1
|
Moscovicz F, Taborda C, Fernández F, Borda N, Auzmendi J, Lazarowski A. Ironing out the Links: Ferroptosis in epilepsy and SUDEP. Epilepsy Behav 2024; 157:109890. [PMID: 38905915 DOI: 10.1016/j.yebeh.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Iron is a crucial element for almost all organisms because it plays a vital role in oxygen transport, enzymatic processes, and energy generation due to its electron transfer capabilities. However, its dysregulation can lead to a form of programmed cell death known as ferroptosis, which is characterized by cellular iron accumulation, reactive oxygen species (ROS) production, and unrestricted lipid peroxidation. Both iron and ferroptosis have been identified as key players in the pathogenesis of various neurodegenerative diseases. While in epilepsy this phenomenon remains relatively understudied, seizures can be considered hypoxic-ischemic episodes resulting in increased ROS production, lipid peroxidation, membrane disorganization, and cell death. All of this is accompanied by elevated intracellular free Fe2+ concentration and hemosiderin precipitation, as existing reports suggest a significant accumulation of iron in the brain and heart associated with epilepsy. Generalized tonic-clonic seizures (GTCS), a primary risk factor for Sudden Unexpected Death in Epilepsy (SUDEP), not only have an impact on the brain but also lead to cardiogenic dysfunctions associated with "Iron Overload and Cardiomyopathy" (IOC) and "Epileptic heart" characterized by electrical and mechanical dysfunction and a high risk of malignant bradycardia. In line with this phenomenon, studies conducted by our research group have demonstrated that recurrent seizures induce hypoxia in cardiomyocytes, resulting in P-glycoprotein (P-gp) overexpression, prolonged Q-T interval, severe bradycardia, and hemosiderin precipitation, correlating with an elevated spontaneous death ratio. In this article, we explore the intricate connections among ferroptosis, epilepsy, and SUDEP. By synthesizing current knowledge and drawing insights from recent publications, this study provides a comprehensive understanding of the molecular underpinnings. Furthermore, this review offers insights into potential therapeutic avenues and outlines future research directions.
Collapse
Affiliation(s)
- F Moscovicz
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - C Taborda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - F Fernández
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - N Borda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - J Auzmendi
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - A Lazarowski
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
3
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
4
|
Moukha-Chafiq O, Reynolds RC, Wilson JC, Snowden TS. Parallel Solution Phase Synthesis and Preliminary Biological Activity of a 5'-Substituted Cytidine Analog Library. ACS COMBINATORIAL SCIENCE 2019; 21:628-634. [PMID: 31365223 DOI: 10.1021/acscombsci.9b00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 109-membered library of 5'-substituted cytidine analogs was synthesized, via funding through the NIH Roadmap Initiative and the Pilot Scale Library (PSL) Program. Reaction core compounds contained -NH2 (2) and -COOH (44 and 93) groups that were coupled to a diversity of reactants in a parallel, solution phase format to produce the target library. The assorted reactants included -NH2, -CHO, -SO2Cl, and -COOH functional groups, and condensation with the intermediate core materials 2 and 44 followed by acidic hydrolysis produced 3-91 in good yields and high purity. Linkage of the amino terminus of d-phenylalanine methyl ester to the free 5'-COOH of 44 and NaOH treatment led to core library -COOH precursor 93. In a libraries from libraries approach, compound 93 served as the vital building block for our unique library of dipeptidyl cytidine analogs 94-114 through amide coupling of the -COOH group with numerous commercial amines followed by acidic deprotection. Initial screening of the complete final library through the MLPCN program revealed a modest number of hits over diverse biological processes. These hits might be considered as starting points for hit-to-lead optimization and development studies.
Collapse
Affiliation(s)
- Omar Moukha-Chafiq
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Robert C. Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Jacob C. Wilson
- Department of Chemistry and Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487-0336, United States
| | - Timothy S. Snowden
- Department of Chemistry and Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
5
|
Hussain T, Kil H, Hattiangady B, Lee J, Kodali M, Shuai B, Attaluri S, Takata Y, Shen J, Abba MC, Shetty AK, Aldaz CM. Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus. Neurobiol Dis 2018; 121:163-176. [PMID: 30290271 DOI: 10.1016/j.nbd.2018.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- CINIBA, School of Medicine, UNLP, La Plata, Argentina
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| |
Collapse
|
6
|
Simard S, Shail P, MacGregor J, El Sayed M, Duman RS, Vaccarino FM, Salmaso N. Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLoS One 2018; 13:e0204980. [PMID: 30273396 PMCID: PMC6166983 DOI: 10.1371/journal.pone.0204980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Previous research has shown that fibroblast growth factor 2 protein (FGF2) can act as an anxiolytic and anti-depressive agent in rodents. Levels of hippocampal FGF2 and FGF2 receptors are decreased in post-mortem brains of individuals with mood disorders. No changes in FGF2 were noted in the post-mortem brains of individuals with mood disorders that were successfully treated with anti-depressant medication prior to death. Mutations in the FGF2 gene in humans have been shown to predict non-responsiveness to the therapeutic effects of selective serotonin reuptake inhibitors (SSRIs). These findings suggest that FGF2 may potentially be a target of and/or required for the therapeutic effects of antidepressant medications. To test this, we employed a rodent model of depressive behaviour, chronic variable stress (CVS) in conjunction with antidepressant treatment (fluoxetine) in wild-type (WT) and FGF2 knockout mice (FGF2KO) and examined depressive and anxiety behaviors. Results showed that fluoxetine reversed the effects of CVS on depressive and anxiety behaviours in wild-type mice only, suggesting that the FGF2 gene is indeed necessary for the therapeutic effects of fluoxetine. Interestingly, CVS decreased hippocampal FGF2 levels and fluoxetine partially reversed this effect. Because FGF2 has been previously shown to modify HPA activity through hippocampal glucocorticoid receptors (GR), we examined levels of glucocorticoid receptors and found a decrease in GR in response to CVS, with a further decrease in FGF2KO. No effect of fluoxetine on GR was observed in either WT or FGF2KO mice. This suggests that further changes in glucocorticoid receptors are not necessary for the anti-depressant effects of fluoxetine in WT mice, although decreased glucocorticoid receptors in response to FGF2 deletion may preclude the therapeutic actions of fluoxetine in FGF2KO. Whether astroglia, astroglial functions, or HPA changes are the downstream target of FGF2-mediated changes induced by fluoxetine remains to be determined, however, the current study reaffirms the potential of FGF2 as a novel therapeutic target in the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Stephanie Simard
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Pragya Shail
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jessica MacGregor
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Maha El Sayed
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.,Child Study Center, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Golgi-specific DHHC type zinc finger protein is decreased in neurons of intractable epilepsy patients and pentylenetetrazole-kindled rats. Neuroreport 2018; 29:1157-1165. [PMID: 29994811 DOI: 10.1097/wnr.0000000000001088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Golgi-specific DHHC type zinc finger protein (GODZ) is a member of the DHHC protein family, and its enzymatic activity is regulated by fibroblast growth factor or Src kinase-mediated tyrosine phosphorylation. In cultured neurons, GODZ affects the numbers of calcium ions channels, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, N-methy-D-aspartate receptors, and γ-aminobutyric acid A receptors on postsynaptic membrane by palmitoylation, thus modulating synaptic plasticity. As the change in synaptic plasticity plays a role in epilepsy, GODZ may play roles in epilepsy. However, the expression of GODZ has never been investigated in brain tissues in vivo, and its change during epilepsy is still unclear. In this study, the cellular distribution of GODZ in brain tissues of both patients and rats was determined using double-labeled immunofluorescence and the levels of GODZ protein and mRNA among intractable epilepsy patients, pentylenetetrazole (PTZ)-kindled rats, and controls were measured using immunohistochemistry, Western blot, and real-time quantitative polymerase chain reaction. GODZ expression was identified on cytomembranes and in the cytoplasm of neurons in the temporal neocortex of intractable epilepsy patients and in the hippocampus and the adjacent temporal cortex of PTZ-kindled rats, but not in astrocytes. Decreased GODZ protein and mRNA were identified in brain tissues of intractable epilepsy patients and PTZ-kindled rats compared with the controls. In conclusion, GODZ is expressed in neurons, but not astrocytes, and epilepsy may reduce the protein and mRNA levels of GODZ, indicating a possible role of GODZ in the pathogenesis or the pathophysiology of epilepsy.
Collapse
|
8
|
Simonato M. Neurotrophic factors and status epilepticus. Epilepsia 2018; 59 Suppl 2:87-91. [DOI: 10.1111/epi.14501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Michele Simonato
- Department of Medical Sciences; University of Ferrara; Ferrara Italy
- Division of Neuroscience; University Vita-Salute San Raffaele; Milan Italy
| |
Collapse
|
9
|
Turner CA, Eren-Koçak E, Inui EG, Watson SJ, Akil H. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin Cell Dev Biol 2016; 53:136-43. [PMID: 26454097 PMCID: PMC4833700 DOI: 10.1016/j.semcdb.2015.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
|
11
|
Lee ES, Jeong SJ, Kim YH, Jeon CJ. Transplantation of Neuro2a Cells into the Developing Postnatal Mouse Eye. Acta Histochem Cytochem 2015; 48:205-14. [PMID: 26855453 PMCID: PMC4731853 DOI: 10.1267/ahc.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to investigate the influence of the host retinal microenvironment on cell migration and differentiation using Neuro2a (N2a) cells transduced with green fluorescent protein. N2a cells were transplanted into the vitreous cavities of developing mouse eyes (C57BL/6) on postnatal days 1, 5, and 10 (P1, 5, and 10). To analyze the effects of the host microenvironment on neural differentiation of N2a cells in vitro, cells were treated with a conditioned medium (CM) collected from retinal cells cultured at each developmental stage. We observed that numerous cells transplanted into P5 mice eyes migrated into all layers of the host retina, and the presence of processes indicated morphological differentiation. Some transplanted N2a cells expressed several neural markers. However, cells transplanted into the P1 and 10 mice eyes only proliferated within the vitreous cavity. Neurite length increased in N2a cells treated with CM collected from the cultured retinal cells from P5 and 10 mice, while western blotting revealed that the levels of proteins related to neural differentiation were not significantly altered in N2a cells treated with CM. We show that the migration and differentiation capacities of transplanted cells were differentially influenced by the microenvironment of the retinal postnatal ontogeny.
Collapse
Affiliation(s)
- Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Se-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | | | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
12
|
Alshammari MA, Alshammari TK, Nenov MN, Scala F, Laezza F. Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. Mol Neurobiol 2015; 53:7254-7270. [PMID: 26687232 DOI: 10.1007/s12035-015-9568-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis, the production of mature neurons from progenitor cells in the adult mammalian brain, is linked to the etiology of neurodegenerative and psychiatric disorders. However, a thorough understanding of the molecular elements at the base of adult neurogenesis remains elusive. Here, we provide evidence for a previously undescribed function of fibroblast growth factor 14 (FGF14), a brain disease-associated factor that controls neuronal excitability and synaptic plasticity, in regulating adult neurogenesis in the dentate gyrus (DG). We found that FGF14 is dynamically expressed in restricted subtypes of sex determining region Y-box 2 (Sox2)-positive and doublecortin (DCX)-positive neural progenitors in the DG. Bromodeoxyuridine (BrdU) incorporation studies and confocal imaging revealed that genetic deletion of Fgf14 in Fgf14 -/- mice leads to a significant change in the proportion of proliferating and immature and mature newly born adult granule cells. This results in an increase in the late immature and early mature population of DCX and calretinin (CR)-positive neurons. Electrophysiological extracellular field recordings showed reduced minimal threshold response and impaired paired-pulse facilitation at the perforant path to DG inputs in Fgf14 -/- compared to Fgf14 +/+ mice, supporting disrupted synaptic connectivity as a correlative read-out to impaired neurogenesis. These new insights into the biology of FGF14 in neurogenesis shed light into the signaling pathways associated with disrupted functions in complex brain diseases.
Collapse
Affiliation(s)
- Musaad A Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Tahani K Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Federico Scala
- Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
13
|
Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 2015; 142:1818-30. [PMID: 25926357 PMCID: PMC4440923 DOI: 10.1242/dev.115568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Neurogenesis/physiology
- Neurons/cytology
- Neurons/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cameron Strong
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|