1
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Circuit-specific neural perturbations and recovery in methamphetamine addiction in a mouse model. Neurosci Lett 2025; 853:138201. [PMID: 40101836 DOI: 10.1016/j.neulet.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Drug addiction is characterized by profound brain adaptations, including altered neural circuit dynamics in reward-related regions, which reinforce compulsive drug-seeking behavior. This study investigated the effects of 5 mg/kg methamphetamine (METH) administration on brain activity measured by local field potentials (LFPs) in the nucleus accumbens (NAc) and dorsal hippocampus (dHP) of C57BL/6 mice. The study further examined the sensitivity of these brain regions during an abstinent period on day 8 and following a low-dose METH challenge. METH administration reduced theta power activity and enhanced gamma activity in the NAc, but decreased alpha2 power with specific high gamma increases in the dHP during conditioning and challenge phases. The sleep analysis revealed a reduction in NREM during the conditioning and challenge phases, however, these parameters returned to normal after 8 days abstinence from METH. These findings suggest that repeated METH administration induces neural sensitization and alters sleep architecture. However, the minimization of adverse neural changes, particularly in sleep regulation, highlights potential avenues for therapeutic applications in managing addiction and promoting recovery.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand.
| |
Collapse
|
2
|
Berezovskaia A, Lindsley C, Fink-Jensen A, Wörtwein G. M 4 Positive Allosteric Modulator VU0467154 Impacts Amphetamine Sensitization and Spontaneous Locomotion in Male Mice. ACS Chem Neurosci 2025; 16:868-879. [PMID: 39982140 DOI: 10.1021/acschemneuro.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
This study investigates the effects of the muscarinic acetylcholine receptor subtype 4 (M4) positive allosteric modulator (PAM) VU0467154 on the development, incubation, and expression of amphetamine sensitization in mice, the expression of immediate early genes in the medial prefrontal cortex after induction and expression of sensitization, as well as on spontaneous locomotion and several aspects of sensorimotor function. Mice were pretreated with VU0467154 during the induction phase, before the challenge test, or both. A separate cohort was treated during the incubation period. Tests of spontaneous locomotion and sensorimotor function were conducted after VU0467154 administration to evaluate potential side effects. Treatment with VU0467154 inhibited the development and expression of amphetamine sensitization. This was paralleled by effects on immediate early gene expression in the medial prefrontal cortex. Additionally, previous pretreatment with VU0467154 during the induction phase attenuated the expression of sensitization after a two-week incubation period. However, treatment with VU0467154 during the incubation period did not affect the expression of a sensitized response. VU0467154 significantly reduced spontaneous locomotion without impairing other aspects of sensorimotor function, as assessed by the mesh, adhesive removal, horizontal bar, and negative geotaxis tests. Global M4 knockout mice confirmed that the inhibitory effect on spontaneous locomotion was specific to M4 receptors. Our findings provide new insights into the therapeutic potential of M4 PAMs in modulating the neuroadaptations associated with psychostimulant abuse. Collectively, these results suggest that activation of M4 receptors could be a promising strategy for modulating dopaminergic signaling and reducing some behaviors associated with substance use disorder.
Collapse
Affiliation(s)
- Anna Berezovskaia
- Laboratory of Neuropsychiatry, Mental Health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Frederiksberg 2000, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital─Bispebjerg and Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Craig Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Mental Health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Frederiksberg 2000, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital─Bispebjerg and Frederiksberg Hospital, Copenhagen 2400, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Mental Health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Frederiksberg 2000, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital─Bispebjerg and Frederiksberg Hospital, Copenhagen 2400, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1353, Denmark
| |
Collapse
|
3
|
Tang B, Wu Z, Wang Q, Tang J. Neuronal Network Activation Induced by Forniceal Deep Brain Stimulation in Mice. Genes (Basel) 2025; 16:210. [PMID: 40004540 PMCID: PMC11855867 DOI: 10.3390/genes16020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The fimbria-fornix is a nerve fiber bundle that connects various structures of the limbic system in the brain and plays a key role in cognition. It has become a major target of deep brain stimulation (DBS) to treat memory impairment in both dementia patients and animal models of neurological diseases. Previously, we have reported the beneficial memory effects of chronic forniceal DBS in mouse models of intellectual disability disorders. In Rett syndrome and CDKL5 deficiency disorder models, DBS strengthens hippocampal synaptic plasticity, reduces dentate inhibitory transmission or increases adult hippocampal neurogenesis that aids memory. However, the underlying neuronal circuitry mechanisms remain unknown. This study we explored the neural network circuits involved in forniceal DBS treatment. Methods: We used acute forniceal DBS-induced expression of c-Fos, an activity-dependent neuronal marker, to map the brain structures functionally connected to the fornix. We also evaluated the mouse behavior of locomotion, anxiety, and fear memory after acute forniceal DBS treatment. Results: Acute forniceal DBS induces robust activation of multiple structures in the limbic system. DBS-induced neuronal activation extends beyond hippocampal formation and includes brain structures not directly innervated by the fornix. Conclusions: Acute forniceal DBS activates multiple limbic structures associated with emotion and memory. The neural circuits revealed here help elucidate the neural network effect and pave the way for further research on the mechanism by which forniceal DBS induces benefits on cognitive impairments.
Collapse
Affiliation(s)
- Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA; (B.T.); (Z.W.); (Q.W.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Yin J, Zhang T, Li D, Xu F, Li H, Pan X, Liu F, Zhao Y, Weng X. Behavioral video coding analysis of chronic morphine administration in rats. Biomed Rep 2024; 21:168. [PMID: 39345955 PMCID: PMC11428083 DOI: 10.3892/br.2024.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
The present study assessed the behavior of morphine-addicted rats using behavioral video coding technology, to evaluate effective methods for identifying morphine addiction. Rats were divided into a control group (n=15) and a morphine addiction group (n=15). The morphine addiction model was established with a 14-day increasing dose scheme, confirmed using a conditional place preference (CPP) experiment. After successful modeling, the rats' behavior was recorded for 12 h, then coded and analyzed using Observer XT behavior analysis software. Compared with the control group, morphine-addicted rats showed increased heat pain tolerance time (P=0.039) and spent more time in the white box during the CPP experiment (P<0.001). Video coding analysis revealed significant behavioral changes in morphine-addicted rats compared to controls. In addition to being lighter, morphine-addicted rats showed decreased water intake, reduced licking of forelimbs and hind limbs, and altered sleeping posture (sleeping curled up) during the day (all P<0.05). In conclusion, chronic morphine administration in rats leads to distinctive behavioral changes, including decreased licking frequency, reduced water intake and altered sleep posture. Video coding analysis, as a safe and non-invasive method, may provide a convenient and efficient approach for studying morphine addiction in rats.
Collapse
Affiliation(s)
- Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Tiecheng Zhang
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Dan Li
- Jingnan Medical Area of the General Hospital of the People's Liberation Army, Beijing 100850, P.R. China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Huan Li
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Xinyu Pan
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Fang Liu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Yongqi Zhao
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
5
|
Fattahi M, Rahimpour M, Riahi E. Opioid reward and deep brain stimulation of the lateral hypothalamic area. VITAMINS AND HORMONES 2024; 127:245-281. [PMID: 39864943 DOI: 10.1016/bs.vh.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience. It involves stereotactically implanting electrodes inside the brain and transmitting electrical pulses to targeted areas. To date, the nucleus accumbens has been recognized as the most successful DBS target for treating different types of drug addiction. Nevertheless, further preclinical research is required to determine the optimal brain target and stimulation parameters. On the other hand, the lateral hypothalamic area (LHA) plays a crucial role in many motivated behaviors including food intake and drug-seeking. Additionally, it projects widely throughout the brain to reward-related areas like the ventral tegmental area. Therefore, this chapter reviews studies investigating the potential positive effects of DBS administration in the LHA in animal models of opioid dependence and other pathological conditions. Findings reveal that LHA has the potential to be targeted for DBS application to treat a wide variety of disorders such as opioid dependence, obesity, and sleep disorders without significant adverse events. However, in the context of opioid dependence, more studies are needed, based on more valid animal models of addiction, including self-administration paradigms and varying stimulation patterns, to indicate that LHA is a safe and effective target for DBS in subjects with refractory opioid dependence.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Milad Rahimpour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Turney SE, Bullock LP, Price RM, Gass JT, Brown RW. Modulation of mGlu5 reduces rewarding associative properties of nicotine via changes in mesolimbic plasticity: Relevance to comorbid cigarette smoking in psychosis. Pharmacol Biochem Behav 2024; 239:173752. [PMID: 38521210 PMCID: PMC11088493 DOI: 10.1016/j.pbb.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Seth E Turney
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Luke P Bullock
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Robert M Price
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America.
| |
Collapse
|
8
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
9
|
Donlon J, Kumari P, Varghese SP, Bai M, Florentin OD, Frost ED, Banks J, Vadlapatla N, Kam O, Shad MU, Rahman S, Abulseoud OA, Stone TW, Koola MM. Integrative Pharmacology in the Treatment of Substance Use Disorders. J Dual Diagn 2024; 20:132-177. [PMID: 38117676 DOI: 10.1080/15504263.2023.2293854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Collapse
Affiliation(s)
- Jack Donlon
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Pooja Kumari
- Community Living Trent Highlands, Peterborough, Canada
| | - Sajoy P Varghese
- Addiction Recovery Treatment Services, Veterans Affairs Northern California Health Care System, University of California, Davis, Sacramento, California, USA
| | - Michael Bai
- Columbia University, New York, New York, USA
| | - Ori David Florentin
- Department of Psychiatry, Westchester Medical Center, Valhalla, New York, USA
| | - Emma D Frost
- Department of Neurology, Cooper University Health Care, Camden, New Jersey, USA
| | - John Banks
- Talkiatry Mental Health Clinic, New York, New York, USA
| | - Niyathi Vadlapatla
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Olivia Kam
- Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Mujeeb U Shad
- Department of Psychiatry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Alix School of Medicine at Mayo Clinic, Phoenix, Arizona, USA
| | - Trevor W Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
10
|
Zamanirad F, Eskandari K, Mousavi Z, Haghparast A. Blockade of the orexin-2 receptors within the ventral tegmental area facilitates the extinction and prevents the reinstatement of methamphetamine-seeking behavior. Physiol Behav 2024; 273:114382. [PMID: 37866644 DOI: 10.1016/j.physbeh.2023.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Repeated use of methamphetamine (METH) causes severe effects on the central nervous system, associated with an increased relapse rate. The orexinergic system is highly implicated in the reward circuitry and may be a promising target for treating psychostimulant dependency. The present study aimed to investigate the involvement of the orexin system, mainly the orexin-2 receptors (OX2R) in the ventral tegmental area (VTA) in the extinction and reinstatement of METH-seeking behavior using a conditioned place preference (CPP) paradigm. To this end, animals received METH (1 mg/kg; sc) for a 5-day conditioning period. Then, in the first set of experiments, different groups of rats were given intra-VTA TCS OX2 29 (1, 3, 10, or 30 nmol/0.3 μl DMSO) as an OX2R antagonist over a 10-day extinction period. In another experiment, after the extinction period, a different set of animals received a single dose of TCS OX2 29 (1, 3, 10, or 30 nmol) before the priming dose of METH (0.25 mg/kg; sc) on the reinstatement day. The results revealed that TCS OX2 29 (10 and 30 nmol) remarkably facilitated the extinction of rewarding properties of METH (P < 0.001 for both doses). Furthermore, TCS OX2 29 (3, 10, or 30 nmol) significantly suppressed the METH-induced reinstatement (3 nmol; P < 0.05, 10 nmol; P < 0.01, and 30 nmol; P < 0.001). In conclusion, the current study revealed that the orexinergic system, specifically the VTA OX2R, is involved in METH-seeking behaviors and that manipulation of this system can be considered a potential therapeutics in treating METH dependency.
Collapse
Affiliation(s)
- Ferdos Zamanirad
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Brown RW. Reinstatement of nicotine conditioned place preference in a transgenerational model of drug abuse vulnerability in psychosis: Impact of BDNF on the saliency of drug associations. Psychopharmacology (Berl) 2023; 240:1453-1464. [PMID: 37160431 PMCID: PMC10330905 DOI: 10.1007/s00213-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
RATIONALE Psychotic disorders such as schizophrenia are often accompanied by high rates of cigarette smoking, reduced quit success, and high relapse rates, negatively affecting patient outcomes. However, the mechanisms underlying altered relapse-like behaviors in psychosis are poorly understood. OBJECTIVES The present study analyzed changes in extinction and reinstatement of nicotine conditioned place preference (CPP) and resulting changes in brain-derived neurotrophic factor (BDNF) in a novel heritable rodent model of psychosis, demonstrating increased dopamine D2 receptor sensitivity, to explore mechanisms contributing to changes in relapse-like behaviors. METHODS Male and female offspring of two neonatal quinpirole-treated (1 mg/kg quinpirole from postnatal day (P)1-21; QQ) and two neonatal saline-treated (SS) Sprague-Dawley rats (F1 generation) were tested on an extended CPP paradigm to analyze extinction and nicotine-primed reinstatement. Brain tissue was analyzed 60 min after the last nicotine injection for BDNF response in the ventral tegmental area (VTA), the infralimbic (IfL) and prelimbic (PrL) cortices. RESULTS F1 generation QQ offspring demonstrated delayed extinction and more robust reinstatement compared to SS control animals. In addition, QQ animals demonstrated an enhanced BDNF response to nicotine in the VTA, IfL and Prl cortices compared to SS offspring. CONCLUSIONS This study is the first to demonstrate altered relapse-like behavior in a heritable rodent model with relevance to comorbid drug abuse and psychosis. This altered pattern of behavior is hypothesized to be related to elevated activity-dependent BDNF in brain areas associated with drug reinforcement during conditioning that persists through the extinction phase, rendering aberrantly salient drug associations resistant to extinction and enhancing relapse vulnerability.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
12
|
Salin A, Dugast E, Lardeux V, Solinas M, Belujon P. The amygdala-ventral pallidum pathway contributes to a hypodopaminergic state in the ventral tegmental area during protracted abstinence from chronic cocaine. Br J Pharmacol 2023; 180:1819-1831. [PMID: 36645812 DOI: 10.1111/bph.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Incubation of craving, the progressive increase in drug seeking over the first weeks of abstinence, is associated with temporal changes during abstinence in the activity of several structures involved in drug-seeking behaviour. Decreases of dopamine (DA) release and DA neuronal activity (hypodopaminergic state) have been reported in the ventral tegmental area (VTA) during cocaine abstinence, but the mechanisms underlying these neuroadaptations are not well understood. We investigated the potential involvement of a VTA inhibiting circuit (basolateral amygdala [BLA]-ventral pallidum [VP] pathway) in the hypodopaminergic state associated with abstinence from chronic cocaine. EXPERIMENTAL APPROACH In a model of cocaine self-administration, we performed in vivo electrophysiological recordings of DA VTA neurons and BLA neurons from anaesthetised rats during early and protracted abstinence and evaluated the involvement of the BLA-VP pathway using a pharmacological approach. KEY RESULTS We found significant decreases in VTA DA population activity and significant increases in BLA activity after protracted but not after short-term abstinence from chronic cocaine. The decrease in VTA DA activity was restored by pharmacological inhibition of the activity of either the BLA or the VP, suggesting that these regions exert a negative influence on DA activity. CONCLUSION AND IMPLICATIONS Our study sheds new lights on neuroadaptations occurring during incubation of craving leading to relapse. In particular, we describe the involvement of the BLA-VP pathway in cocaine-induced decreases of DA activity in the VTA. This study adds important information about the specific brain network dysfunctions underlying hypodopaminergic activity during abstinence.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- Université de Rennes, Institut Numecan INRAE, INSERM, Rennes, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
13
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
14
|
Lucente E, Söderpalm B, Ericson M, Adermark L. Acute and chronic effects by nicotine on striatal neurotransmission and synaptic plasticity in the female rat brain. Front Mol Neurosci 2023; 15:1104648. [PMID: 36710931 PMCID: PMC9877298 DOI: 10.3389/fnmol.2022.1104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Tobacco use is in part a gendered activity, yet neurobiological studies outlining the effect by nicotine on the female brain are scarce. The aim of this study was to outline acute and sub-chronic effects by nicotine on the female rat brain, with special emphasis on neurotransmission and synaptic plasticity in the dorsolateral striatum (DLS), a key brain region with respect to the formation of habits. Methods In vivo microdialysis and ex vivo electrophysiology were performed in nicotine naïve female Wistar rats, and following sub-chronic nicotine exposure (0.36 mg/kg free base, 15 injections). Locomotor behavior was assessed at the first and last drug-exposure. Results Acute exposure to nicotine ex vivo depresses excitatory neurotransmission by reducing the probability of transmitter release. Bath applied nicotine furthermore facilitated long-term synaptic depression induced by high frequency stimulation (HFS-LTD). The cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 produced a robust synaptic depression of evoked potentials, and HFS-LTD was blocked by the CB1R antagonist AM251, suggesting that HFS-LTD in the female rat DLS is endocannabinoid mediated. Sub-chronic exposure to nicotine in vivo produced behavioral sensitization and electrophysiological recordings performed after 2-8 days abstinence revealed a sustained depression of evoked population spike amplitudes in the DLS, with no concomitant change in paired pulse ratio. Rats receiving sub-chronic nicotine exposure further demonstrated an increased neurophysiological responsiveness to nicotine with respect to both dopaminergic- and glutamatergic signaling. However, a tolerance towards the plasticity facilitating property of bath applied nicotine was developed during sub-chronic nicotine exposure in vivo. In addition, the dopamine D2 receptor agonist quinpirole selectively facilitate HFS-LTD in slices from nicotine naïve rats, suggesting that the tolerance may be associated with changes in dopaminergic signaling. Conclusion Nicotine produces acute and sustained effects on striatal neurotransmission and synaptic plasticity in the female rat brain, which may contribute to the establishment of persistent nicotine taking habits.
Collapse
Affiliation(s)
- Erika Lucente
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Louise Adermark, ✉
| |
Collapse
|
15
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
16
|
GIRK Channels as Candidate Targets for the Treatment of Substance Use Disorders. Biomedicines 2022; 10:biomedicines10102552. [PMID: 36289814 PMCID: PMC9599444 DOI: 10.3390/biomedicines10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Substance use disorders (SUDs) are chronic, lifelong disorders that have serious consequences. Repeated substance use alters brain function. G-protein-activated inwardly rectifying potassium (GIRK) channels are expressed widely in the brain, including the reward system, and regulate neuronal excitability. Functional GIRK channels are identified as heterotetramers of GIRK subunits (GIRK1–4). The GIRK1, GIRK2, and GIRK3 subunits are mainly expressed in rodent brain regions, and various addictive substances act on the brain through GIRK channels. Studies with animals (knockout and missense mutation animals) and humans have demonstrated the involvement of GIRK channels in the effects of addictive substances. Additionally, GIRK channel blockers affect behavioral responses to addictive substances. Thus, GIRK channels play a key role in SUDs, and GIRK channel modulators may be candidate medications. Ifenprodil is a GIRK channel blocker that does not have serious side effects. Two clinical trials were conducted to investigate the effects of ifenprodil in patients with alcohol or methamphetamine use disorder. Although the number of participants was relatively low, evidence of its safety and efficacy was found. The present review discusses the potential of GIRK channel modulators as possible medications for addiction. Therapeutic agents that target GIRK channels may be promising for the treatment of SUDs.
Collapse
|
17
|
Jing MY, Ding XY, Han X, Zhao TY, Luo MM, Wu N, Li J, Song R. Activation of mesocorticolimbic dopamine projections initiates cue-induced reinstatement of reward seeking in mice. Acta Pharmacol Sin 2022; 43:2276-2288. [PMID: 35217811 PMCID: PMC9433452 DOI: 10.1038/s41401-022-00866-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
Abstract
Drug addiction is characterized by relapse when addicts are re-exposed to drug-associated environmental cues, but the neural mechanisms underlying cue-induced relapse are unclear. In the present study we investigated the role of a specific dopaminergic (DA) pathway from ventral tegmental area (VTA) to nucleus accumbens core (NAcore) in mouse cue-induced relapse. Optical intracranial self-stimulation (oICSS) was established in DAT-Cre transgenic mice. We showed that optogenetic excitation of DA neurons in the VTA or their projection terminals in NAcore, NAshell or infralimbic prefrontal cortex (PFC-IL) was rewarding. Furthermore, activation of the VTA-NAcore pathway alone was sufficient and necessary to induce reinstatement of oICSS. In cocaine self-administration model, cocaine-associated cues activated VTA DA neurons as assessed by intracellular GCaMP signals. Cue-induced reinstatement of cocaine-seeking was triggered by optogenetic stimulation of the VTA-NAcore pathway, and inhibited by chemogenetic inhibition of this pathway. Together, these results demonstrate that cue-induced reinstatement of reward seeking is in part mediated by activation of the VTA-NAcore DA pathway.
Collapse
Affiliation(s)
- Man-Yi Jing
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Yan Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tai-Yun Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Min-Min Luo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
18
|
Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Commun Biol 2022; 5:709. [PMID: 35840630 PMCID: PMC9287305 DOI: 10.1038/s42003-022-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Early exposures to anesthetics can cause long-lasting changes in excitatory/inhibitory synaptic transmission (E/I imbalance), an important mechanism for neurodevelopmental disorders. Since E/I imbalance is also involved with addiction, we further investigated possible changes in addiction-related behaviors after multiple ketamine anesthesia in late postnatal mice. Postnatal day (PND) 16 mice received multiple ketamine anesthesia (35 mg kg-1, 5 days), and behavioral changes were evaluated at PND28 and PND56. Although mice exposed to early anesthesia displayed normal behavioral sensitization, we found significant increases in conditioned place preference to both low-dose ketamine (20 mg kg-1) and nicotine (0.5 mg kg-1). By performing transcriptome analysis and whole-cell recordings in the hippocampus, a brain region involved with CPP, we also discovered enhanced neuronal excitability and E/I imbalance in CA1 pyramidal neurons. Interestingly, these changes were not found in female mice. Our results suggest that repeated ketamine anesthesia during neurodevelopment may influence drug reward behavior later in life.
Collapse
|
19
|
Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, Heck N, Trifilieff P, Barik J, Vanhoutte P. Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Front Synaptic Neurosci 2022; 13:799274. [PMID: 34970134 PMCID: PMC8712310 DOI: 10.3389/fnsyn.2021.799274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
Collapse
Affiliation(s)
- Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Vanesa Ortiz
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Paula Pousinha
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| |
Collapse
|
20
|
Madmoli Y, Rokhafroz D, Zarea K, Maraghi E. Effects of SP6 and ST36 Acupressure on Pain and Physiological Indexes in Addicted Men: A Single-Blind Randomized Clinical Trial. ADDICTION & HEALTH 2022; 14:52-61. [PMID: 35573760 PMCID: PMC9057643 DOI: 10.22122/ahj.v14i1.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Background Pain is the most crucial reason to seek treatment, and acupressure is one of the most common ways to relieve pain; therefore, this study was conducted with the aim to investigate the effectiveness of acupressure on the reduction of pain and stability of physiological indexes in addicted men. Methods The present single-blind, randomized, clinical trial was performed on 90 participants who were hospitalized in an addiction treatment camp in Masjed-e-Soleyman, Iran. The participants were divided into acupressure group (n = 45) and control group (n = 45) through allocating permutation blocks method. The acupressure group received acupressure on SP6 and ST36 points for 3 consecutive sessions and each session for 10 minutes. The data collection tools used included a demographic information questionnaire, the Short-Form McGill Pain Questionnaire (SF-MPQ), and a physiological index registration form, tympanic thermometer, sphygmomanometer, pulse oximetry device, and digital watch. Repeated measures ANOVA was used to analyze the data. P ≤ 0.05 was considered statically significant. Findings There was a statistically significant decrease in the sensory dimension of pain in the acupressure group compared to the control group in all 3 sessions (P ≤ 0.001; P ≤ 0.001; P = 0.001, respectively). There was no statistically significant difference in the overall pain score (P ≥ 0.005), emotional pain dimension (P ≥ 0.005), and physiological indexes of pain (P ≥ 0.005) between the two groups after the intervention. Conclusion Acupressure is a non-invasive and cost-effective method that reduces the sensory dimension of painý, and its application does not require special tools; ýthus, the use of such a safe and secure method for relieving pain is recommended.
Collapse
Affiliation(s)
- Yaghoob Madmoli
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dariush Rokhafroz
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kourosh Zarea
- Nursing Care Research Center in Chronic Diseases, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Maraghi
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Borjkhani H, Borjkhani M, Sharif MA. Investigating the Cocaine-induced Reduction of Potassium Current on the Generation of Action Potentials Using a Computational Model. Basic Clin Neurosci 2022; 13:15-24. [PMID: 36589017 PMCID: PMC9790104 DOI: 10.32598/bcn.2021.1150.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Drugs of abuse, such as cocaine, affect different brain regions and lead to pathological memories. These abnormal memories may occur due to changes in synaptic transmissions or variations in synaptic properties of neurons. It has been shown that cocaine inhibits delayed rectifying potassium currents in affected brain regions and can create pathological memories.This study investigates how the change in the conductance of delayed rectifying potassium channels can affect the produced action potentials using a computational model. Methods We present a computational model with different channels and receptors, including sodium, potassium, calcium, NMDARs, and AMPARs, which can produce burst-type action potentials. In the simulations, by changing the delayed rectifying potassium conductance bifurcation diagram is calculated. Results By decreasing the potassium current for a fixed stimulatory signal, burst-type action potentials can be generated. In the following and with a further reduction of potassium conductance, produced action potentials exhibit non-linear and even chaotic behaviors. Conclusion Results show that for a specific range of potassium conductance, a chaotic regime emerges in produced action potentials. These chaotic oscillations may play a role in inducing abnormal memories. Highlights Cocaine consumption reduces the potassium current in affected cells.Decreasing the potassium currents elicits burst action potentials.Produced bursts might have chaotic behaviors.Chaotic oscillations might be related to the toxic effects of cocaine. Plain Language Summary Drugs of abuse such as cocaine can manipulate brain circuits and may form some pathological memories. These memories can lead to long-term addiction. Furthermore, these drugs also can have toxic effects on the cells. Researchers are looking for the mechanisms that can lead to abnormal memories and toxic effects of drugs. It seems that an efficient mechanism that can be used by drugs of abuse is the manipulation of potassium currents in the affected cells. Here, in a computational model, we have shown that changes in the conductance of delayed rectifying potassium channels can lead to nonlinear and even chaotic behaviors in the produced action potentials. These behaviors might have a role in drug toxic effects.
Collapse
Affiliation(s)
- Hadi Borjkhani
- School of Engineering Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, School of Industrial Technologies, Urmia University of Technology, Urmia, Iran
| | - Morteza A. Sharif
- Department of Electrical Engineering, School of Industrial Technologies, Urmia University of Technology, Urmia, Iran
| |
Collapse
|
22
|
Wei L, Wu GR, Bi M, Baeken C. Effective connectivity predicts cognitive empathy in cocaine addiction: a spectral dynamic causal modeling study. Brain Imaging Behav 2021; 15:1553-1561. [PMID: 32710329 DOI: 10.1007/s11682-020-00354-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Social cognition plays a crucial role in the development and treatment of cocaine dependence. However, studies investigating social cognition, such as empathy and its underlying neural basis, are lacking. To explore the neural interactions among reward and memory circuits, we applied effective connectivity analysis on resting-state fMRI data collected from cocaine-dependent subjects. The relationship between effective connectivity within these two important circuits and empathy ability - evaluated with the Interpersonal Reactivity Index (IRI) - was assessed by machine learning algorithm using multivariate regression analysis. In accordance with the neurocircuitry disruptions of cocaine addiction, the results showed that cocaine-dependent subjects relative to healthy controls had altered resting state effective connectivity between parts of the memory and reward systems. Furthermore, effective connectivity between the memory and reward system could predict the fantasy empathy (FE) subscale scores in cocaine dependence. Overall, our findings provide further evidence for the neural substrates of social cognition in cocaine-dependent patients. These new insights could be useful for the development of new treatment programs for this substance dependency disorder.
Collapse
Affiliation(s)
- Luqing Wei
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China. .,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Minghua Bi
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium.,Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZBrussel), Laarbeeklaan 101, 1090, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
23
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Front Pharmacol 2021; 12:626010. [PMID: 34093179 PMCID: PMC8173061 DOI: 10.3389/fphar.2021.626010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Drug treatments available for the management of substance use disorders (SUD) present multiple limitations in efficacy, lack of approved treatments or alarming relapse rates. These facts hamper the clinical outcome and the quality of life of the patients supporting the importance to develop new pharmacological agents. Lately, several reports suggest that cannabidiol (CBD) presents beneficial effects relevant for the management of neurological disorders such as epilepsy, multiple sclerosis, Parkinson's, or Alzheimer's diseases. Furthermore, there is a large body of evidence pointing out that CBD improves cognition, neurogenesis and presents anxiolytic, antidepressant, antipsychotic, and neuroprotective effects suggesting potential usefulness for the treatment of neuropsychiatric diseases and SUD. Here we review preclinical and clinical reports regarding the effects of CBD on the regulation of the reinforcing, motivational and withdrawal-related effects of different drugs of abuse such as alcohol, opioids (morphine, heroin), cannabinoids, nicotine, and psychostimulants (cocaine, amphetamine). Furthermore, a special section of the review is focused on the neurobiological mechanisms that might be underlying the 'anti-addictive' action of CBD through the regulation of dopaminergic, opioidergic, serotonergic, and endocannabinoid systems as well as hippocampal neurogenesis. The multimodal pharmacological profile described for CBD and the specific regulation of addictive behavior-related targets explains, at least in part, its therapeutic effects on the regulation of the reinforcing and motivational properties of different drugs of abuse. Moreover, the remarkable safety profile of CBD, its lack of reinforcing properties and the existence of approved medications containing this compound (Sativex®, Epidiolex®) increased the number of studies suggesting the potential of CBD as a therapeutic intervention for SUD. The rising number of publications with substantial results on the valuable therapeutic innovation of CBD for treating SUD, the undeniable need of new therapeutic agents to improve the clinical outcome of patients with SUD, and the upcoming clinical trials involving CBD endorse the relevance of this review.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
24
|
Prenatal Opioid Exposure Enhances Responsiveness to Future Drug Reward and Alters Sensitivity to Pain: A Review of Preclinical Models and Contributing Mechanisms. eNeuro 2020; 7:ENEURO.0393-20.2020. [PMID: 33060181 PMCID: PMC7768284 DOI: 10.1523/eneuro.0393-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential underlying molecular mechanisms which may contribute to this enhanced addictive phenotype in POE offspring are further discussed with special attention given to key brain regions associated with reward including the striatum, prefrontal cortex (PFC), ventral tegmental area (VTA), hippocampus, and amygdala. Improvements in preclinical models and further areas of study are also identified which may advance the translational value of findings and help address the growing problem of POE in clinical populations.
Collapse
|
25
|
Cooper SY, Henderson BJ. The Impact of Electronic Nicotine Delivery System (ENDS) Flavors on Nicotinic Acetylcholine Receptors and Nicotine Addiction-Related Behaviors. Molecules 2020; 25:E4223. [PMID: 32942576 PMCID: PMC7571084 DOI: 10.3390/molecules25184223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, combustible cigarette smoking has slowly declined by nearly 11% in America; however, the use of electronic cigarettes has increased tremendously, including among adolescents. While nicotine is the main addictive component of tobacco products and a primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette users. Accordingly, there are few studies that examine the impact of flavors on health and behavior. Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus, there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and function, and altering midbrain neuron excitability. Although flavors other than menthol were banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes. This review seeks to summarize the current knowledge on nicotine addiction and the various brain regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and vaping-related behaviors.
Collapse
Affiliation(s)
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA;
| |
Collapse
|
26
|
Fried L, Modestino EJ, Siwicki D, Lott L, Thanos PK, Baron D, Badgaiyan RD, Ponce JV, Giordano J, Downs WB, Gondré-Lewis MC, Bruce S, Braverman ER, Boyett B, Blum K. Hypodopaminergia and "Precision Behavioral Management" (PBM): It is a Generational Family Affair. Curr Pharm Biotechnol 2020; 21:528-541. [PMID: 31820688 DOI: 10.2174/1389201021666191210112108] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS This case series presents the novel Genetic Addiction Risk Score (GARS®) coupled with a customized pro-dopamine regulator matched to polymorphic reward genes having a hypodopaminergic risk. METHODS The proband is a female with a history of drug abuse and alcoholism. She experienced a car accident under the influence and voluntarily entered treatment. Following an assessment, she was genotyped using the GARS, and started a neuronutrient with a KB220 base indicated by the identified polymorphisms. She began taking it in April 2018 and continues. RESULTS She had success in recovery from Substance Use Disorder (SUD) and improvement in socialization, family, economic status, well-being, and attenuation of Major Depression. She tested negative over the first two months in treatment and a recent screening. After approximately two months, her parents also decided to take the GARS and started taking the recommended variants. The proband's father (a binge drinker) and mother (no SUD) both showed improvement in various behavioral issues. Finally, the proband's biological children were also GARS tested, showing a high risk for SUD. CONCLUSION This three-generation case series represents an example of the impact of genetic information coupled with an appropriate DNA guided "Pro-Dopamine Regulator" in recovery and enhancement of life.
Collapse
Affiliation(s)
- Lyle Fried
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Transformations Treatment Center, Delray Beach, FL, United States
| | - Edward J Modestino
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Department of Psychology, Curry College, Milton, MA, United States
| | - David Siwicki
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - Lisa Lott
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - Panayotis K Thanos
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, University of Buffalo, Buffalo, NY, United States
| | - David Baron
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| | - Rajendra D Badgaiyan
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Department of Psychiatry, Icahn School of Medicine, New York, NY, United States
| | - Jessica V Ponce
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - James Giordano
- John Giordano, Life Enhancement Recovery Center, Hollywood, FL, United States
| | - William B Downs
- Victory Nutrition International, Lederach, PA, United States
| | - Marjorie C Gondré-Lewis
- Department of Anatomy, Developmental Neuro-Psycho-Pharmacology Laboratory, Howard University College of Medicine, Washington, DC, United States
| | - Steinberg Bruce
- Department of Psychology, Curry College, Milton, MA, United States
| | - Eric R Braverman
- Department of Clinical Neurology, PATH Foundation, New York, NY, United States
| | - Brent Boyett
- Division of Neuroscience & Addiction Research, Pathway Healthcare, Birmingham, AL, United States
| | - Kenneth Blum
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States.,John Giordano, Life Enhancement Recovery Center, Hollywood, FL, United States.,Victory Nutrition International, Lederach, PA, United States.,Department of Clinical Neurology, PATH Foundation, New York, NY, United States.,Division of Neuroscience & Addiction Research, Pathway Healthcare, Birmingham, AL, United States.,Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, RI, United States.,Department of Psychiatry, University of Vermont, Burlington, VM, United States.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University, Boonshoft School of Medicine and Dayton VA, Medical Center, Dayton, OH, United States
| |
Collapse
|
27
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
28
|
Chen BP, Huang XX, Dong DM, Wu H, Zhu TQ, Wang BF. The role of NMDA receptors in rat propofol self-administration. BMC Anesthesiol 2020; 20:149. [PMID: 32539742 PMCID: PMC7294660 DOI: 10.1186/s12871-020-01056-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Propofol is among the most frequently used anesthetic agents, and it has the potential for abuse. The N-methyl-D-aspartate (NMDA) receptors are key mediators neural plasticity, neuronal development, addiction, and neurodegeneration. In the present study, we explored the role of these receptors in the context of rat propofol self-administration. METHODS Sprague-Dawley Rats were trained to self-administer propofol (1.7 mg/kg/infusion) using a fixed-ratio (FR) schedule over the course of 14 sessions (3 h/day). After training, rats were intraperitoneally administered the non-competitive NDMA receptor antagonist MK-801, followed 10 min later by a propofol self-administration session. RESULTS After training, rats successfully underwent acquisition of propofol self-administration, as evidenced by a significant and stable rise in the number of active nose-pokes resulting in propofol administration relative to the number of control inactive nose-pokes (P < 0.01). As compared to control rats, rats that had been injected with 0.2 mg/kg MK-801 exhibited a significantly greater number of propofol infusions (F (3, 28) = 4.372, P < 0.01), whereas infusions were comparable in the groups administered 0.1 mg/kg and 0.4 mg/kg of this compound. In addition, MK-801 failed to alter the numbers of active (F (3, 28) = 1.353, P > 0.05) or inactive (F (3, 28) = 0.047, P > 0.05) responses in these study groups. Animals administered 0.4 mg/kg MK-801 exhibited significantly fewer infusions than animals administered 0.2 mg/kg MK-801 (P = 0.006, P < 0.01). In contrast, however, animals in the 0.4 mg/kg MK-801 group displayed a significant reduction in the number of active nose-poke responses (F (3, 20) = 20.8673, P < 0.01) and the number of sucrose pellets (F (3, 20) = 23.77, P < 0.01), while their locomotor activity was increased (F (3, 20) = 22.812, P < 0.01). CONCLUSION These findings indicate that NMDA receptors may play a role in regulating rat self-administration of propofol.
Collapse
Affiliation(s)
- Bei-Ping Chen
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Xi-Xi Huang
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China
| | - Dong-Mei Dong
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Tian-Qi Zhu
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ben-Fu Wang
- Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
29
|
Salery M, Trifilieff P, Caboche J, Vanhoutte P. From Signaling Molecules to Circuits and Behaviors: Cell-Type-Specific Adaptations to Psychostimulant Exposure in the Striatum. Biol Psychiatry 2020; 87:944-953. [PMID: 31928716 DOI: 10.1016/j.biopsych.2019.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Addiction is characterized by a compulsive pattern of drug seeking and consumption and a high risk of relapse after withdrawal that are thought to result from persistent adaptations within brain reward circuits. Drugs of abuse increase dopamine (DA) concentration in these brain areas, including the striatum, which shapes an abnormal memory trace of drug consumption that virtually highjacks reward processing. Long-term neuronal adaptations of gamma-aminobutyric acidergic striatal projection neurons (SPNs) evoked by drugs of abuse are critical for the development of addiction. These neurons form two mostly segregated populations, depending on the DA receptor they express and their output projections, constituting the so-called direct (D1 receptor) and indirect (D2 receptor) SPN pathways. Both SPN subtypes receive converging glutamate inputs from limbic and cortical regions, encoding contextual and emotional information, together with DA, which mediates reward prediction and incentive values. DA differentially modulates the efficacy of glutamate synapses onto direct and indirect SPN pathways by recruiting distinct striatal signaling pathways, epigenetic and genetic responses likely involved in the transition from casual drug use to addiction. Herein we focus on recent studies that have assessed psychostimulant-induced alterations in a cell-type-specific manner, from remodeling of input projections to the characterization of specific molecular events in each SPN subtype and their impact on long-lasting behavioral adaptations. We discuss recent evidence revealing the complex and concerted action of both SPN populations on drug-induced behavioral responses, as these studies can contribute to the design of future strategies to alleviate specific behavioral components of addiction.
Collapse
Affiliation(s)
- Marine Salery
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pierre Trifilieff
- NutriNeuro, Unité Mixte de Recherche (UMR) 1286, Institut National de la Recherche Agronomique, Bordeaux Institut Polytechnique, University of Bordeaux, Bordeaux, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France.
| | - Peter Vanhoutte
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France
| |
Collapse
|
30
|
Nudmamud-Thanoi S, Iamjan SA, Kerdsan-Phusan W, Thanoi S. Pharmacogenetics of drug dependence: Polymorphisms of genes involved in glutamate neurotransmission. Neurosci Lett 2020; 726:134128. [PMID: 30836121 DOI: 10.1016/j.neulet.2019.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Multiple studies provide evidence to support dysfunction of glutamate neurotransmission in the pathogenesis of drug dependence. Pharmacogenetic investigation of glutamate-related genes has provided further support for the involvement of this neurotransmitter in the risk of, and consequences of, drug abuse and dependence. This paper aims to provide a brief review of these association studies. Findings involving single nucleotide polymorphisms (SNPs) in glutamate receptor genes (GRIN, GRIA) and glutamate transporter genes (SLC1A, SLC17A) are reviewed as potential risk factors. As yet a clear perspective of the functional consequences and interactions of the various reported findings is lacking.
Collapse
Affiliation(s)
- Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Walailuk Kerdsan-Phusan
- Department of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
31
|
Kotajima-Murakami H, Ikeda K. [Clinical study of GIRK channel inhibitors as candidate medicines for drug dependence]. Nihon Yakurigaku Zasshi 2020; 155:130-134. [PMID: 32378628 DOI: 10.1254/fpj.19134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, topics related to substance dependence and behavioral addiction have been reported through the media. Therapeutic treatment for substance dependence and behavioral addiction is one of the challenges in a clinical practice. This is because there is no therapeutic treatment for a complete cure, and reuses and repetitive hospitalization occur in patients. Therefore, it is an urgent need to develop new treatments for substance dependence and behavioral addiction. In the present review, we outline associations between dependence and G-protein-activated inwardly rectifying potassium (GIRK) channels which we focus on as therapeutic targets, and introduce ongoing clinical study using an inhibitor of GIRK channels. Previous studies including animals and patients have accumulated the results that GIRK channels have a key role for mediating signals from addictive substances. GIRK channels are expressed in various rodent brain regions including the reward system. The activation of G protein-coupled receptors (GPCRs) that activates GIRK channels through G-protein βγ subunits and activated GIRK channels contribute to control of neuronal excitability. Pretreatment with ifenprodil that is one of the GIRK channel blockers suppressed addictive substance-induced behaviors in animals. Ifenprodil is safe and broadly used as a cerebral circulation/metabolism ameliorator that is covered by medical insurance in Japan. The authors reported that ifenprodil treatment for 3 months decreased alcohol use scores in patients with alcohol dependence compared with patients who received the control medication. We currently conduct a clinical trial to investigate the outcomes of ifenprodil treatment for methamphetamine dependence. In the future, we will expand clinical studies using ifenprodil for patients with other substance dependence and behavioral addiction.
Collapse
Affiliation(s)
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
32
|
Hong Q, Liu J, Lin Z, Zhuang D, Xu W, Xu Z, Lai M, Zhu H, Zhou W, Liu H. Histone 3 lysine 9 acetylation of BRG1 in the medial prefrontal cortex is associated with heroin self‑administration in rats. Mol Med Rep 2019; 21:405-412. [PMID: 31939625 DOI: 10.3892/mmr.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/20/2019] [Indexed: 11/06/2022] Open
Abstract
Heroin addiction is a chronic relapsing brain disorder with negative social consequences. Histone acetylation serves a role in drug‑induced behavior and neuroplasticity impairment. Brahma/SWI2‑related gene‑1 (BRG1) participates in cerebellar development, embryogenesis and transcriptional regulation of neuronal genes concurrent with histone modifications. However, little is known about the relationship between histone H3 lysine 9 acetylation (H3K9ac) and BRG1 in response to heroin. The present study aimed to assess the contribution of histone 3 lysine 9 acetylation of BRG1 to heroin self‑administration. The present study established a Sprague‑Dawley rat model of heroin self‑administration under a fixed‑ratio‑1 paradigm. Chromatin immunoprecipitation followed by reverse transcription‑quantitative PCR (RT‑qPCR) was used to detect the accumulation of H3K9ac on BRG1 in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) following heroin self‑administration. The relative expression levels of BRG1 were analyzed by RT‑qPCR. H3K9ac at the promoter region of BRG1 was significantly elevated (P=0.002), and the expression of BRG1 in the mPFC increased 1.47‑fold in the heroin self‑administration group compared with the control group. No significant difference in H3K9ac at the BRG1 locus was observed in the NAc (P=0.323), with the expression of BRG1 decreasing 1.38‑fold in the heroin self‑administering rats compared with the control group. H3K9ac is associated with transcriptional activation, and the increased BRG1 expression suggested an essential and novel role for BRG1 and its H3K9ac‑mediated regulation in the mPFC after heroin self‑administration; and this may function through epigenetically modulating the activation of neuroplasticity‑associated genes. This association may provide a novel therapeutic target for the treatment of heroin addiction.
Collapse
Affiliation(s)
- Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zemin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
33
|
Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of Reward and Addiction: Potential Impact of Dopamine-Glutamate Co-release as Future Target in Substance Use Disorder. J Clin Med 2019; 8:E1887. [PMID: 31698743 PMCID: PMC6912639 DOI: 10.3390/jcm8111887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine-glutamate co-release is a unique property of midbrain neurons primarily located in the ventral tegmental area (VTA). Dopamine neurons of the VTA are important for behavioral regulation in response to rewarding substances, including natural rewards and addictive drugs. The impact of glutamate co-release on behaviors regulated by VTA dopamine neurons has been challenging to probe due to lack of selective methodology. However, several studies implementing conditional knockout and optogenetics technologies in transgenic mice have during the past decade pointed towards a role for glutamate co-release in multiple physiological and behavioral processes of importance to substance use and abuse. In this review, we discuss these studies to highlight findings that may be critical when considering mechanisms of importance for prevention and treatment of substance abuse.
Collapse
|
34
|
Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:153-196. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Andrew S Felts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
35
|
Yohn SE, Galbraith J, Calipari ES, Conn PJ. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci 2019; 10:2125-2143. [PMID: 30933466 PMCID: PMC7898461 DOI: 10.1021/acschemneuro.8b00601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated data from clinical and preclinical studies suggest that, in drug addiction and states of overeating, such as obesity and binge eating disorder (BED), there is an imbalance in circuits that are critical for motivation, reward saliency, executive function, and self-control. Central to these pathologies and the extensive topic of this Review are the aberrations in dopamine (DA) and glutamate (Glu) within the mesolimbic pathway. Group I metabotropic glutamate receptors (mGlus) are highly expressed in the mesolimbic pathway and are poised in key positions to modulate disruptions in synaptic plasticity and neurotransmitter release observed in drug addiction, obesity, and BED. The use of allosteric modulators of group I mGlus has been studied in drug addiction, as they offer several advantages over traditional orthosteric agents. However, they have yet to be studied in obesity or BED. With the substantial overlap between the neurocircuitry involved in drug addiction and eating disorders, group I mGlus may also provide novel targets for obesity and BED.
Collapse
Affiliation(s)
- Samantha E. Yohn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Jordan Galbraith
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
36
|
González-Arancibia C, Urrutia-Piñones J, Illanes-González J, Martinez-Pinto J, Sotomayor-Zárate R, Julio-Pieper M, Bravo JA. Do your gut microbes affect your brain dopamine? Psychopharmacology (Berl) 2019; 236:1611-1622. [PMID: 31098656 DOI: 10.1007/s00213-019-05265-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence shows changes in gut microbiota composition in association with psychiatric disorders, including anxiety and depression. Moreover, it has been reported that perturbations in gut microbe diversity and richness influence serotonergic, GABAergic, noradrenergic, and dopaminergic neurotransmission. Among these, dopamine is regarded as a main regulator of cognitive functions such as decision making, attention, memory, motivation, and reward. In this work, we will highlight findings that link alterations in intestinal microbiota and dopaminergic neurotransmission, with a particular emphasis on the mesocorticolimbic circuit, which is involved in reward to natural reinforcers, as well as abuse substances. For this, we reviewed evidence from studies carried out on germ-free animals, or in rodents subjected to intestinal dysbiosis using antibiotics, and also through the use of probiotics. All this evidence strongly supports that the microbiota-gut-brain axis is key to the physiopathology of several neuropsychiatric disorders involving those where dopaminergic neurotransmission is compromised. In addition, the gut microbiota appears as a key player when it comes to proposing novel strategies to the treatment of these psychiatric conditions.
Collapse
Affiliation(s)
- Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Javiera Illanes-González
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile
| | - Javier A Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.
| |
Collapse
|
37
|
Thangaraj A, Periyasamy P, Guo ML, Chivero ET, Callen S, Buch S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy 2019; 16:289-312. [PMID: 30990365 DOI: 10.1080/15548627.2019.1607686] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci 2019; 13:23. [PMID: 30890922 PMCID: PMC6411818 DOI: 10.3389/fnbeh.2019.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.
Collapse
Affiliation(s)
- Milene Borsoi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Antonia Manduca
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anissa Bara
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Olivier Lassalle
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Conception, Service de Psychiatrie, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Olivier J Manzoni
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France.,Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Marseille, France
| |
Collapse
|
39
|
Lisieski MJ, Karavidha K, Gheidi A, Garibyan RL, Conti AC, Morrow JD, Perrine SA. Divergent effects of repeated cocaine and novel environment exposure on locus coeruleus c-fos expression and brain catecholamine concentrations in rats. Brain Behav 2019; 9:e01222. [PMID: 30790470 PMCID: PMC6422811 DOI: 10.1002/brb3.1222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Chronic administration of cocaine causes a disinhibited, hyperexploratory response to novel environments. As the norepinephrine (NE) system regulates exploration and is dysregulated following cocaine exposure, we hypothesized that this cocaine-mediated hyperexploratory response is associated with increased locus coeruleus (LC) reactivity. METHODS To test this hypothesis, we used dual fluorescent in situ hybridization immunofluorescence to analyze novelty-induced c-fos and tyrosine hydroxylase expression in the LC and high-pressure liquid chromatography to measure dopamine (DA) and NE concentrations in key catecholamine projection regions following exposure to cocaine. RESULTS Repeated cocaine exposure followed by a 14-day drug-free period increased exploration of novel environments, replicating previous findings. Novelty exposure increased LC c-fos expression, increased anterior cingulate NE, and decreased ventral tegmental area DA. Cocaine exposure decreased amygdala (AMY) DA, but had no effect on LC c-fos expression or NE in any tested brain region. No interactions between cocaine and novelty were found. Open arm exploration was positively correlated with LC c-fos expression and NE concentrations in both the anterior cingulate and nucleus accumbens, and negatively correlated with AMY DA concentration. CONCLUSIONS Our findings confirm that exposure to novel environments increases LC activity and NE in the anterior cingulate cortex, that long-term exposure to cocaine dysregulates AMY DA, and that disinhibited exploration in novel environments correlates with NE and DA in regions that modulate risk-taking and avoidance behavior. Further studies investigating the effects of cocaine on brain catecholamine systems are important in understanding the long-lasting effects of cocaine on brain function.
Collapse
Affiliation(s)
- Michael J. Lisieski
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Klevis Karavidha
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Ali Gheidi
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Rafael L. Garibyan
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Alana C. Conti
- Research and Development Service, John D. Dingell VA Medical Center, Department of NeurosurgeryWayne State University School of MedicineDetroitMichigan
| | - Jonathan D. Morrow
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
- Research and Development Service, John D. Dingell VA Medical Center, Department of NeurosurgeryWayne State University School of MedicineDetroitMichigan
| |
Collapse
|
40
|
Powell GL, Leyrer‐Jackson JM, Goenaga J, Namba MD, Piña J, Spencer S, Stankeviciute N, Schwartz D, Allen NP, Del Franco AP, McClure EA, Olive MF, Gipson CD. Chronic treatment with N-acetylcysteine decreases extinction responding and reduces cue-induced nicotine-seeking. Physiol Rep 2019; 7:e13958. [PMID: 30632301 PMCID: PMC6328917 DOI: 10.14814/phy2.13958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
N-acetylcysteine (NAC), a promising glutamatergic therapeutic agent, has shown some clinical efficacy in reducing nicotine use in humans and has been shown to reverse drug-induced changes in glutamatergic neurophysiology. In rats, nicotine-seeking behavior is associated with alterations in glutamatergic plasticity within the nucleus accumbens core (NAcore). Specifically, cue-induced nicotine-seeking is associated with rapid, transient synaptic plasticity (t-SP) in glutamatergic synapses on NAcore medium spiny neurons. The goal of the present study was to determine if NAC reduces nicotine-seeking behavior and reverses reinstatement-associated NAcore glutamatergic alterations. Rats were extinguished from nicotine self-administration, followed by subchronic NAC administration (0 or 100 mg/kg/d) for 4 days prior to cue-induced reinstatement. NAcore synaptic potentiation was measured via dendritic spine morphology and mRNA and protein of relevant glutamatergic genes were quantified. Nicotine-seeking behavior was not reduced by subchronic NAC treatment. Also, NAcore transcript and protein expression of multiple glutamatergic genes, as well as spine morphological measures, were unaffected by subchronic NAC. Finally, chronic NAC treatment (15 days total) during extinction and prior to reinstatement significantly decreased extinction responding and reduced reinstatement of nicotine-seeking compared to vehicle. Together, these results suggest that chronic NAC treatment is necessary for its therapeutic efficacy as a treatment strategy for nicotine addiction and relapse.
Collapse
Affiliation(s)
- Gregory L. Powell
- Department of PsychologyArizona State UniversityTempeArizona
- School of Life SciencesArizona State UniversityTempeArizona
| | | | | | - Mark D. Namba
- Department of PsychologyArizona State UniversityTempeArizona
| | - Jose Piña
- Department of PsychologyArizona State UniversityTempeArizona
| | - Sade Spencer
- Department of NeuroscienceMedical University of South CarolinaCharlestonSC
| | | | - Danielle Schwartz
- Department of NeuroscienceMedical University of South CarolinaCharlestonSC
| | - Nicholas P. Allen
- School of Dental MedicineLake Erie College of Osteopathic MedicineBradentonFlorida
| | | | - Erin A. McClure
- Department of PsychiatryMedical University of South CarolinaCharlestonSouth Carolina
| | | | | |
Collapse
|
41
|
Rivera-Meza M, Vásquez D, Quintanilla ME, Lagos D, Rojas B, Herrera-Marschitz M, Israel Y. Activation of mitochondrial aldehyde dehydrogenase (ALDH2) by ALDA-1 reduces both the acquisition and maintenance of ethanol intake in rats: A dual mechanism? Neuropharmacology 2018; 146:175-183. [PMID: 30521820 DOI: 10.1016/j.neuropharm.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 12/31/2022]
Abstract
A number of pre-clinical studies have shown that brain-generated acetaldehyde, the first metabolite of ethanol, exerts reinforcing effects that promote the acquisition of ethanol intake, while chronic intake maintenance appears to be mediated by alcohol-induced brain neuroinflammation/oxidative stress. Recently, it was described that N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (ALDA-1) activates aldehyde dehydrogenase-2 (ALDH2), enzyme that catalyzes the oxidation of ethanol-derived acetaldehyde to acetate. The aim of this study was to determine the effects of ALDA-1 on both the acquisition and the maintenance of alcohol intake in alcohol-preferring UChB rats. For ethanol acquisition studies, naïve UChB rats were treated with five daily doses of ALDA-1 (12.5, 25 or 50 mg/kg, i.p.) from one day before the start of ethanol exposure. For chronic intake studies, UChB rats exposed for 98 days to a free access to 10% ethanol and water were treated daily with ALDA-1 (12.5, 25 or 50 mg/kg, i.p.) for five days. The administration of ALDA-1 reduced by 72-90% (p < 0.001) the acquisition of ethanol consumption in naïve rats. At chronic ethanol consumption, ALDA-1 reduced ethanol intake by 61-82% (p < 0.001). ALDA-1 administration increased by 3- and 2.3-fold the activity of ALDH2 in brain and liver, respectively. ALDA-1 did not affect saccharin consumption, nor it modified the rate of ethanol elimination. The study shows that the activation of ALDH2 by ALDA-1 is effective for inhibiting both the acquisition and the maintenance of chronic ethanol intake by alcohol-preferring rats. Thus, the activation of brain ALDH2 may constitute a novel approach in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile.
| | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Lagos
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Braulio Rojas
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Borjkhani M, Bahrami F, Janahmadi M. Formation of Opioid-Induced Memory and Its Prevention: A Computational Study. Front Comput Neurosci 2018; 12:63. [PMID: 30116187 PMCID: PMC6082946 DOI: 10.3389/fncom.2018.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
There are several experimental studies which suggest opioids consumption forms pathological memories in different brain regions. For example it has been empirically demonstrated that the theta rhythm which appears during chronic opioid consumption is correlated with the addiction memory formation. In this paper, we present a minimal computational model that shows how opioids can change firing patterns of the neurons during acute and chronic opioid consumption and also during withdrawal periods. The model consists of a pre- and post-synaptic neuronal circuits and the astrocyte that monitors the synapses. The output circuitry consists of inhibitory interneurons and excitatory pyramidal neurons. Our simulation results demonstrate that acute opioid consumption induces synchronous patterns in the beta frequency range, while, chronic opioid consumption provokes theta frequency oscillations. This allows us to infer that the theta rhythm appeared during chronic treatment can be an indication of brain engagement in opioid-induced memory formation. Our results also suggest that changing the inputs of the interneurons and the inhibitory neuronal network is not an appropriate method for preventing the formation of pathological memory. However, the same results suggest that prevention of pathological memory formation is possible by manipulating the input of the stimulatory network and the excitatory connections in the neuronal network. They also show that during withdrawal periods, firing rate is reduced and random fluctuations are generated in the modeled neural network. The random fluctuations disappear and synchronized patterns emerge when the activities of the astrocytic transporters are decreased. These results suggest that formation of the synchronized activities can be correlated with the relapse. Our model also predicts that reduction in gliotransmitter release can eliminate the synchrony and thereby it can reduce the likelihood of the relapse occurrence.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Borjkhani M, Bahrami F, Janahmadi M. Assessing the Effects of Opioids on Pathological Memory by a Computational Model. Basic Clin Neurosci 2018; 9:275-288. [PMID: 30519386 PMCID: PMC6276537 DOI: 10.32598/bcn.9.4.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Introduction: Opioids hijack learning and memory formation mechanisms of brain and induce a pathological memory in the hippocampus. This effect is mainly mediated by modifications in glutamatergic system. Speaking more precisely, Opioids presence in a synapse inhibits blockage of N-Methyl-D-Aspartate Receptor (NMDAR) by Mg2+, enhances conductance of NMDAR and thus, induces false Long-Term Potentiation (LTP). Methods: Based on experimental observations of different researchers, we developed a mathematical model for a pyramidal neuron of the hippocampus to study this false LTP. The model contains a spine of the pyramidal neuron with NMDAR, α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid Receptors (AMPARs), and Voltage-Gated Calcium Channels (VGCCs). The model also describes Calmodulin-dependent protein Kinase II (CaMKII) and AMPAR phosphorylation processes which are assumed to be the indicators of LTP induction in the synapse. Results: Simulation results indicate that the effect of inhibition of blockage of NMDARs by Mg2+ on the false LTP is not as crucial as the effect of NMDAR’s conductance modification by opioids. We also observed that activation of VGCCs has a dominant role in inducing pathological LTP. Conclusion: Our results confirm that preventing this pathological LTP is possible by three different mechanisms: 1. By decreasing NMDAR’s conductance; and 2. By attenuating VGCC’s mediated current; and 3. By enhancing glutamate clearance rate from the synapse.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- Motor Control and Computational Neuroscience Laboratory, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Motor Control and Computational Neuroscience Laboratory, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Matikainen-Ankney BA, Kravitz AV. Persistent effects of obesity: a neuroplasticity hypothesis. Ann N Y Acad Sci 2018; 1428:221-239. [PMID: 29741270 DOI: 10.1111/nyas.13665] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
The obesity epidemic is a leading cause of health problems in the United States, increasing the risk of cardiovascular, endocrine, and psychiatric diseases. Although many people lose weight through changes in diet and lifestyle, keeping the weight off remains a challenge. Here, we discuss a hypothesis that seeks to explain why obesity is so persistent. There is a great degree of overlap in the circuits implicated in substance use disorder and obesity, and neural plasticity of these circuits in response to drugs of abuse is well documented. We hypothesize that obesity is also associated with neural plasticity in these circuits, and this may underlie persistent changes in behavior, energy balance, and body weight. Here, we discuss how obesity-associated reductions in motivation and physical activity may be rooted in neurophysiological alterations in these circuits. Such plasticity may alter how humans and animals use, expend, and store energy, even after weight loss.
Collapse
Affiliation(s)
- Bridget A Matikainen-Ankney
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
45
|
Polli FS, Kohlmeier KA. Prenatal nicotine exposure alters postsynaptic AMPA receptors and glutamate neurotransmission within the laterodorsal tegmentum (LDT) of juvenile mice. Neuropharmacology 2018; 137:71-85. [PMID: 29751228 DOI: 10.1016/j.neuropharm.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Despite dissemination of information regarding the harm on fetal development of smoking while pregnant, the number of pregnancies associated with nicotine exposure appears to have stagnated. Presence of nicotine during neural formulation is associated with a higher susceptibility of drug dependence, suggesting an altered development of neurons in circuits involved in saliency and motivation. The laterodorsal tegmental nucleus (LDT) plays a role in coding stimuli valence via afferents to mesolimbic nuclei. Accordingly, alterations in development of neural mechanisms in the LDT could be involved in vulnerability to drug dependency. Therefore, we examined the effect of prenatal nicotine exposure (PNE) on glutamatergic functioning of LDT neurons in mouse brain slices using whole-cell, patch clamp concurrent with fluorescence-based calcium imaging. PNE was associated with larger amplitudes of AMPA-induced currents, and greater AMPA-mediated rises in intracellular calcium. AMPA/NMDA ratios and the AMPA-current rectification index were lower and higher, respectively, consistent with changes in the functionality of AMPA receptors in the PNE, which was substantiated by a greater inhibition of evoked and spontaneous glutamatergic synaptic events by a selective inhibitor of GluA2-lacking AMPA receptors. Paired pulse ratios showed a decreased probability of glutamate release from presynaptic inputs, and fluorescent imaging indicated a decreased action potential-dependent calcium increase associated with PNE. When taken together, our data suggest that PNE alters LDT glutamatergic functioning, which could alter output to mesolimbic targets. Such an alteration could play a role in altered coding of relevancy of drug stimuli that could enhance risk for development of drug dependency.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
46
|
Abstract
According to a broad range of research, opioids consumption can lead to pathological memory formation. Experimental observations suggested that hippocampal glutamatergic synapses play an indispensable role in forming such a pathological memory. It has been suggested that memory formation at the synaptic level is developed through LTP induction. Here, we attempt to computationally indicate how morphine induces pathological LTP at hippocampal CA3-CA1 synapses. Then, based on simulations, we will suggest how one can prevent this type of pathological LTP. To this purpose, a detailed computational model is presented, which consists of one pyramidal neuron and one interneuron both from CA3, one CA1 pyramidal neuron, and one astrocyte. Based on experimental findings morphine affects the hippocampal neurons in three primary ways: 1) disinhibitory mechanism of interneurons in CA3, 2) enhancement of NMDARs current by μ Opioid Receptor (μOR) activation and 3) by attenuation of astrocytic glutamate reuptake ability. By utilizing these effects, simulations were implemented. Our results indicate that morphine can induce LTP by all aforementioned possible mechanisms. Based on our simulation results, attenuation of pathologic LTP achieved mainly by stimulation of astrocytic glutamate transporters, down-regulation of the astrocytic metabotropic glutamate receptors (mGlurs) or by applying NMDAR’s antagonist. Based on our observations, we suggest that astrocyte has a dominant role in forming addiction-related memories. This finding may help researchers in exploring drug actions for preventing relapse.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
- * E-mail:
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Abstract
Eating disorders and some forms of obesity are characterized by addictive-like, compulsive eating behavior which contains numerous similarities with compulsive drug use. Food intake is in part mediated by reward and reinforcement processes that can become dysregulated in these disorders. Additionally, impairments in inhibitory control regulation of reward-related responding can cause or further exacerbate binge and compulsive eating. Dysfunctions in two neurotransmitter systems in the mesocorticolimbic pathway, dopamine and glutamate, are thought to contribute to maladaptive eating behaviors. The trace amine associated receptor 1 (TAAR1) system is a promising therapeutic target for compulsive eating behavior due to the role of TAAR1 in synaptic transmission and in the modulation of dopaminergic and glutamatergic signaling. In support of this notion, the TAAR1 agonist RO5256390 was found to decrease the reinforcing effects of palatable food-cues and to reduce binge-like and compulsive-like eating of palatable food. Additionally, prolonged, intermittent access to palatable food was shown to downregulate TAAR1 in the prefrontal cortex, suggesting a potential role for TAAR1 signaling in inhibitory control processes. Research into the role of TAAR1 in addiction, including TAAR1’s ability to modulate psychostimulant reward and reinforcement, bolsters support for TAAR1 agonism as a pharmacological treatment for compulsive eating and other addictive behaviors. This review summarizes the evidence for TAAR1 agonism as a promising therapeutic for compulsive eating behavior as well as the hypothesized mechanism responsible for these effects.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States.,The Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, United States
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
48
|
Goins EC, Bajic D. Astrocytic hypertrophy in the rat ventral tegmental area following chronic morphine differs with age. JOURNAL OF NEUROLOGY AND NEUROREHABILITATION RESEARCH 2018; 3:14-21. [PMID: 29782623 PMCID: PMC5959292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ventral tegmental area (VTA) is the origin of the mesolimbic dopaminergic system known to play an integral role in mediating reward and development of drug addiction. Although the differences in neuronal plasticity of VTA at various ages remain to be understood, age is known to influence the effects of chronic opioids. In addition, adaptations associated with exposure to opioids within glial populations located in the VTA are poorly understood. The objective of the study was to determine if there are changes in astrocytic immunofluorescent labeling in the VTA following chronic morphine administration in a rat model at different ages: newborn at postnatal day (PD)7 and adult (estimated PD57). We hypothesized that increased immunohistochemical labeling of an astrocytic marker, glial fibrillary acidic protein (GFAP) in the VTA following chronic administration of morphine will not differ with age. Two groups of rats were analyzed: chronic morphine and saline control treatment groups. Either morphine (10 mg/kg) or equal volume of saline was given subcutaneously twice daily for 6½ days. On the 7th day of treatment, animals were anesthetized and perfused at one hour after the final drug injection. Coronal sections of the midbrain were processed for immunofluorescent identification of GFAP that was noted at both ages. We report an increase in both (1) GFAP labeling intensity, as well as (2) the percent area occupied by astrocytes that are immunoreactive for GFAP following chronic morphine when compared to saline treatment in the VTA only for the adults (n=6/group) but not infant rats at PD7 (n=5/group). Our findings suggest that adaptations in the mesolimbic dopaminergic system produced by repeated exposure to opioids may be associated with changes in glial function that differ with age.
Collapse
Affiliation(s)
- Emily C Goins
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
| |
Collapse
|
49
|
Yang W, Yang R, Luo J, He L, Liu J, Zhang J. Increased Absolute Glutamate Concentrations and Glutamate-to-Creatine Ratios in Patients With Methamphetamine Use Disorders. Front Psychiatry 2018; 9:368. [PMID: 30233420 PMCID: PMC6128240 DOI: 10.3389/fpsyt.2018.00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/24/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Previous studies have indicated that changes in the concentration of glutamate and related metabolites may mediate the progression of addiction in patients with methamphetamine (MA) use disorders. In the present study, we utilized magnetic resonance spectroscopy (MRS) to investigate absolute glutamate concentrations and metabolite ratios in patients with MA addiction. We further analyzed the association between glutamate concentration and various clinical indicators. Methods: The present study included 31 unmedicated patients with clinically diagnosed MA dependence (mean age: 30.5 ± 8.0 years) and 32 age-matched healthy controls (mean age: 32.9 ± 8.2 years). Patients were evaluated using the Barratt Impulsiveness Scale (BIS-11). We also collected general information regarding the duration and dosage of drug use. Point-resolved spectroscopy was used to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, and creatine), as well as the ratio of metabolites to total creatine, using LCModel software. We then compared differences in glutamate levels and psychometric scores between the two groups. Results: Glutamate-to-creatine ratios in the brainstem were significantly higher in the MA group than in the control group (t = 2.764, p = 0.008). Glutamate concentrations in the brainstem were also significantly higher in the MA group than in the control group (t = 2.390, p = 0.020). However, no significant differences in the concentrations or ratios of other metabolites were observed between the two groups (all p > 0.05). Glutamate concentration was positively correlated with the duration of drug use (r = 0.401, p = 0.035) and the total dose of regular addiction (duration of addiction × regular addiction dose; r = 0.207, p = .040), but not with BIS-11 scores. Conclusions: Our findings indicated that glutamate levels in the brainstem are significantly elevated in patients with MA use disorders, and that these levels are significantly associated with the duration and dose of drug use.Such findings suggest that glutamate concentration can be used as an objective biological marker for evaluating/monitoring disease status and treatment efficacy in patients with MA dependence.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei He
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Vocational College, Changsha, China
| |
Collapse
|
50
|
Kim R, Sepulveda-Orengo MT, Healey KL, Williams EA, Reissner KJ. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal. Neuropharmacology 2018; 128:1-10. [PMID: 28919080 PMCID: PMC5714670 DOI: 10.1016/j.neuropharm.2017.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kati L Healey
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Williams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|