1
|
Cover KK, Elliott K, Preuss SM, Krauzlis RJ. A distinct circuit for biasing visual perceptual decisions and modulating superior colliculus activity through the mouse posterior striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605853. [PMID: 39372791 PMCID: PMC11451588 DOI: 10.1101/2024.07.31.605853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, but with distinct anatomical and functional properties.
Collapse
Affiliation(s)
- Kara K. Cover
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Kerry Elliott
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Sarah M. Preuss
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| |
Collapse
|
2
|
Lee H, Kim HF, Hikosaka O. Implication of regional selectivity of dopamine deficits in impaired suppressing of involuntary movements in Parkinson's disease. Neurosci Biobehav Rev 2024; 162:105719. [PMID: 38759470 PMCID: PMC11167649 DOI: 10.1016/j.neubiorev.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
To improve the initiation and speed of intended action, one of the crucial mechanisms is suppressing unwanted movements that interfere with goal-directed behavior, which is observed relatively aberrant in Parkinson's disease patients. Recent research has highlighted that dopamine deficits in Parkinson's disease predominantly occur in the caudal lateral part of the substantia nigra pars compacta (SNc) in human patients. We previously found two parallel circuits within the basal ganglia, primarily divided into circuits mediated by the rostral medial part and caudal lateral part of the SNc dopamine neurons. We have further discovered that the indirect pathway in caudal basal ganglia circuits, facilitated by the caudal lateral part of the SNc dopamine neurons, plays a critical role in suppressing unnecessary involuntary movements when animals perform voluntary goal-directed actions. We thus explored recent research in humans and non-human primates focusing on the distinct functions and networks of the caudal lateral part of the SNc dopamine neurons to elucidate the mechanisms involved in the impairment of suppressing involuntary movements in Parkinson's disease patients.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
3
|
Riley B, Gould E, Lloyd J, Hallum LE, Vlajkovic S, Todd K, Freestone PS. Dopamine transmission in the tail striatum: Regional variation and contribution of dopamine clearance mechanisms. J Neurochem 2024; 168:251-268. [PMID: 38308566 DOI: 10.1111/jnc.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.
Collapse
Affiliation(s)
- Bronwyn Riley
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily Gould
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jordan Lloyd
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Luke E Hallum
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland, New Zealand
| | - Srdjan Vlajkovic
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Todd
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Faculty of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Peter S Freestone
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Krall RF, Chambers CN, Arnold MP, Brougher LI, Chen J, Deshmukh R, King HB, Morford HJ, Wiemann JM, Williamson RS. Primary auditory cortex is necessary for the acquisition and expression of categorical behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578700. [PMID: 38352355 PMCID: PMC10862902 DOI: 10.1101/2024.02.02.578700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The primary auditory cortex (ACtx) is critically involved in the association of sensory information with specific behavioral outcomes. Such sensory-guided behaviors are necessarily brain-wide endeavors, requiring a plethora of distinct brain areas, including those that are involved in aspects of decision making, motor planning, motor initiation, and reward prediction. ACtx comprises a number of distinct excitatory cell-types that allow for the brain-wide propagation of behaviorally-relevant sensory information. Exactly how ACtx involvement changes as a function of learning, as well as the functional role of distinct excitatory cell-types is unclear. Here, we addressed these questions by designing a two-choice auditory task in which water-restricted, head-fixed mice were trained to categorize the temporal rate of a sinusoidal amplitude modulated (sAM) noise burst and used transient cell-type specific optogenetics to probe ACtx necessity across the duration of learning. Our data demonstrate that ACtx is necessary for the ability to categorize the rate of sAM noise, and this necessity grows across learning. ACtx silencing substantially altered the behavioral strategies used to solve the task by introducing a fluctuating choice bias and increasing dependence on prior decisions. Furthermore, ACtx silencing did not impact the animal's motor report, suggesting that ACtx is necessary for the conversion of sensation to action. Targeted inhibition of extratelencephalic projections on just 20% of trials had a minimal effect on task performance, but significantly degraded learning. Taken together, our data suggest that distinct cortical cell-types synergistically control auditory-guided behavior and that extratelencephalic neurons play a critical role in learning and plasticity.
Collapse
|
5
|
Lee K, An SY, Park J, Lee S, Kim HF. Anatomical and Functional Comparison of the Caudate Tail in Primates and the Tail of the Striatum in Rodents: Implications for Sensory Information Processing and Habitual Behavior. Mol Cells 2023; 46:461-469. [PMID: 37455248 PMCID: PMC10440267 DOI: 10.14348/molcells.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
The tail of the striatum (TS) is located at the caudal end in the striatum. Recent studies have advanced our knowledge of the anatomy and function of the TS but also raised questions about the differences between rodent and primate TS. In this review, we compare the anatomy and function of the TS in rodent and primate brains. The primate TS is expanded more caudally during brain development in comparison with the rodent TS. Additionally, five sensory inputs from the cortex and thalamus converge in the rodent TS, but this convergence is not observed in the primate TS. The primate TS, including the caudate tail and putamen tail, primarily receives inputs from the visual areas, implying a specialized function in processing visual inputs for action generation. This anatomical difference leads to further discussion of cellular circuit models to comprehend how the primate brain processes a wider range of complex visual stimuli to produce habitual behavior as compared with the rodent brain. Examining these differences and considering possible neural models may provide better understanding of the anatomy and function of the primate TS.
Collapse
Affiliation(s)
- Keonwoo Lee
- Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Shin-young An
- Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jun Park
- Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seoyeon Lee
- Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyoung F. Kim
- Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Sabzevar FT, Vautrelle N, Zheng Y, Smith PF. Vestibular modulation of the tail of the rat striatum. Sci Rep 2023; 13:4443. [PMID: 36932124 PMCID: PMC10023713 DOI: 10.1038/s41598-023-31289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Fragmented and piecemeal evidence from animal and human studies suggests that vestibular information is transmitted to the striatum, a part of the basal ganglia that degenerates in Parkinson's Disease. Nonetheless, surprisingly little is known about the precise effects of activation of the vestibular system on the striatum. Electrophysiological studies have yielded inconsistent results, with many studies reporting only sparse responses to vestibular stimulation in the dorsomedial striatum. In this study, we sought to elucidate the effects of electrical stimulation of the peripheral vestibular system on electrophysiological responses in the tail of the rat striatum, a newly discovered region for sensory input. Rats were anaesthetised with urethane and a bipolar stimulating electrode was placed in the round window in order to activate the peripheral vestibular system. A recording electrode was positioned in the tail of the striatum. Local field potentials (LFPs) were recorded ipsilaterally and contralaterally to the stimulation using a range of current parameters. In order to confirm that the vestibular system was activated, video-oculography was used to monitor vestibular nystagmus. At current amplitudes that evoked vestibular nystagmus, clear triphasic LFPs were evoked in the bilateral tail of the striatum, with the first phase of the waveform exhibiting latencies of less than 22 ms. The LFP amplitude increased with increasing current amplitude (P ≤ 0.0001). In order to exclude the possibility that the LFPs were evoked by the activation of the auditory system, the cochlea was surgically lesioned in some animals. In these animals the LFPs persisted despite the cochlear lesions, which were verified histologically. Overall, the results obtained suggest that there are vestibular projections to the tail of the striatum, which could possibly arise from projections via the vestibular nucleus or cerebellum and the parafasicular nucleus of the thalamus.
Collapse
Affiliation(s)
| | - Nico Vautrelle
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Lee H, Hikosaka O. Lateral habenula neurons signal step-by-step changes of reward prediction. iScience 2022; 25:105440. [DOI: 10.1016/j.isci.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
8
|
Ogata S, Miyamoto Y, Shigematsu N, Esumi S, Fukuda T. The Tail of the Mouse Striatum Contains a Novel Large Type of GABAergic Neuron Incorporated in a Unique Disinhibitory Pathway That Relays Auditory Signals to Subcortical Nuclei. J Neurosci 2022; 42:8078-8094. [PMID: 36104279 PMCID: PMC9637004 DOI: 10.1523/jneurosci.2236-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The most caudal part of the striatum in rodents, the tail of the striatum (TS), has many features that distinguish it from the rostral striatum, such as its biased distributions of dopamine receptor subtypes, lack of striosomes and matrix compartmentalization, and involvement in sound-driven behaviors. However, information regarding the TS is still limited. We demonstrate in this article that the TS of the male mouse contains GABAergic neurons of a novel type that were detected immunohistochemically with the neurofilament marker SMI-32. Their somata were larger than cholinergic giant aspiny neurons, were located in a narrow space adjacent to the globus pallidus (GP), and extended long dendrites laterally toward the intermediate division (ID) of the trilaminar part of the TS, the region targeted by axons from the primary auditory cortex (A1). Although vesicular glutamate transporter 1-positive cortical axon terminals rarely contacted these TS large (TSL) neurons, glutamic acid decarboxylase-immunoreactive and enkephalin-immunoreactive boutons densely covered somata and dendrites of TSL neurons, forming symmetrical synapses. Analyses of GAD67-CrePR knock-in mice revealed that these axonal boutons originated from nearby medium spiny neurons (MSNs) in the ID. All MSNs examined in the ID in turn received inputs from the A1. Retrograde tracers injected into the rostral zona incerta and ventral medial nucleus of the thalamus labeled somata of TSL neurons. TSL neurons share many morphological features with GP neurons, but their strategically located dendrites receive inputs from closely located MSNs in the ID, suggesting faster responses than distant GP neurons to facilitate auditory-evoked, prompt disinhibition in their targets.SIGNIFICANCE STATEMENT This study describes a newly found population of neurons in the mouse striatum, the brain region responsible for appropriate behaviors. They are large GABAergic neurons located in the most caudal part of the striatum [tail of the striatum (TS)]. These TS large (TSL) neurons extended dendrites toward a particular region of the TS where axons from the primary auditory cortex (A1) terminated. These dendrites received direct synaptic inputs heavily from nearby GABAergic neurons of the striatum that in turn received inputs from the A1. TSL neurons sent axons to two subcortical regions outside basal ganglia, one of which is related to arousal. Specialized connectivity of TSL neurons suggests prompt disinhibitory actions on their targets to facilitate sound-evoked characteristic behaviors.
Collapse
Affiliation(s)
- Shigeru Ogata
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
9
|
Wang MB, Halassa MM. Thalamocortical contribution to flexible learning in neural systems. Netw Neurosci 2022; 6:980-997. [PMID: 36875011 PMCID: PMC9976647 DOI: 10.1162/netn_a_00235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/19/2022] [Indexed: 11/04/2022] Open
Abstract
Animal brains evolved to optimize behavior in dynamic environments, flexibly selecting actions that maximize future rewards in different contexts. A large body of experimental work indicates that such optimization changes the wiring of neural circuits, appropriately mapping environmental input onto behavioral outputs. A major unsolved scientific question is how optimal wiring adjustments, which must target the connections responsible for rewards, can be accomplished when the relation between sensory inputs, action taken, and environmental context with rewards is ambiguous. The credit assignment problem can be categorized into context-independent structural credit assignment and context-dependent continual learning. In this perspective, we survey prior approaches to these two problems and advance the notion that the brain's specialized neural architectures provide efficient solutions. Within this framework, the thalamus with its cortical and basal ganglia interactions serves as a systems-level solution to credit assignment. Specifically, we propose that thalamocortical interaction is the locus of meta-learning where the thalamus provides cortical control functions that parametrize the cortical activity association space. By selecting among these control functions, the basal ganglia hierarchically guide thalamocortical plasticity across two timescales to enable meta-learning. The faster timescale establishes contextual associations to enable behavioral flexibility, while the slower one enables generalization to new contexts.
Collapse
Affiliation(s)
- Mien Brabeeba Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Todd KL, Lipski J, Freestone PS. The Subthalamic Nucleus Exclusively Evokes Dopamine Release in the Tail of the Striatum. J Neurochem 2022; 162:417-429. [PMID: 35869680 PMCID: PMC9541146 DOI: 10.1111/jnc.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
A distinct population of dopamine neurons in the substantia nigra pars lateralis (SNL) has a unique projection to the most caudolateral (tail) region of the striatum. Here, using two electrochemical techniques to measure basal dopamine and electrically evoked dopamine release in anesthetized rats, we characterized this pathway, and compared it with the ‘classic’ nigrostriatal pathway from neighboring substantia nigra pars compacta (SNc) dopamine neurons to the dorsolateral striatum. We found that the tail striatum constitutes a distinct dopamine domain compared with the dorsolateral striatum, with consistently lower basal and evoked dopamine, and diverse dopamine release kinetics. Importantly, electrical stimulation of the SNL and SNc evoked dopamine release in entirely separate striatal regions; the tail and dorsolateral striatum, respectively. Furthermore, we showed that stimulation of the subthalamic nucleus (STN) evoked dopamine release exclusively in the tail striatum, likely via the SNL, consistent with previous anatomical evidence of STN afferents to SNL dopamine neurons. Our work identifies the STN as an important modulator of dopamine release in a novel dopamine pathway to the tail striatum, largely independent of the classic nigrostriatal pathway, which necessitates a revision of the basal ganglia circuitry with the STN positioned as a central integrator of striatal information.![]()
Collapse
Affiliation(s)
- Kathryn L. Todd
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
| | - Janusz Lipski
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
| | - Peter S. Freestone
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
11
|
Ogata K, Kadono F, Hirai Y, Inoue KI, Takada M, Karube F, Fujiyama F. Conservation of the Direct and Indirect Pathway Dichotomy in Mouse Caudal Striatum With Uneven Distribution of Dopamine Receptor D1- and D2-Expressing Neurons. Front Neuroanat 2022; 16:809446. [PMID: 35185482 PMCID: PMC8854186 DOI: 10.3389/fnana.2022.809446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum.
Collapse
Affiliation(s)
- Kumiko Ogata
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuko Kadono
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Fuyuki Karube,
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Fumino Fujiyama,
| |
Collapse
|
12
|
Krüttner S, Falasconi A, Valbuena S, Galimberti I, Bouwmeester T, Arber S, Caroni P. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron 2022; 110:1468-1482.e5. [DOI: 10.1016/j.neuron.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
|
13
|
Chronic Treatment and Abstinence from Methylphenidate Exposure Dose-dependently Changes Glucose Metabolism in the Rat Brain. Brain Res 2022; 1780:147799. [DOI: 10.1016/j.brainres.2022.147799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/03/2023]
|
14
|
Kim HF. Brain substrates for automatic retrieval of value memory in the primate basal ganglia. Mol Brain 2021; 14:168. [PMID: 34784931 PMCID: PMC8597290 DOI: 10.1186/s13041-021-00871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Our behavior is often carried out automatically. Automatic behavior can be guided by past experiences, such as learned values associated with objects. Passive-viewing and free-viewing tasks with no immediate outcomes provide a testable condition in which monkeys and humans automatically retrieve value memories and perform habitual searching. Interestingly, in these tasks, caudal regions of the basal ganglia structures are involved in automatic retrieval of learned object values and habitual gaze. In contrast, rostral regions do not participate in these activities but instead monitor the changes in outcomes. These findings indicate that automatic behaviors based on the value memories are processed selectively by the caudal regions of the primate basal ganglia system. Understanding the distinct roles of the caudal basal ganglia may provide insight into finding selective causes of behavioral disorders in basal ganglia disease.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Tohge R, Kaneko S, Morise S, Oki M, Takenouchi N, Murakami A, Nakamura M, Kusaka H, Yakushiji Y. Zonisamide attenuates the severity of levodopa-induced dyskinesia via modulation of the striatal serotonergic system in a rat model of Parkinson's disease. Neuropharmacology 2021; 198:108771. [PMID: 34474045 DOI: 10.1016/j.neuropharm.2021.108771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
Glutamate, GABA, acetylcholine, dopamine, and serotonin interact with each other to regulate the flow of neural information in the striatum. Serotonin type 1A receptor (5HT1A) is primarily expressed on glutamatergic nerve terminals, and 5HT1B is expressed on GABAergic medium spiny neurons (MSNs). Zonisamide (ZNS) reportedly improves the off period without worsening levodopa-induced dyskinesia (LID) in patients with advanced Parkinson's disease. In this study, LID model rats were prepared by administrating levodopa to unilaterally 6-OHDA-lesioned rats. We analyzed changes in serotonergic neurotransmission of LID model rats to elucidate the relationship between LID and the serotonergic system and pathomechanism of the anti-dyskinetic effects of ZNS. Abnormal involuntary movements (AIMs) were most severe in intermittently levodopa-treated rats but milder in rats intermittently medicated with levodopa and ZNS. Continuously levodopa-infused rats or intermittently ZNS-injected rats did not develop AIMs, and no differences in the expression of brain-derived neurotrophic factor, 5-HT transporter, 5HT1A, and 5HT1B mRNA between the lesioned striatum and normal side were observed. Expression of 5HT1B mRNA was elevated in the lesioned striatum of intermittently levodopa-treated rats, but this elevation was normalized by concomitant use of ZNS. The severity of AIMs was correlated with the ratio of 5HT1B to 5HT1A mRNA expression in the lesioned striatum, indicating that the anti-LID effect of ZNS is based on inhibition via 5HT1B receptors to direct pathway MSNs sensitized by intermittent levodopa treatment. Selectively acting serotonergic drugs, especially those that lower the 5HT1B to 5HT1A ratio, are promising new therapeutic agents to attenuate LID development.
Collapse
Affiliation(s)
- Rie Tohge
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Satoshi Kaneko
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan.
| | - Satoshi Morise
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Mitsuaki Oki
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Norihiro Takenouchi
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Aya Murakami
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Masataka Nakamura
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Yusuke Yakushiji
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
16
|
Li Z, Wei JX, Zhang GW, Huang JJ, Zingg B, Wang X, Tao HW, Zhang LI. Corticostriatal control of defense behavior in mice induced by auditory looming cues. Nat Commun 2021; 12:1040. [PMID: 33589613 PMCID: PMC7884702 DOI: 10.1038/s41467-021-21248-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Animals exhibit innate defense behaviors in response to approaching threats cued by the dynamics of sensory inputs of various modalities. The underlying neural circuits have been mostly studied in the visual system, but remain unclear for other modalities. Here, by utilizing sounds with increasing (vs. decreasing) loudness to mimic looming (vs. receding) objects, we find that looming sounds elicit stereotypical sequential defensive reactions: freezing followed by flight. Both behaviors require the activity of auditory cortex, in particular the sustained type of responses, but are differentially mediated by corticostriatal projections primarily innervating D2 neurons in the tail of the striatum and corticocollicular projections to the superior colliculus, respectively. The behavioral transition from freezing to flight can be attributed to the differential temporal dynamics of the striatal and collicular neurons in their responses to looming sound stimuli. Our results reveal an essential role of the striatum in the innate defense control.
Collapse
Affiliation(s)
- Zhong Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jin-Xing Wei
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brian Zingg
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Xiyue Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Pisupati S, Chartarifsky-Lynn L, Khanal A, Churchland AK. Lapses in perceptual decisions reflect exploration. eLife 2021; 10:55490. [PMID: 33427198 PMCID: PMC7846276 DOI: 10.7554/elife.55490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Perceptual decision-makers often display a constant rate of errors independent of evidence strength. These ‘lapses’ are treated as a nuisance arising from noise tangential to the decision, e.g. inattention or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these explanations cannot account for lapses’ stimulus dependence. We propose a novel explanation: lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring uncertain ones. We tested this model’s predictions by selectively manipulating one action’s reward magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-related computations to neural structures based on disruption experiments (here, posterior striatum and secondary motor cortex). These results suggest that lapses reflect an integral component of decision-making and are informative about action values in normal and disrupted brain states.
Collapse
Affiliation(s)
- Sashank Pisupati
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Lital Chartarifsky-Lynn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Anup Khanal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | | |
Collapse
|
18
|
Valjent E, Gangarossa G. The Tail of the Striatum: From Anatomy to Connectivity and Function. Trends Neurosci 2020; 44:203-214. [PMID: 33243489 DOI: 10.1016/j.tins.2020.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
The dorsal striatum, the largest subcortical structure of the basal ganglia, is critical in controlling motor, procedural, and reinforcement-based behaviors. Although in mammals the striatum extends widely along the rostro-caudal axis, current knowledge and derived theories about its anatomo-functional organization largely rely on results obtained from studies of its rostral sectors, leading to potentially oversimplified working models of the striatum as a whole. Recent findings indicate that the extreme caudal part of the striatum, also referred to as the tail of striatum (TS), represents an additional functional domain. Here, we provide an overview of past and recent studies revealing that the TS displays a heterogeneous cell-type-specific organization, and a unique input-output connectivity, which poises the TS as an integrator of sensory processing.
Collapse
Affiliation(s)
- Emmanuel Valjent
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
19
|
Kim HF, Griggs WS, Hikosaka O. Long-Term Value Memory in the Primate Posterior Thalamus for Fast Automatic Action. Curr Biol 2020; 30:2901-2911.e3. [PMID: 32531286 DOI: 10.1016/j.cub.2020.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
The thalamus is known to process information from various brain regions and relay it to other brain regions, serving an essential role in sensory perception and motor execution. The thalamus also receives inputs from basal ganglia nuclei (BG) involved in value-based decision making, suggesting a role in the value process. We found that neurons in a particular area of the rhesus macaque posterior thalamus encoded the historical value memory of visual objects. Many of these value-coding neurons were located in the suprageniculate nucleus (SGN). This thalamic area directly received anatomical input from the superior colliculus (SC), and the neurons showed visual responses with contralateral preferences. Notably, the value discrimination activity of these thalamic neurons increased during learning, with the learned values stably retained even more than 200 days after learning. Our data indicate that single neurons in the posterior thalamus not only processed simple visual information but also represented historical values. Furthermore, our data suggest an SC-posterior thalamus-BG-SC subcortical loop circuit that encodes the historical value, enabling a quick automatic gaze by bypassing the visual cortex.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
21
|
Gangarossa G, Castell L, Castro L, Tarot P, Veyrunes F, Vincent P, Bertaso F, Valjent E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J Neurochem 2019; 151:204-226. [PMID: 31245856 DOI: 10.1111/jnc.14804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of paramount importance to understand its functions, which remain largely elusive. Taking advantage of genetically encoded biosensors (A-kinase activity reporter 3) to record protein kinase A signals and by analyzing the distribution of dopamine D1R- and D2R-SPNs in the TS, we characterized three subterritories: a D2R/A2aR-lacking, a D1R/D2R-intermingled and a D1R/D2R-SPNs-enriched area (corresponding to the amygdalostriatal transition). In addition, we provide evidence that the distribution of D1R- and D2R-SPNs in the TS is evolutionarily conserved (mouse, rat, gerbil). The in vivo analysis of extracellular signal-regulated kinase (ERK) phosphorylation in these TS subterritories in response to distinct appetitive, aversive and pharmacological stimuli revealed that SPNs of the TS are not recruited by stimuli triggering innate aversive responses, fasting, satiety, or palatable signals whereas a reduction in ERK phosphorylation occurred following learned avoidance. In contrast, D1R-SPNs of the intermingled and D2R/A2aR-lacking areas were strongly activated by both D1R agonists and psychostimulant drugs (d-amphetamine, cocaine, 3,4-methyl enedioxy methamphetamine, or methylphenidate), but not by hallucinogens. Finally, a similar pattern of ERK activation was observed by blocking selectively dopamine reuptake. Together, our results reveal that the caudal TS might participate in the processing of specific reward signals and discrete aversive stimuli. Cover Image for this issue: doi: 10.1111/jnc.14526. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Laia Castell
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pauline Tarot
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Federica Bertaso
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Miyamoto Y, Nagayoshi I, Nishi A, Fukuda T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct Funct 2019; 224:2703-2716. [PMID: 31375982 PMCID: PMC6778543 DOI: 10.1007/s00429-019-01928-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
The greater part of the striatum is composed of striosomes and matrix compartments, but we recently demonstrated the presence of a region that has a distinct structural organization in the ventral half of the mouse caudal striatum (Miyamoto et al. in Brain Struct Funct 223:4275-4291, 2018). This region, termed the tri-laminar part based upon its differential immunoreactivities for substance P and enkephalin, consists of medial, intermediate, and lateral divisions. In this study, we quantitatively analyzed the distributions of both projection neurons and interneurons in each division using immunohistochemistry. Two types of projection neurons expressing either the dopamine D1 receptor (D1R) or D2 receptor (D2R) showed complementary distributions throughout the tri-laminar part, but the proportions significantly differed among the three divisions. The proportion of D1R-expressing neurons in the medial, intermediate, and lateral divisions was 88.6 ± 8.2% (651 cells from 3 mice), 14.7 ± 3.8% (1025 cells), and 49.3 ± 4.5% (873 cells), respectively. The intermediate division was further characterized by poor innervation of tyrosine hydroxylase immunoreactive axons. The numerical density of choline acetyltransferase immunoreactive neurons differed among the three divisions following the order from the medial to lateral divisions. In contrast, PV-positive somata were distributed throughout all three divisions at a constant density. Two types of GABAergic interneurons labeled for nitric oxide synthase and calretinin showed the highest cell density in the medial division. The present results characterize the three divisions of the mouse caudal striatum as distinct structures, which will facilitate studies of novel functional loops in the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Issei Nagayoshi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
23
|
Prefrontal Cortex Regulates Sensory Filtering through a Basal Ganglia-to-Thalamus Pathway. Neuron 2019; 103:445-458.e10. [PMID: 31202541 DOI: 10.1016/j.neuron.2019.05.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
To make adaptive decisions, organisms must appropriately filter sensory inputs, augmenting relevant signals and suppressing noise. The prefrontal cortex (PFC) partly implements this process by regulating thalamic activity through modality-specific thalamic reticular nucleus (TRN) subnetworks. However, because the PFC does not directly project to sensory TRN subnetworks, the circuitry underlying this process had been unknown. Here, using anatomical tracing, functional manipulations, and optical identification of PFC projection neurons, we find that the PFC regulates sensory thalamic activity through a basal ganglia (BG) pathway. Engagement of this PFC-BG-thalamus pathway enables selection between vision and audition by primarily suppressing the distracting modality. This pathway also enhances sensory discrimination and is used for goal-directed background noise suppression. Overall, our results identify a new pathway for attentional filtering and reveal its multiple roles in sensory processing on the basis of internal goals.
Collapse
|
24
|
Klaus A, Alves da Silva J, Costa RM. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu Rev Neurosci 2019; 42:459-483. [PMID: 31018098 DOI: 10.1146/annurev-neuro-072116-031033] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.
Collapse
Affiliation(s)
- Andreas Klaus
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
25
|
Ponvert ND, Jaramillo S. Auditory Thalamostriatal and Corticostriatal Pathways Convey Complementary Information about Sound Features. J Neurosci 2019; 39:271-280. [PMID: 30459227 PMCID: PMC6325256 DOI: 10.1523/jneurosci.1188-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple parallel neural pathways link sound-related signals to behavioral responses. For instance, the striatum, a brain structure involved in action selection and reward-related learning, receives neuronal projections from both the auditory thalamus and auditory cortex. It is not clear whether sound information that reaches the striatum through these two pathways is redundant or complementary. We used an optogenetic approach in awake mice of both sexes to identify thalamostriatal and corticostriatal neurons during extracellular recordings, and characterized neural responses evoked by sounds of different frequencies and amplitude modulation rates. We found that neurons in both pathways encode sound frequency with similar fidelity, but display different coding strategies for amplitude modulated noise. Whereas corticostriatal neurons provide a more accurate representation of amplitude modulation rate in their overall firing rate, thalamostriatal neurons convey information about the precise timing of acoustic events. These results demonstrate that auditory thalamus and auditory cortex neurons provide complementary information to the striatum, and suggest that these pathways could be differentially recruited depending on the requirements of a sound-driven behavior.SIGNIFICANCE STATEMENT Sensory signals from the cerebral cortex and the thalamus converge onto the striatum, a nucleus implicated in reward-related learning. It is not clear whether these two sensory inputs convey redundant or complementary information. By characterizing the sound-evoked responses of thalamostriatal and corticostriatal neurons, our work demonstrates that these neural pathways convey complementary information about the temporal features of sounds. This work opens new avenues for investigating how these pathways could be selectively recruited depending on task demands, and provides a framework for studying convergence of cortical and thalamic information onto the striatum in other sensory systems.
Collapse
Affiliation(s)
- Nicholas D Ponvert
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, Oregon 97403
| | - Santiago Jaramillo
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|