420122 DOI: 10.3389/fnins.2024.1432102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Adult zebrafish are increasingly used in Parkinson's disease (PD) research due to their well-characterized dopaminergic system. Among the toxin-based models, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is widely utilized to induce parkinsonism in adult zebrafish. Therefore, this review presents an overview of the procedures and the dynamic changes in behavior and physiology observed in the adult zebrafish PD model following a single intraperitoneal injection of MPTP. Methods A systematic literature search in the PubMed and Google Scholar databases was conducted to identify relevant articles. Of the 165 articles identified, 9 were included in this review. These chosen articles are original works published before March 2024, all of which utilized adult zebrafish induced with MPTP as the model for PD. Other articles were excluded based on factors such as limited relevance, utilization of zebrafish embryos or larvae instead of adults, and variations in MPTP deliveries. Results Studies indicated that the ideal model entails the utilization of mixed gender zebrafish aged between 4 and 6 months from the wild-type strain. The acceptable MPTP doses ranges between 20 μg/g (lowest) and 225 μg/g (highest) and doses above 292 μg/g are lethal. Furthermore, noticeable parkinsonian symptoms appear 1 day after administration and persist for more than 1 week. Discussion Mitochondrial dysfunction precedes dopaminergic neurodegeneration within this experimental regime. A single administration of MPTP effectively induces PD in adult zebrafish. This study aids in crafting the adult zebrafish PD model, outlining the progressive behavioral and physiological changes ensuing from MPTP administration.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
7
|
Sarangi P, Sahoo PK, Pradhan LK, Bhoi S, Sahoo BS, Chauhan NR, Raut S, Das SK. Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109970. [PMID: 38944366 DOI: 10.1016/j.cbpc.2024.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Nishant Ranjan Chauhan
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
8
|
Romero A, Sanchez A, Jones JD, Ledesma K, El-Halawany MS, Hamouda AK, Bill BR. Optimization of Zebrafish Larvae 6-OHDA Exposure for Neurotoxin Induced Dopaminergic Marker Reduction. Zebrafish 2024; 21:287-293. [PMID: 38608227 PMCID: PMC11876810 DOI: 10.1089/zeb.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is clinically assessed by motor symptoms associated with the loss of midbrain dopaminergic neurons affecting the quality of life for over 8.5 million people worldwide. The neurotoxin 6-hydroxydopamine (6-OHDA) has been used to chemically induce a PD-like state in zebrafish larvae by several laboratories; however, highly variable concentration, methodology, and reagents have resulted in conflicting results suggesting a need to investigate these issues of reproducibility. We propose a protocol that addresses the differences in methodology and induces changes in 6 days postfertilization (dpf) larvae utilizing a 24-h exposure at 3 dpf with 30 μM 6-OHDA. Despite ∼50% lethality, no morphological or development differences in surviving fish are observed. Definition of our model is defined by downregulation of the expression of th1 by reverse transcriptase-quantitative polymerase chain reaction, a marker for dopaminergic neurons and a reduction in movement. Additionally, we observed a downregulation of pink1 and an upregulation of sod1 and sod2, indicators of mitochondrial dysfunction and response to reactive oxygen species, respectively.
Collapse
Affiliation(s)
- Adrian Romero
- The University of Texas at Tyler College of Arts and Sciences Department of Biology, Tyler, Texas, USA
- The University of Texas Tyler Ben and Maytee Fisch College of Pharmacy, Tyler, Texas, USA
| | - Armando Sanchez
- The University of Texas at Tyler College of Arts and Sciences Department of Biology, Tyler, Texas, USA
| | - Jocelyn D. Jones
- The University of Texas at Tyler College of Arts and Sciences Department of Biology, Tyler, Texas, USA
| | - Kristel Ledesma
- The University of Texas at Tyler College of Arts and Sciences Department of Biology, Tyler, Texas, USA
| | - Medhat S. El-Halawany
- The University of Texas Tyler Ben and Maytee Fisch College of Pharmacy, Tyler, Texas, USA
| | - Ayman K. Hamouda
- The University of Texas Tyler Ben and Maytee Fisch College of Pharmacy, Tyler, Texas, USA
| | - Brent R. Bill
- The University of Texas at Tyler College of Arts and Sciences Department of Biology, Tyler, Texas, USA
| |
Collapse
|
9
|
Ruan DD, Zou J, Liao LS, Ji MD, Wang RL, Zhang JH, Zhang L, Gao MZ, Chen Q, Yu HP, Wei W, Li YF, Li H, Lin F, Luo JW, Lin XF. In vitro study of ATP1A3 p.Ala275Pro mutant causing alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism. Front Neurosci 2024; 18:1415576. [PMID: 39145297 PMCID: PMC11322359 DOI: 10.3389/fnins.2024.1415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction We previously reported that ATP1A3 c.823G>C (p.Ala275Pro) mutant causes varying phenotypes of alternative hemiplegia of childhood and rapid-onset dystonia-parkinsonism in the same family. This study aims to investigate the function of ATP1A3 c.823G>C (p.Ala275Pro) mutant at the cellular and zebrafish models. Methods ATP1A3 wild-type and mutant Hela cell lines were constructed, and ATP1A3 mRNA expression, ATP1A3 protein expression and localization, and Na+-K+-ATPase activity in each group of cells were detected. Additionally, we also constructed zebrafish models with ATP1A3 wild-type overexpression (WT) and p.Ala275Pro mutant overexpression (MUT). Subsequently, we detected the mRNA expression of dopamine signaling pathway-associated genes, Parkinson's disease-associated genes, and apoptosisassociated genes in each group of zebrafish, and observed the growth, development, and movement behavior of zebrafish. Results Cells carrying the p.Ala275Pro mutation exhibited lower levels of ATP1A3 mRNA, reduced ATP1A3 protein expression, and decreased Na+-K+-ATPase activity compared to wild-type cells. Immunofluorescence analysis revealed that ATP1A3 was primarily localized in the cytoplasm, but there was no significant difference in ATP1A3 protein localization before and after the mutation. In the zebrafish model, both WT and MUT groups showed lower brain and body length, dopamine neuron fluorescence intensity, escape ability, swimming distance, and average swimming speed compared to the control group. Moreover, overexpression of both wild-type and mutant ATP1A3 led to abnormal mRNA expression of genes associated with the dopamine signaling pathway and Parkinson's disease in zebrafish, and significantly upregulated transcription levels of bad and caspase-3 in the apoptosis signaling pathway, while reducing the transcriptional level of bcl-2 and the bcl-2/bax ratio. Conclusion This study reveals that the p.Ala275Pro mutant decreases ATP1A3 protein expression and Na+/K+-ATPase activity. Abnormal expression of either wild-type or mutant ATP1A3 genes impairs growth, development, and movement behavior in zebrafish.
Collapse
Affiliation(s)
- Dan-dan Ruan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jing Zou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-sheng Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Ming-dong Ji
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruo-li Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-hui Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-zhu Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-ping Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wei
- Department of Rehabilitation Medicine, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yun-fei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-wei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xin-fu Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
10
|
Tanaka Y, Shindo A, Dong W, Nakamura T, Ogura K, Nomiyama K, Teraoka H. Tyrosinase inhibition prevents non-coplanar polychlorinated biphenyls and polybrominated diphenyl ethers-induced hyperactivity in developing zebrafish: Interaction between pigmentation and neurobehavior. Neurotoxicol Teratol 2024; 104:107373. [PMID: 39025421 DOI: 10.1016/j.ntt.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Wenjing Dong
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tatsuro Nakamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kyoko Ogura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
11
|
Wan M, Liu J, Yang D, Xiao Z, Li X, Liu J, Huang L, Liu F, Zhang S, Tao Q, Xiao J, Cao Z. Dimethyl fumarate induces cardiac developmental toxicity in zebrafish via down-regulation of oxidative stress. Toxicology 2024; 503:153735. [PMID: 38272385 DOI: 10.1016/j.tox.2024.153735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Dimethyl fumarate (DMF) is an immunosuppressant commonly used to treat multiple sclerosis and other autoimmune diseases. Despite known side effects such as lymphopenia, the effect of DMF on cardiac development remains unclear. To assess this, we used zebrafish to evaluate the cardiac developmental toxicity of DMF. Our study showed that DMF reduced the survival rate of zebrafish embryos, with those exposed to 1, 1.3, and 1.6 mg/L exhibiting heart rate reduction, shortened body length, delayed yolk sac absorption, pericardial edema, increased distance from sinus venous to bulbus arteriosus, and separation of cardiomyocytes and endocardial cells at 72 hpf. Heart development-related genes showed disorder, apoptosis-related genes were up-regulated, and the oxidative stress response was down-regulated. Treatment with cysteamine ameliorated the heart development defects. Our study demonstrates that DMF induces cardiac developmental toxicity in zebrafish, possibly by down-regulating oxidative stress responses. This study provides a certain research basis for further study of DMF-induced cardiac developmental toxicity, and provides some experimental evidence for future clinical application and study of DMF.
Collapse
Affiliation(s)
- Mengqi Wan
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Department of General Surgery,The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi 330006,China
| | - Jiejun Liu
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Dou Yang
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Zhonghao Xiao
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Xue Li
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Jieping Liu
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Ling Huang
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Fasheng Liu
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery,The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi 330006,China
| | - Qiang Tao
- Department of General Surgery,The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi 330006,China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China.
| | - Zigang Cao
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009 Jiangxi, China.
| |
Collapse
|
12
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
13
|
Wei XY, Jia PP, Hu H, Liu L, Li TY, Li YZ, Pei DS. Multi-omics reveal mechanisms underlying chronic kidney disease of unknown etiology (CKDu) pathogenesis using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122524. [PMID: 37683759 DOI: 10.1016/j.envpol.2023.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Cleal M, Fontana BD, Hillman C, Parker MO. Ontogeny of working memory and behavioural flexibility in the free movement pattern (FMP) Y-maze in zebrafish. Behav Processes 2023; 212:104943. [PMID: 37689254 DOI: 10.1016/j.beproc.2023.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The acquisition of executive skills such as working memory, decision-making and adaptive responding occur at different stages of central nervous system development. Zebrafish (Danio rerio) are increasingly used in behavioural neuroscience for complex behavioural tasks, and there is a critical need to understand the ontogeny of their executive functions. Zebrafish across developmental stages (4, 7, 14, 30 and 90 days post fertilisation (dpf)), were assessed to track development of working memory (WM) and behavioural flexibility (BF) using the free movement pattern Y-maze (FMP Y-maze). Several differences in both WM and BF were identified during the transition from yolk-dependent to independent feeding. Specifically, WM is evident in all age groups, even from 4 dpf. However, BF is not developed until larvae start free feeding, and show significant improvement thereafter, with young adults (90 dpf) demonstrating the most well-defined BF. We demonstrate, for the first time, objective WM processes in 4 dpf zebrafish larvae. This suggests that those wishing to study WM in zebrafish may be able to do so from 4 dpf, thus drastically increasing throughput. In addition, we show that zebrafish follow distinct stages of cognitive development and age-related changes during the early developmental period. Finally, our findings indicate distinct WM and BF mechanisms, which may be useful to study for translational purposes.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research centre, School of Biosciences, University of Surrey, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; Surrey Sleep Research centre, School of Biosciences, University of Surrey, UK.
| |
Collapse
|
15
|
Bansal P, Roitman MF, Jung EE. Caloric state modulates locomotion, heart rate and motor neuron responses to acute administration of d-amphetamine in zebrafish larvae. Physiol Behav 2023; 264:114144. [PMID: 36889488 PMCID: PMC10070120 DOI: 10.1016/j.physbeh.2023.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Psychostimulant drugs increase behavioral, cardiac and brain responses in humans and other animals. Acute food deprivation or chronic food restriction potentiates the stimulatory effects of abused drugs and increases the propensity for relapse to drug seeking in drug-experienced animals. The mechanisms by which hunger affects cardiac and behavioral activities are only beginning to be elucidated. Moreover, changes in motor neuron activities at the single neuron level induced by psychostimulants, and their modulation by food restriction, remain unknown. Here we investigated how food deprivation affects responses to d-amphetamine by measuring locomotor activity, cardiac output, and individual motor neuron activity in zebrafish larvae. We used wild-type larval zebrafish to record behavioral and cardiac responses and the larvae of Tg(mnx1:GCaMP5) transgenic zebrafish to record motor neuron responses. Physiological state gated responses to d-amphetamine. That is, d-amphetamine evoked significant increases in motor behavior (swimming distances), heart rate and motor neuron firing frequency in food-deprived but not fed zebrafish larvae. The results extend the finding that signals arising from food deprivation are a key potentiator of the drug responses induced by d-amphetamine to the zebrafish model. The larval zebrafish is an ideal model to further elucidate this interaction and identify key neuronal substrates that may increase vulnerability to drug reinforcement, drug-seeking and relapse.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607, USA
| | - Mitchell F Roitman
- Department of Psychology, The University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607, USA
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607, USA; Department of Biomedical Engineering, The University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Wang M, Ye H, Jiang P, Liu J, Wang B, Zhang S, Sik A, Li N, Liu K, Jin M. The alleviative effect of Calendula officinalis L. extract against Parkinson's disease-like pathology in zebrafish via the involvement of autophagy activation. Front Neurosci 2023; 17:1153889. [PMID: 37179558 PMCID: PMC10169688 DOI: 10.3389/fnins.2023.1153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, effective preventative or therapeutic agents for PD remain largely limited. Marigold Calendula officinalis L. (CoL) has been reported to possess a wide range of biological activities, but its neuroprotective activity including anti-neurodegenerative diseases is unclear. Here, we aim to investigate whether the extract of CoL (ECoL) has therapeutic activity on PD. Methods We identified the chemical composition of flavonoid, an important active ingredient in ECoL, by a targeted HPLC-Q-TOF-MS analysis. Subsequently, we evaluated the anti-PD effect of ECoL by using zebrafish PD model induced by 1-methyl-4-phenyl-1-1,2,3,6-tetrahydropyridine (MPTP). After ECoL+MPTP co-treatments, the changes of dopaminergic neurons, neural vasculature, nervous system, and locomotor activity were examined, respectively. The expressions of genes related to neurodevelopment and autophagy were detected by RT-qPCR. Further, the interaction between autophagy regulators and ECoL flavonoids was predicted using molecular docking method. Results As a result, 5 kinds of flavonoid were identified in ECoL, consisting of 121 flavones and flavonols, 32 flavanones, 22 isoflavonoids, 11 chalcones and dihydrochalcones, and 17 anthocyanins. ECoL significantly ameliorated the loss of dopaminergic neurons and neural vasculature, restored the injury of nervous system, and remarkably reversed the abnormal expressions of neurodevelopment-related genes. Besides, ECoL notably inhibited the locomotor impairment in MPTP-induced PD-like zebrafish. The underlying anti-PD effect of ECoL may be implicated in activating autophagy, as ECoL significantly upregulated the expressions of genes related to autophagy, which contributes to the degradation of α-synuclein aggregation and dysfunctional mitochondria. Molecular docking simulation showed the stable interaction between autophagy regulators (Pink, Ulk2, Atg7, and Lc3b) and 10 main compounds of flavonoid in ECoL, further affirming the involvement of autophagy activation by ECoL in anti-PD action. Conclusion Our results suggested that ECoL has the anti-PD effect, and ECoL might be a promising therapeutic candidate for PD treatment.
Collapse
Affiliation(s)
- Mengfei Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haicheng Ye
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ping Jiang
- Department of Pharmacy, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Jibin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
17
|
Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, Adams S, Berti G, Cogo S, De Lazzari F, Fontana CM, Martinez PA, Strong R, Bandopadhyay R, Bisaglia M, Bellucci A, Greggio E, Dalla Valle L, Boassa D, Bubacco L. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:42. [PMID: 36966140 PMCID: PMC10039907 DOI: 10.1038/s41531-023-00485-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Francesca Terrin
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Michele Sandre
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Andrea Thor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Stephen Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Giulia Berti
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, 35131, Italy
| | | | | | - Paul Anthony Martinez
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Randy Strong
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA.
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Faustini G, Longhena F, Muscò A, Bono F, Parrella E, La Via L, Barbon A, Pizzi M, Onofri F, Benfenati F, Missale C, Memo M, Zizioli D, Bellucci A. Synapsin III Regulates Dopaminergic Neuron Development in Vertebrates. Cells 2022; 11:cells11233902. [PMID: 36497160 PMCID: PMC9739466 DOI: 10.3390/cells11233902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.
Collapse
Affiliation(s)
- Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessia Muscò
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Via Leon Battista Alberti 2, 16132 Genova, Italy
| | - Fabio Benfenati
- IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Correspondence: (D.Z.); (A.B.); Tel.: +39-(0)30-3717546 (D.Z.); +39-(0)30-3717380 (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Correspondence: (D.Z.); (A.B.); Tel.: +39-(0)30-3717546 (D.Z.); +39-(0)30-3717380 (A.B.)
| |
Collapse
|
19
|
Vijayanathan Y, Hamzah NM, Lim SM, Lim FT, Tan MP, Majeed ABA, Ramasamy K. Newly regenerated dopaminergic neurons in 6-OHDA-lesioned adult zebrafish brain proliferate in the Olfactory bulb and telencephalon, but migrate to, differentiate and mature in the diencephalon. Brain Res Bull 2022; 190:218-233. [PMID: 36228872 DOI: 10.1016/j.brainresbull.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022]
Abstract
In order to understand the biological processes underlying dopaminergic neurons (DpN) regeneration in a 6-hydroxydopamine(6-OHDA)-induced adult zebrafish-based Parkinson's disease model, this study investigated the specific phases of neuroregeneration in a time-based manner. Bromodeoxyuridine (BrdU) was administered 24 h before the harvest of brain tissues at day three, five, seven, nine, 12 and 14 postlesion. Potential migration of proliferative cells was tracked over 14 days postlesion through double-pulse tracking [BrdU and 5-ethynyl-2'-deoxyuridine (EdU)] of cells and immunohistostaining of astrocytes [glial fibrillary acidic protein (GFAP)]. Gene expression of foxa2 and nurr1 (nr4a2a) at day three, nine, 14, 18, 22 and 30 postlesion was quantified using qPCR. Protein expression of foxa2 at day three, seven, 14 and 22 postlesion was validated using the western blot technique. Double labelling [EdU and tyrosine hydroxylase (TH)] of proliferative cells was performed to ascertain their fate after the neuroregeneration processes. It was found that whilst cell proliferation remained unchanged in the area of substantial DpN loss, the ventral diencephalon (vDn), there was a transient increase of cell proliferation in the olfactory bulb (OB) and telencephalon (Tel) seven days postlesion. BrdU-immunoreactive (ir)/ EdU-ir cells and activated astrocytes were later found to be significantly increased in the vDn and its nearby area (Tel) 14 days postlesion. There was a significant but transient downregulation of foxa2 at day three and nine postlesion, and nr4a2a at day three, nine and 14 postlesion. The expression of both genes remained unchanged in the OB and Tel. There was a transient downregulation of foxa2 protein expression at day three and seven postlesion. The significant increase of EdU-ir/ TH-ir cells in the vDn 30 days postlesion indicates maturation of proliferative cells (formed between day five-seven postlesion) into DpN. The present findings warrant future investigation of critical factors that govern the distinctive phases of DpN regeneration.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naemah Md Hamzah
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Fei Ting Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Razali K, Mohd Nasir MH, Othman N, Doolaanea AA, Kumar J, Nabeel Ibrahim W, Mohamed WMY. Characterization of neurobehavioral pattern in a zebrafish 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model: A 96-hour behavioral study. PLoS One 2022; 17:e0274844. [PMID: 36190968 PMCID: PMC9529090 DOI: 10.1371/journal.pone.0274844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson’s disease (PD) is the most common brain motor disorder, characterized by a substantial loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Motor impairments, such as dyskinesia, bradykinesia, and resting tremors, are the hallmarks of PD. Despite ongoing research, the exact PD pathogenesis remains elusive due to the disease intricacy and difficulty in conducting human studies. Zebrafish (Danio rerio) has emerged as an ideal model for researching PD pathophysiology. Even though 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been used to induce PD in zebrafish, behavioural findings are frequently limited to a single time point (24 hours post-injection). In this sense, we aim to demonstrate the effects of MPTP on zebrafish swimming behaviour at multiple time points. We administered a single dosage of MPTP (200μg/g bw) via intraperitoneal injection (i/p) and assessed the locomotor activity and swimming pattern at 0h, 24h, and 96h post-injection through an open field test. Analysis of the behaviour revealed significant reductions in swimming velocity (cm/s) and distance travelled (cm), concurrent with an increase in freezing maintenance (duration and bouts) in zebrafish injected with MPTP. In addition, the MPTP-injected zebrafish exhibited complex swimming patterns, as measured by the turn angle, meander, and angular velocity, and showed abnormal swimming phenotypes, including freezing, looping, and erratic movement. To conclude, MPTP administration into adult zebrafish induced hypolocomotion and elicited motor incoordination. Plus, the effects of MPTP were observable 24 hours after the injection and still detectable 96 hours later. These findings contribute to the understanding of MPTP effects on adult zebrafish, particularly in terms of swimming behaviours, and may pave the way for a better understanding of the establishment of PD animal models in the future.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
- * E-mail:
| |
Collapse
|
21
|
Kumar A, Rhee M. Transcriptomic networks of gba3 governing specification of the dopaminergic neurons in zebrafish embryos. Genes Genomics 2022; 44:1543-1554. [PMID: 36181626 DOI: 10.1007/s13258-022-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Molecular networks associated with dopaminergic (DA) neurogenesis remain undefined within mammalian models. To address this issue, the transient zebrafish model lmx1al: EGFP was generated, which expresses GFP in the DA precursor cells as well as in the DA neurons of the ventral diencephalon (VD). We found that the novel pseudogene gba3 has not been well studied in zebrafish neurogenesis. OBJECTIVE Crucial networks associated with gba3 transcripts were investigated because the biological functions of these networks have not been reported in DA neurogenesis in zebrafish. METHODS RNA isolation and sequencing were employed with GFP-expressing cells from 20-, 22-, and 24 h post-fertilization (hpf), while subsequent transcriptomic analysis generated differentially expressed genes with DA neurogenesis (DEG-DA) list. Hierarchical cluster analysis provided absolute guidance for the collection of gba3, an essential transcript that is strictly spatiotemporally expressed during DA neurogenesis, which was proven with whole-mount in situ hybridization (WISH) and knockdown and rescue of the gba3 transcripts in zebrafish embryos. RESULTS The gba3 transcripts were restricted to the midbrain at 24 hpf and the midbrain and pectoral fins at 30 hpf in zebrafish embryos. Functional studies with knockdown of gba3 found a diminished state in the midbrain and midbrain-hindbrain boundary (MHB) and an underdeveloped condition in the anteroposterior and dorsolateral axis relative to the wild type (WT) at 24 hpf. However, it was recovered after forced expression of gba3 transcripts at 24 hpf. Molecular markers for the DA precursors and mature neurons lmx1al, nurr1, th, and pitx3 were analyzed in the gba3 MOs. The levels of transcripts lmx1al, nurr1, and th were significantly reduced in the midbrain ventral diencephalon (VD) and hindbrain of gba3 morphants compared to the WT at 24 hpf, while expression patterns of pitx3 transcripts showed no differences in the identical regions between gba3 MOs and the controls. CONCLUSIONS We discuss transcriptional networks in which transcripts of gba3 plausibly govern the specification of dopaminergic neurogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Ajeet Kumar
- Department of Biological Sciences, Graduate School, BK21 plus program, Chungnam National University, Daejeon, 34134, South Korea. .,Laboratory of Neural Stem Cell Biology, Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea.
| | - Myungchull Rhee
- Department of Biological Sciences, Graduate School, BK21 plus program, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
22
|
Son JH, Gerenza AK, Bingener GM, Bonkowsky JL. Hypoplasia of dopaminergic neurons by hypoxia-induced neurotoxicity is associated with disrupted swimming development of larval zebrafish. Front Cell Neurosci 2022; 16:963037. [PMID: 36212692 PMCID: PMC9540391 DOI: 10.3389/fncel.2022.963037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury to the developing brain increases the risk of permanent behavioral deficits, but the precise mechanisms of hypoxic injury to the developing nervous system are poorly understood. In this study, we characterized the effects of developmental hypoxia (1% pO2 from 24 to 48 h post-fertilization, hpf) on diencephalic dopaminergic (DA) neurons in larval zebrafish and the consequences on the development of swimming behavior. Hypoxia reduced the number of diencephalic DA neurons at 48 hpf. Returning zebrafish larvae to normoxia after the hypoxia (i.e., hypoxia-recovery, HR) induced reactive oxygen species (ROS) accumulation. Real-time qPCR results showed that HR caused upregulation of proapoptotic genes, including p53 and caspase3, suggesting the potential for ROS-induced cell death. With HR, we also found an increase in TUNEL-positive DA neurons, a persistent reduction in the number of diencephalic DA neurons, and disrupted swimming development and behavior. Interestingly, post-hypoxia (HR) with the antioxidant N-acetylcysteine partially restored the number of DA neurons and spontaneous swimming behavior, demonstrating potential recovery from hypoxic injury. The present study provides new insights for understanding the mechanisms responsible for motor disability due to developmental hypoxic injury.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
- *Correspondence: Jong-Hyun Son,
| | - Amanda K. Gerenza
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Gabrielle M. Bingener
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Joshua L. Bonkowsky
- Department of Pediatrics, School of Medicine, Brain and Spine Center, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
23
|
Ren Q, Jiang X, Paudel YN, Gao X, Gao D, Zhang P, Sheng W, Shang X, Liu K, Zhang X, Jin M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson's disease like pathology in Zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115234. [PMID: 35358621 DOI: 10.1016/j.jep.2022.115234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second most devastating age-related neurodegenerative diseases after Alzheimer diseases (AD) and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) and aggregation of α-synuclein (α-syn). The precise etiology of PD is not yet fully understood and lacks the disease-modifying therapeutic strategies that could reverse the ongoing neurodegeneration. In the quest of exploring novel disease modifying therapeutic strategies, natural compounds from plant sources have gained much attention in recent days. Glycyrrhizin (GL) is the main active ingredient of the roots and rhizomes of licorice (Glycyrrhiza glabra L), which are generally used in the treatment of inflammatory diseases or as a tonifying herbal medicine. In Persia, GL is a conventional neuroprotective agent that are used to treat neurological disorders. The traditional use of GL in Japan is to treat chronic hepatitis B. In addition, GL is a natural inhibitor of high mobility group box 1 (HMGB1) which has exerted neuroprotective effect against several HMGB1 mediated pathological conditions. AIM OF THE STUDY The study is aimed to evaluate therapeutic effect of GL against PD in zebrafish. MATERIAL AND METHODS PD in zebrafish larvae is induced by administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Apoptosis was assessed with TUNEL assay. Gene expression was performed to assess the modulation in genes related to neuroinflammatory and autophagy. RESULTS We observed that GL co-treatment increased the length of DA neurons, decreased the number of apoptotic cells in zebrafish brain, and inhibited the loss of vasculature and disorganized vasculature induced by MPTP. GL co-treatment relieved the MPTP-induced locomotor impairment in zebrafish. GL co-treatment suppressed MPTP-induced upregulated mRNA expression of inflammatory markers such as hmgb1a, tlr4b, nfκb, il1β, and il6. GL co-treatment suppressed the autophagy related genes α-syn and atg5 whereas increased the mRNA expression level of parkin and pink1. In addition, molecular docking study reveals that GL has binding interaction with HMGB1, TLR4, and RAGE. CONCLUSION Hence, the effect of GL co-treatment on MPTP-induced PD-like condition in zebrafish is to alleviate apoptosis and autophagy, as well as suppress inflammatory responses.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Ji'nan, 250353, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Xin Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiujun Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
24
|
Zhang D, Li Y, Li X, Han X, Wang Z, Zhang W, Dou B, Lu Z, Li P, Li G. Neopetrosins A-D and Haliclorensin D, Indole- C-Mannopyranosides and a Diamine Alkaloid Isolated from the South China Sea Marine Sponge Neopetrosia chaliniformis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1626-1633. [PMID: 35650516 DOI: 10.1021/acs.jnatprod.2c00292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Four new indole-C-mannopyranoside alkaloids, neopetrosins A-D (1-4), together with one new diamine alkaloid, haliclorensin D (6), were isolated from the marine sponge Neopetrosia chaliniformis collected off Xisha Island in the South China Sea. Their structures and absolute configurations were determined by spectroscopic analysis, single-crystal X-ray diffraction, calculated electronic circular dichroism (ECD), and DP4+ probability analyses. Compounds 1, 2, and 4 exhibited in vivo hepatoprotective activity in a zebrafish model at a concentration of 20 μM.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yueying Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaolei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Zhe Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Wenze Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Beibei Dou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Zhongyu Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
25
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
26
|
Dumitrescu E, Deshpande A, Wallace KN, Andreescu S. Time-Dependent Monitoring of Dopamine in the Brain of Live Embryonic Zebrafish Using Electrochemically Pretreated Carbon Fiber Microelectrodes. ACS MEASUREMENT SCIENCE AU 2022; 2:261-270. [PMID: 36785866 PMCID: PMC9838818 DOI: 10.1021/acsmeasuresciau.1c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotransmitters are involved in functions related to signaling, stress response, and pathological disorder development, and thus, their real-time monitoring at the site of production is important for observing the changes related to these disorders. Here, we demonstrate the first time-dependent quantification of dopamine in the brains of live zebrafish embryos using electrochemically pretreated carbon fiber microelectrodes (CFMEs) utilizing differential pulse voltammetry as the measurement technique. The pretreatment of the CFMEs in 0.1 M NaOH held at a potential of +1.0 V for 600 s improves the sensitivity toward dopamine and allows for reliable measurements in low ionic strength media. We demonstrate the measurement of extracellular dopamine concentrations in the zebrafish brain during late embryogenesis. The extracellular dopamine concentration in the tectum of zebrafish varies between 200 and 400 nM. The conventional pharmacological manipulation of neurotransmitter levels in the brain demonstrates the selective detection of dopamine at the implantation site. Exposure to the dopamine transporter inhibitor nomifensine induces an increase in extracellular dopamine from 201.9 (±34.9) nM to 352.2 (±20.0) nM, while exposure to the norepinephrine transporter inhibitor desipramine does not lead to a significant modulation of the measured signal. Furthermore, we report the quantitative assessment of the catecholamine stress response of embryos to tricaine, an anesthetic frequently used in zebrafish assays. Exposure to tricaine induces a short-lived increase in brain dopamine from 198.6 (±15.7) nM to a maximum of 278.8 (±14.0) nM. Thus, in vivo electrochemistry can detect real-time changes in zebrafish neurochemical physiology resulting from drug exposure.
Collapse
Affiliation(s)
- Eduard Dumitrescu
- Department
of Chemistry and Biomolecular Science, Clarkson
University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Aaditya Deshpande
- Department
of Chemistry and Biomolecular Science, Clarkson
University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Kenneth N. Wallace
- Department
of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5805, United States
| | - Silvana Andreescu
- Department
of Chemistry and Biomolecular Science, Clarkson
University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| |
Collapse
|
27
|
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2022; 133:104494. [PMID: 34906613 PMCID: PMC8792250 DOI: 10.1016/j.neubiorev.2021.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by deficits in social communication and by patterns of restricted interests and/or repetitive behaviors. The Simons Foundation Autism Research Initiative's Human Gene and CNV Modules now list over 1000 genes implicated in ASD and over 2000 copy number variant loci reported in individuals with ASD. Given this ever-growing list of genetic changes associated with ASD, it has become evident that there is likely not a single genetic cause of this disorder nor a single neurobiological basis of this disorder. Instead, it is likely that many different neurobiological perturbations (which may represent subtypes of ASD) can result in the set of behavioral symptoms that we called ASD. One such of possible subtype of ASD may be associated with dopamine dysfunction. Precise regulation of synaptic dopamine (DA) is required for reward processing and behavioral learning, behaviors which are disrupted in ASD. Here we review evidence for DA dysfunction in ASD and in animal models of ASD. Further, we propose that these studies provide a scaffold for scientists and clinicians to consider subcategorizing the ASD diagnosis based on the genetic changes, neurobiological difference, and behavioral features identified in individuals with ASD.
Collapse
Affiliation(s)
- Gabriella E DiCarlo
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States; Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
28
|
Wang X, Wu F, Zou H, Yang Y, Chen G, Liu K, Zhang Y, Liu L. Neurodevelopmental toxicity of pyrazinamide to larval zebrafish and the restoration after intoxication withdrawing. J Appl Toxicol 2022; 42:1276-1286. [PMID: 35102572 DOI: 10.1002/jat.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
To investigate the neurotoxicity of pyrazinamide (PZA) to larval zebrafish, the PZA effects were assessed followed by its mechanism being explored. Same as isoniazid (INH), this compound is a first-line anti-tuberculosis drug and is suggested to be a risk that inducing nerve injury with long-term intoxication. Our findings indicated that zebrafish larvae obtained severe nerve damage secondary to constant immersion in various concentrations of PZA (i.e., 0.5, 1.0, and 1.5 mM) from 4 hpf (hours post fertilization) onwards until 120 hpf. The damage presented as dramatically decrease of locomotor capacity and dopaminergic neuron (DAN)-rich region length in addition to defect of brain blood vessels (BBVs). Moreover, PZA-administrated zebrafish showed a decreased dopamine (DA) level and downregulated expression of neurodevelopment-related genes, such as shha, mbp, neurog1, and gfap. However, secondary to 48 hours' restoration in fish medium (i.e., at 168 hpf), the neurotoxicity described above was prominently ameliorated. The results showed that PZA at the concentrations we tested was notably neurotoxic to larval zebrafish, and this nerve injury was restorable after PZA withdrawing. Therefore, this finding will probably provide a reference for clinical medication.
Collapse
Affiliation(s)
- Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fangyan Wu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmacy, Changzhou University, Changzhou, China.,Shanghai OneTar Biomedicine, Shanghai, China
| | - Hongyuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanan Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmacy, Changzhou University, Changzhou, China
| | - Gaoyang Chen
- The Second People's Hospital of Taizhou, Taizhou, Jiangsu, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou, China
| |
Collapse
|
29
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
30
|
Ren Q, Jiang X, Zhang S, Gao X, Paudel YN, Zhang P, Wang R, Liu K, Jin M. Neuroprotective effect of YIAEDAER peptide against Parkinson's disease like pathology in zebrafish. Biomed Pharmacother 2022; 147:112629. [PMID: 35030435 DOI: 10.1016/j.biopha.2022.112629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) and aggregation of α-synuclein (α-syn). Current PD therapies merely provide symptomatic relief, lacking the disease-modifying therapeutic strategies against that could reverse the ongoing neurodegeneration. In the quest of exploring novel disease modifying therapeutic strategies, compounds from natural sources have gained much attention in recent days. YIAEDAER (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg) peptide is a multi-functional peptide isolated and purified from the visceral mass extract of Neptunea arthritica cumingii (NAC) with plethora of pharmacological activities, however its neuroprotective effect against MPTP induced PD model is not yet reported. We found YIAEDAER peptide co-treatment could suppressed the MPTP-induced locomotor impairment in zebrafish, ameliorates the MPTP induced degeneration of DA neurons, inhibited the loss of vasculature and loss of cerebral vessels, suppressed α-syn levels. Moreover, YIAEDAER peptide modulates several genes related to autophagy (α-syn, pink1, parkin, atg5, atg7, beclin1, ulk1b, ulk2, and ambra1a), and oxidative stress (sod1, sod2, gss, gpx4a, gsto2, and cat). Hence, our finding suggests that YIAEDAER peptide might be a potential therapeutic candidate against MPTP-induced PD like condition.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Xin Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
31
|
Tu H, Zhang ZW, Qiu L, Lin Y, Jiang M, Chia SY, Wei Y, Ng ASL, Reynolds R, Tan EK, Zeng L. Increased expression of pathological markers in Parkinson's disease dementia post-mortem brains compared to dementia with Lewy bodies. BMC Neurosci 2022; 23:3. [PMID: 34983390 PMCID: PMC8725407 DOI: 10.1186/s12868-021-00687-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common age-related neurodegenerative diseases comprising Lewy body spectrum disorders associated with cortical and subcortical Lewy body pathology. Over 30% of PD patients develop PD dementia (PDD), which describes dementia arising in the context of established idiopathic PD. Furthermore, Lewy bodies frequently accompany the amyloid plaque and neurofibrillary tangle pathology of Alzheimer's disease (AD), where they are observed in the amygdala of approximately 60% of sporadic and familial AD. While PDD and DLB share similar pathological substrates, they differ in the temporal onset of motor and cognitive symptoms; however, protein markers to distinguish them are still lacking. METHODS Here, we systematically studied a series of AD and PD pathogenesis markers, as well as mitochondria, mitophagy, and neuroinflammation-related indicators, in the substantia nigra (SN), temporal cortex (TC), and caudate and putamen (CP) regions of human post-mortem brain samples from individuals with PDD and DLB and condition-matched controls. RESULTS We found that p-APPT668 (TC), α-synuclein (CP), and LC3II (CP) are all increased while the tyrosine hydroxylase (TH) (CP) is decreased in both PDD and DLB compared to control. Also, the levels of Aβ42 and DD2R, IBA1, and p-LRRK2S935 are all elevated in PDD compared to control. Interestingly, protein levels of p-TauS199/202 in CP and DD2R, DRP1, and VPS35 in TC are all increased in PDD compared to DLB. CONCLUSIONS Together, our comprehensive and systematic study identified a set of signature proteins that will help to understand the pathology and etiology of PDD and DLB at the molecular level.
Collapse
Affiliation(s)
- Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Zhi Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yuning Lin
- Guangxi University of Chinese Medicine, 179 Mingxiu Dong Rd., Nanning, 530001, Guangxi, China
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yanfei Wei
- Guangxi University of Chinese Medicine, 179 Mingxiu Dong Rd., Nanning, 530001, Guangxi, China
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- DUKE-NUS Graduate Medical School, Neuroscience & Behavioral Disorders Program, Singapore, 169857, Singapore
| | - Richard Reynolds
- Division of Neuroscience, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- DUKE-NUS Graduate Medical School, Neuroscience & Behavioral Disorders Program, Singapore, 169857, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore.
- DUKE-NUS Graduate Medical School, Neuroscience & Behavioral Disorders Program, Singapore, 169857, Singapore.
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
32
|
Fasano G, Godoy RS, Angiulli E, Consalvo A, Franco C, Mancini M, Santucci D, Alleva E, Ciavardelli D, Toni M, Biffali E, Ekker M, Canzoniero LMT, Sordino P. Effects of low-dose methylcyclopentadienyl manganese tricarbonyl-derived manganese on the development of diencephalic dopaminergic neurons in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117151. [PMID: 34020261 DOI: 10.1016/j.envpol.2021.117151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) is counted as an organic manganese (Mn)-derived compound. The toxic effects of Mn (alone and complexed) on dopaminergic (DA) neurotransmission have been investigated in both cellular and animal models. However, the impact of environmentally relevant Mn exposure on DA neurodevelopment is rather poorly understood. In the present study, the MMT dose of 100 μM (about 5 mg Mn/L) caused up-regulation of DA-related genes in association with cell body swelling and increase in the number of DA neurons of the ventral diencephalon subpopulation DC2. Furthermore, our analysis identified significant brain Mn bioaccumulation and enhancement of total dopamine levels in association with locomotor hyperactivity. Although DA levels were restored at adulthood, we observed a deficit in the acquisition and consolidation of memory. Collectively, these findings suggest that developmental exposure to low-level MMT-derived Mn is responsible for the selective alteration of diencephalic DA neurons and with long-lasting effects on fish explorative behaviour in adulthood.
Collapse
Affiliation(s)
- Giulia Fasano
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Rafael Soares Godoy
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | - Elisa Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Ada Consalvo
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Cristina Franco
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy
| | - Maria Mancini
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY, 10016, USA; NYU Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University School of Medicine, 222 East 41st Street, New York, NY, 10017, USA
| | - Daniela Santucci
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Alleva
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Domenico Ciavardelli
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; School of Human and Social Science, "Kore" University of Enna, Cittadella Universitaria, 94100, Enna, Italy
| | - Mattia Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Elio Biffali
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | | | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
33
|
Mohamad Najib NH, Yahaya MF, Das S, Teoh SL. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish. Int J Neurosci 2021:1-12. [PMID: 34623211 DOI: 10.1080/00207454.2021.1990916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish. METHODOLOGY A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis. RESULTS qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment. CONCLUSION Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.
Collapse
Affiliation(s)
- Nor Haliza Mohamad Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Department of Anatomy, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Kalyn M, Ekker M. Cerebroventricular Microinjections of MPTP on Adult Zebrafish Induces Dopaminergic Neuronal Death, Mitochondrial Fragmentation, and Sensorimotor Impairments. Front Neurosci 2021; 15:718244. [PMID: 34512252 PMCID: PMC8432913 DOI: 10.3389/fnins.2021.718244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are dynamic organelles that mediate the energetic supply to cells and mitigate oxidative stress through the intricate balance of fission and fusion. Mitochondrial dysfunction is a prominent feature within Parkinson disease (PD) etiologies. To date, there have been conflicting studies of neurotoxin impact on dopaminergic cell death, mitochondrial function and behavioral impairment using adult zebrafish. Here, we performed cerebroventricular microinjections (CVMIs) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on adult transgenic zebrafish that resulted in significant reductions in dopaminergic neurons within the telencephalon and olfactory bulbs (OB) of Tg(dat:eGFP) fish. Visualization of mCherry and mitochondrial gene expression analysis in Tg(dat:tom20 MLS:mCherry) fish reveal that MPTP induces mitochondrial fragmentation in dopaminergic neurons and the activation of the pink1/parkin pathway involved mitophagy. Moreover, the loss of dopaminergic neurons translated into a transient locomotor and olfactory phenotype. Taken together, these data can contribute to a better understanding of the mitochondrial impact on dopaminergic survivability.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Marc Ekker
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Fan E, Xu Z, Yan J, Wang F, Sun S, Zhang Y, Zheng S, Wang X, Rao Y. Acute exposure to N-Ethylpentylone induces developmental toxicity and dopaminergic receptor-regulated aberrances in zebrafish larvae. Toxicol Appl Pharmacol 2021; 417:115477. [PMID: 33667508 DOI: 10.1016/j.taap.2021.115477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
N-Ethylpentylone (NEP) is one of the most recent novel stimulants, and there is limited understanding of its toxicity. Here we employed zebrafish model for analyzing the effects of NEP on early embryos and cardiovascular and nervous systems at late developmental stages. We first observed multi-malformations in early embryos and larvae after NEP administration, together with significant deregulations of brain and heart development-associated genes (neurog1, her6, elavl3, nkx2.5, nppa, nppb, tnnt2a) at transcriptional level. Low-dosed NEP treatment induced an anxiety-like phenotype in zebrafish larvae, while higher doses of NEP exerted an inhibitory effect on locomotion and heart rate. Besides, the expression of th (tyrosine hydroxylase) and th2 (tyrosine hydroxylase 2), identifying dopamine (DA) release, were significantly increased during one-hour free swimming after effective low-dosed NEP administration, along with the upregulation of gene fosab and fosb related to stress and anxiety response. D1R antagonist SCH23390 and D2R antagonist sulpiride partially alleviated the aberrances of locomotion and heart rate, indicating dopaminergic receptors were involved in the bidirectional dosage-dependent pattern of NEP-induced performance. Meanwhile, sulpiride offset the upregulated expression of th, th2 and fosab in the group of 1.5 μM NEP, which highlighted the significant role of D2R in NEP-induced locomotive effects. This study systematically described the developmental, neuronal and cardiac toxicity of NEP in zebrafish, and identified the dopaminergic receptors as one of the downstream effectors of NEP administration.
Collapse
Affiliation(s)
- Enshan Fan
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiru Xu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Fanglin Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yurong Zhang
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Shuiqing Zheng
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China.
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
36
|
Fiametti LO, Correa CN, Castro LMD. Peptide Profile of Zebrafish Brain in a 6-OHDA-Induced Parkinson Model. Zebrafish 2021; 18:55-65. [PMID: 33570475 DOI: 10.1089/zeb.2020.1945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder mainly attributed to the progressive loss of dopaminergic neurons in the substantia nigra, which leads to uncontrolled voluntary movements causing tremors, postural instability, joint stiffness, and speech and locomotion difficulties, among other symptoms. Previous studies have shown the participation of specific peptides in neurodegenerative diseases. In this context, the present work analyzed changes in the peptide profile in zebrafish brain induced to parkinsonian conditions with 6-hydroxydopamine, using isotopic labeling techniques plus mass spectrometry. These analyses allowed the relative quantitation and identification of 118 peptides. Of these, nine peptides showed significant changes, one peptide was increased and eight decreased. The most altered sequences were fragment of cytosolic and extracellular proteins related to lipid metabolism and dynamic cytoskeleton. These results open new perspectives of study about the function of peptides in PD.
Collapse
Affiliation(s)
| | - Claudia Neves Correa
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| | - Leandro Mantovani de Castro
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| |
Collapse
|
37
|
Liu L, Wu FY, Zhu CY, Zou HY, Kong RQ, Ma YK, Su D, Song GQ, Zhang Y, Liu KC. Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish. CHEMOSPHERE 2021; 265:129109. [PMID: 33280847 DOI: 10.1016/j.chemosphere.2020.129109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
AIMS This study evaluated the neurodevelopmental toxicity of isoniazid (INH) in zebrafish embryos and the underlying mechanism. METHODS Zebrafish embryos were exposed to different concentrations (2 mM, 4 mM, 8 mM, 16 mM, 32 mM) INH for 120 hpf. During the exposure period, the percentage of embryo/larva mortality, hatching, and morphological malformation were checked every 24 h until 120 hpf. The development of blood vessels in the brain was observed at 72 hpf and 120 hpf, and behavioral capacity and acridine orange (AO) staining were measured at 120 hpf. Alterations in the mRNA expression of apoptosis and dopamine signaling pathway related genes were assessed by real-time quantitative PCR (qPCR). RESULTS INH considerably inhibited zebrafish embryo hatching and caused zebrafish larval malformation (such as brain malformation, delayed yolk sac absorption, spinal curvature, pericardial edema, and swim bladder defects). High concentration of INH (16 mM, 32 mM) even induced death of zebrafish. In addition, INH exposure markedly restrained the ability of the zebrafish autonomous movement, shortened the length of dopamine neurons and inhibited vascular development in the brain. No obvious apoptotic cells were observed in the control group, whereas considerable numbers of apoptotic cells appeared in the head of INH-treated larvae at 120 hpf. PCR results indicated that INH significantly raised the transcription levels of caspase-3, -8, -9, and bax and significantly decreased bcl-2 and bcl-2/bax in the zebrafish apoptotic signaling pathway. INH also markedly decreased the genes related to dopamine signaling pathway (th1, dat, drd1, drd2a, drd3, and drd4b). CONCLUSIONS Experimental results indicated that INH had obvious neurodevelopmental toxicity in zebrafish. Persistent exposure to INH for 120 h caused apoptosis, decreased dopaminergic gene expression, altered vasculature, and reduced behaviors.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Fang-Yan Wu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Hong-Yuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Rui-Qi Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yu-Kui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province, PR China
| | - Dan Su
- Department of Pharmacy, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, PR China
| | - Guo-Qiang Song
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
38
|
Goode C, Voeun M, Ncube D, Eisen J, Washbourne P, Tallafuss A. Late onset of Synaptotagmin 2a expression at synapses relevant to social behavior. J Comp Neurol 2021; 529:2176-2188. [PMID: 33491202 DOI: 10.1002/cne.25084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
As they form, synapses go through various stages of maturation and refinement. These steps are linked to significant changes in synaptic function, potentially resulting in emergence and maturation of behavioral outputs. Synaptotagmins are calcium-sensing proteins of the synaptic vesicle exocytosis machinery, and changes in Synaptotagmin proteins at synapses have significant effects on vesicle release and synaptic function. Here, we examined the distribution of the synaptic vesicle protein Synaptotagmin 2a (Syt2a) during development of the zebrafish nervous system. Syt2a is widely distributed throughout the midbrain and hindbrain early during larval development but very weakly expressed in the forebrain. Later in development, Syt2a expression levels in the forebrain increase, particularly in regions associated with social behavior, and most intriguingly, around the time social behavior becomes apparent. We provide evidence that Syt2a localizes to synapses onto neurons implicated in social behavior in the ventral forebrain and show that Syt2a is colocalized with tyrosine hydroxylase, a biosynthetic enzyme in the dopamine pathway. Our results suggest a developmentally important role for Syt2a in maturing synapses in the forebrain, coinciding with the emergence of social behavior.
Collapse
Affiliation(s)
- Collette Goode
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Denver Ncube
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | | | | |
Collapse
|
39
|
Thompson WA, Vijayan MM. Zygotic Venlafaxine Exposure Impacts Behavioral Programming by Disrupting Brain Serotonin in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14578-14588. [PMID: 33142061 DOI: 10.1021/acs.est.0c06032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is present in surface waters downstream of wastewater treatment plants. We previously showed that zygotic venlafaxine deposition alters larval behavior in zebrafish (Danio rerio), but the mechanisms were unknown. Here we tested the hypothesis that venlafaxine disrupts central serotonergic development, leading to impaired behavioral responses in zebrafish larvae. This was tested by microinjecting embryos with venlafaxine immediately after fertilization and performing spatial distribution of serotonin immunoreactivity, as well as characterizing target genes involved in serotonin turnover in the zebrafish brain. We provide evidence that venlafaxine exposure reduces serotonin immunoreactivity and tyrosine hydroxylase-positive cell populations in specific larval brain regions, and this corresponded with reduced larval activity observed in the drug-exposed group. Lowered serotonin was not due to either reduced synthesis or increased breakdown capacity. However, co-injection of serotonin alongside venlafaxine in embryos recovered brain serotonin immunoreactivity, tyrosine hydroxylase-positive cell populations, and rescued venlafaxine-mediated behavioral changes. Overall, our results demonstrate for the first time that early life exposure to venlafaxine perturbs brain development, which may be due to reduced serotonin, leading to altered larval behavior in zebrafish.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
40
|
Najib NH, Nies YH, Abd Halim SA, Yahaya MF, Das S, Lim WL, Teoh SL. Modeling Parkinson’s Disease in Zebrafish. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:386-399. [DOI: 10.2174/1871527319666200708124117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023]
Abstract
Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders that affects
the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity,
bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in
life span. Although, two centuries since the first description of the disease, no proper cure with regard
to treatment strategies and control of symptoms could be reached. One of the major challenges faced
by the researchers is to have a suitable research model. Rodents are the most common PD models
used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another
animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major
structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a
functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish
possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia
nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced
and genetic models. The zebrafish can complement the use of other animal models for the mechanistic
study of PD and help in the screening of new potential therapeutic compounds.
Collapse
Affiliation(s)
- Nor H.M. Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yong H. Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifah A.S. Abd Halim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad F. Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei L. Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Seong L. Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K. Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson's Disease: Ideal Animal Models? Neurotox Res 2020; 39:504-532. [PMID: 33141428 DOI: 10.1007/s12640-020-00298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Ting Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Wasel O, Freeman JL. Chemical and Genetic Zebrafish Models to Define Mechanisms of and Treatments for Dopaminergic Neurodegeneration. Int J Mol Sci 2020; 21:ijms21175981. [PMID: 32825242 PMCID: PMC7503535 DOI: 10.3390/ijms21175981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023] Open
Abstract
The zebrafish (Danio rerio) is routinely used in biological studies as a vertebrate model system that provides unique strengths allowing applications in studies of neurodevelopmental and neurodegenerative diseases. One specific advantage is that the neurotransmitter systems are highly conserved throughout vertebrate evolution, including between zebrafish and humans. Disruption of the dopaminergic signaling pathway is linked to multiple neurological disorders. One of the most common is Parkinson’s disease, a neurodegenerative disease associated with the loss of dopaminergic neurons, among other neuropathological characteristics. In this review, the development of the zebrafish’s dopaminergic system, focusing on genetic control of the dopaminergic system, is detailed. Second, neurotoxicant models used to study dopaminergic neuronal loss, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pesticides paraquat and rotenone, and 6-hydroxydopamine (6-OHDA), are described. Next, zebrafish genetic knockdown models of dj1, pink1, and prkn established for investigating mechanisms of Parkinson’s disease are discussed. Chemical modulators of the dopaminergic system are also highlighted to showcase the applicability of the zebrafish to identify mechanisms and treatments for neurodegenerative diseases such as Parkinson’s disease associated with the dopaminergic system.
Collapse
|
43
|
Becerra-Amezcua MP, Hernández-Sámano AC, Puch-Hau C, Aguilar MB, Collí-Dulá RC. Effect of pterois volitans (lionfish) venom on cholinergic and dopaminergic systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103359. [PMID: 32146351 DOI: 10.1016/j.etap.2020.103359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Pterois volitans venom induces muscular fibrillation, which results from nerve transmission caused by the presence of acetylcholine (ACh). It also has cardiovascular effects that are due to its actions on muscarinic and nicotinic cholinergic receptors. In this study, we characterized the effects of P. volitans venom on nicotinic acetylcholine receptors (nAChRs) and dopaminergic neurons. After exposure to P. volitans venom, acetylcholinesterase (AChE) mRNA levels and the expression of the α2 subunit of nAChR increased in zebrafish embryos (15-20 somites). In addition, the lionfish venom blocked zebrafish α2 nAChR subunit functional expression and the ACh-induced response of human neuronal α3β2 receptors. The latter receptor was blocked by a protein fraction named F2, which was isolated from P. volitans venom using reversed phase high performance liquid chromatography (RP-HPLC). This venom causes death in dopaminergic neurons, and affects the cholinergic system. The effect of these two systems may result in retarded embryonic development of zebrafish, since the two systems function in a related manner to control growth hormone secretion.
Collapse
Affiliation(s)
- Mayra P Becerra-Amezcua
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico.
| | - Arisaí C Hernández-Sámano
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Carlos Puch-Hau
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Reyna C Collí-Dulá
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico
| |
Collapse
|
44
|
Zimmermann Prado Rodrigues G, Staudt LBM, Moreira MG, Dos Santos TG, de Souza MS, Lúcio CJ, Panizzon J, Kayser JM, Simões LAR, Ziulkoski AL, Bonan CD, de Oliveira DL, Gehlen G. Histopathological, genotoxic, and behavioral damages induced by manganese (II) in adult zebrafish. CHEMOSPHERE 2020; 244:125550. [PMID: 32050344 DOI: 10.1016/j.chemosphere.2019.125550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Manganese is a metal often found as an environmental pollutant and very associated with neurological disorders when in high concentrations. However, little is known about the effects that this contaminant can cause when in environmentally relevant concentrations and occurrence, that is, much lower than those commonly studied. So, the aim of the study was to evaluate the effects that environmentally relevant concentrations of this metal would cause in different zebrafish organs (brain, liver, and blood). Acute 96-h and chronic 30-day exposures were performed using the manganese chloride salt as a pollutant. Behavioral alterations of anxiogenic type were observed in the animals after chronic exposures to 4.0 mg L-1 MnCl2, which traveled a greater distance at the bottom of the aquarium. This may be associated with neuronal damages in the telencephalic region responsible for motor and cognitive activity of the fish, observed in animals from the same exposure. In addition, hepatic histopathological damage as vacuolization of hepatocytes and genotoxic damage, identified by comet assay and micronucleus test, was also observed after acute and chronic exposure, especially at the highest pollutant concentrations (8.0 and 16.0 mg L-1 in acute exposure, and 4.0 mg L-1 in chronic exposure. The study reinforces the risk that environmental pollutants pose to the ecosystem, even in low concentrations.
Collapse
Affiliation(s)
| | | | | | - Thainá Garbino Dos Santos
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | | | | | - Jenifer Panizzon
- Bacherol's Degree in Biological Science, Feevale University, Brazil
| | | | | | - Ana Luiza Ziulkoski
- Post Graduation Program in Environmental Quality, Feevale University, Brazil
| | - Carla Denise Bonan
- Post Graduation Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Diogo Losch de Oliveira
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, Brazil.
| |
Collapse
|
45
|
Das SK, Aparna S, Patri M. Chronic waterborne exposure to benzo[a]pyrene induces locomotor dysfunction and development of neurodegenerative phenotypes in zebrafish. Neurosci Lett 2020; 716:134646. [DOI: 10.1016/j.neulet.2019.134646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
|
46
|
Comprehensive Analysis of Neurotoxin-Induced Ablation of Dopaminergic Neurons in Zebrafish Larvae. Biomedicines 2019; 8:biomedicines8010001. [PMID: 31905670 PMCID: PMC7168159 DOI: 10.3390/biomedicines8010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotoxin exposure of zebrafish larvae has been used to mimic a Parkinson’s disease (PD) phenotype and to facilitate high-throughput drug screening. However, the vulnerability of zebrafish to various neurotoxins was shown to be variable. Here, we provide a direct comparison of ablative effectiveness in order to identify the optimal neurotoxin-mediated dopaminergic (DAnergic) neuronal death in larval zebrafish. Transgenic zebrafish, Tg(dat:eGFP), were exposed to different concentrations of the neurotoxins MPTP, MPP+, paraquat, 6-OHDA, and rotenone for four days, starting at three days post-fertilization. The LC50 of each respective neurotoxin concentration was determined. Confocal live imaging on Tg(dat:eGFP) showed that MPTP, MPP+, and rotenone caused comparable DAnergic cell loss in the ventral diencephalon (vDC) region while, paraquat and 6-OHDA caused fewer losses of DAnergic cells. These results were further supported by respective gene expression analyses of dat, th, and p53. Importantly, the loss of DAnergic cells from exposure to MPTP, MPP+, and rotenone impacted larval locomotor function. MPTP induced the largest motor deficit, but this was accompanied by the most severe morphological impairment. We conclude that, of the tested neurotoxins, MPP+ recapitulates a substantial degree of DAnergic ablation and slight locomotor perturbations without systemic defects indicative of a Parkinsonian phenotype.
Collapse
|
47
|
Zhang X, Zhao Y, Wu Q, Lin J, Fang R, Bi W, Dong G, Li J, Zhang Y, Cao J, Zhou T. Zebrafish and Galleria mellonella: Models to Identify the Subsequent Infection and Evaluate the Immunological Differences in Different Klebsiella pneumoniae Intestinal Colonization Strains. Front Microbiol 2019; 10:2750. [PMID: 31849893 PMCID: PMC6900958 DOI: 10.3389/fmicb.2019.02750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
The intestine is the main reservoir of bacterial pathogens in most organisms. Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial bacterial infections. Intestinal colonization with K. pneumoniae has been shown to be associated with an increased risk of subsequent infections. However, not all K. pneumoniae strains in the intestine cause further infection, and the distinction of the difference among strains that cause infection after colonization and the ones causing only asymptomatic colonization is unclear. In this study, we report a case of a hospitalized patient from the ICU. We screened out two intestine colonization strains (FK4111, FK4758) to analyze the subsequent infection conditions. We set up infection models of zebrafish and Galleria mellonella to establish the differences in the potential for causing subsequent infection and the immunological specificities after K. pneumoniae intestine colonization. Sudan Black B and neutral red staining results indicated that FK4758 was more responsive to neutrophil recruitment and phagocytosis of macrophages than FK4111. The results of the assessment of the organ bacterial load revealed that FK4111 and FK4758 both had the highest bacterial loads in the zebrafish intestine compared to those in other organs. However, in the zebrafish spleen, liver, and heart, the FK4758 load was significantly higher than that of FK4111. The ST37 strain FK4111, which does not produce carbapenemase, did not cause infection after colonization, whereas the ST11 strain FK4758, which produces carbapenemase, caused infection after intestinal colonization. Our finding demonstrated that not all intestinal colonization of K. pneumoniae subsequently caused infections, and the infections of K. pneumoniae after colonization are different. Therefore, the infection models we established provided possibility for the estimation of host-microbial interactions.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
49
|
Tanaka Y, Fujiwara M, Shindo A, Yin G, Kitazawa T, Teraoka H. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. CHEMOSPHERE 2018; 193:1207-1215. [PMID: 29874750 DOI: 10.1016/j.chemosphere.2017.11.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Contamination with polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the environment is a major concern due to their persistent bioaccumulative toxicity that can disturb neurobehavioral functions including movements. Recently, it was reported that some PBDE including BDE-47 stimulates locomotor activities of zebrafish embryos by unknown mechanism. In this study, motor movements of the zebrafish embryo were used as a model system to evaluate the neuronal toxicity of a non-coplanar PCB-dominant mixture (Aroclor 1254) and BDE-47. Both organohalogens increased tail shaking and rotation of embryos in a concentration-dependent manner. Chemical inhibition and gene knock-down of tyrosine hydroxylase and vesicular monoamine transporter 2 (VMAT2) also induced hyperactivities. Hyperactivities induced by these treatments were all inhibited by supplementation of l-tyrosine and l-dopa, precursors of dopamine synthesis. Both organohalogens reduced dopamine contents and increased the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio in whole embryos. The results suggest that functional inhibition of dopaminergic neurons is involved in hyperactivities of zebrafish embryos caused by Aroclor 1254 and BDE-47.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Mari Fujiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
50
|
Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson's Disease. Neuroscience 2017; 367:34-46. [PMID: 29079063 DOI: 10.1016/j.neuroscience.2017.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023]
Abstract
Parkinson's disease is a common, debilitating, neurodegenerative disorder for which the current gold standard treatment, levodopa (L-DOPA) is symptomatic. There is an urgent, unmet need for neuroprotective or, ideally, neuro-restorative drugs. We describe a 6-hydroxydopamine (6-OHDA) zebrafish model to screen drugs for neuroprotective and neuro-restorative capacity. Zebrafish larvae at two days post fertilization were exposed to 6-OHDA for three days, with co-administration of test drugs for neuroprotection experiments, or for 32 h, with subsequent treatment with test drugs for neuro-restoration experiments. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized by tyrosine hydroxylase immuno-histochemistry. Exposure to 6-OHDA for either 32 h or 3 days induced similar, significant locomotor deficits and neuronal loss in 5-day-old larvae. L-DOPA (1 mM) partially restored locomotor activity, but was neither neuroprotective nor neuro-restorative, mirroring the clinical situation. The calcium channel blocker, isradipine (1 µM) did not prevent or reverse 6-OHDA-induced locomotor deficit or neuronal loss. However, both the tetracycline analog, minocycline (10 µM), and the monoamine oxidase B inhibitor, rasagiline (1 µM), prevented the locomotor deficits and neuronal loss due to three-day 6-OHDA exposure. Importantly, they also reversed the locomotor deficit caused by prior exposure to 6-OHDA; rasagiline also reversed neuronal loss and minocycline partially restored neuronal loss due to prior 6-OHDA, making them candidates for investigation as neuro-restorative treatments for Parkinson's disease. Our findings in zebrafish reflect preliminary clinical findings for rasagiline and minocycline. Thus, we have developed a zebrafish model suitable for high-throughput screening of putative neuroprotective and neuro-restorative therapies for the treatment of Parkinson's disease.
Collapse
|