1
|
Kars ME, Stein D, Stenson PD, Cooper DN, Chung WK, Gruber PJ, Seidman CE, Shen Y, Tristani-Firouzi M, Gelb BD, Itan Y. Deciphering the digenic architecture of congenital heart disease using trio exome sequencing data. Am J Hum Genet 2025; 112:583-598. [PMID: 39983722 PMCID: PMC11947165 DOI: 10.1016/j.ajhg.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly and a leading cause of infant morbidity and mortality. Despite extensive exploration of the monogenic causes of CHD over the last decades, ∼55% of cases still lack a molecular diagnosis. Investigating digenic interactions, the simplest form of oligogenic interactions, using high-throughput sequencing data can elucidate additional genetic factors contributing to the disease. Here, we conducted a comprehensive analysis of digenic interactions in CHD by utilizing a large CHD trio exome sequencing cohort, comprising 3,910 CHD and 3,644 control trios. We extracted pairs of presumably deleterious rare variants observed in CHD-affected and unaffected children but not in a single parent. Burden testing of gene pairs derived from these variant pairs revealed 29 nominally significant gene pairs. These gene pairs showed a significant enrichment for known CHD genes (p < 1.0 × 10-4) and exhibited a shorter average biological distance to known CHD genes than expected by chance (p = 3.0 × 10-4). Utilizing three complementary biological relatedness approaches including network analyses, biological distance calculations, and candidate gene prioritization methods, we prioritized 10 final gene pairs that are likely to underlie CHD. Analysis of bulk RNA-sequencing data showed that these genes are highly expressed in the developing embryonic heart (p < 1 × 10-4). In conclusion, our findings suggest the potential role of digenic interactions in CHD pathogenesis and provide insights into unresolved molecular diagnoses. We suggest that the application of the digenic approach to additional disease cohorts will significantly enhance genetic discovery rates.
Collapse
Affiliation(s)
- Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Stein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Gruber
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA 02115, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Martin Tristani-Firouzi
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Niu W, Yu S, Li X, Wang Z, Chen R, Michalski C, Jahangiri A, Zohdy Y, Chern JJ, Whitworth TJ, Wang J, Xu J, Zhou Y, Qin Z, Li B, Gambello MJ, Peng J, Wen Z. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617121. [PMID: 39416123 PMCID: PMC11482767 DOI: 10.1101/2024.10.07.617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is caused by heterozygous mutations in either the TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes affect the longitudinal trajectory of human brain development remains largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 variants, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analyses of TSC organoids, we found that TSC2 pathogenic variants dysregulate neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Intriguingly, single cell transcriptomic analyses on TSC organoids revealed that TSC2 pathogenic variants disrupt the neuron/reactive astrocyte crosstalk within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomic analyses of synaptosomes, demonstrated that the TSC2 variants precipitate perturbations in synaptic transmission, neuronal network activity, mitochondrial translational integrity, and neurofilament formation. Notably, similar perturbations were observed in surgically resected cortical specimens from TSC patients. Collectively, our study illustrates that disease-associated TSC2 variants disrupt the neurodevelopmental trajectories through perturbations of gene regulatory networks during early cortical development, leading to mitochondrial dysfunction, aberrant neurofilament formation, impaired synaptic formation and neuronal network activity.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Xiangru Li
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhen Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Youssef Zohdy
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Joshua J Chern
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322, USA
| | - Jianjun Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav Immun Health 2024; 40:100839. [PMID: 39263315 PMCID: PMC11387593 DOI: 10.1016/j.bbih.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, sociability, and repetitive/stereotyped behavior. The etiology of autism is diverse, with genetic susceptibility playing an important role alongside environmental insults and conditions. Human and preclinical studies have shown that ASD is commonly accompanied by inflammation, and inhibition of the inflammatory response can ameliorate, or prevent the phenotype in preclinical studies. The kynurenine pathway, responsible for tryptophan metabolism, is upregulated by inflammation. Hence, this metabolic route has drawn the attention of investigators across different disciplines such as cancer, immunology, and neuroscience. Over the past decade, studies have identified evidence that the kynurenine pathway is also altered in autism spectrum disorders. In this mini review, we will explore the current status quo of the link between the kynurenine pathway and ASD, shedding light on the compelling but still preliminary evidence of this relationship.
Collapse
|
5
|
Lyu TJ, Ma J, Zhang XY, Xie GG, Liu C, Du J, Xu YN, Yang DC, Cen C, Wang MY, Lyu NY, Wang Y, Zhang HQ. Deficiency of FRMD5 results in neurodevelopmental dysfunction and autistic-like behavior in mice. Mol Psychiatry 2024; 29:1253-1264. [PMID: 38228891 DOI: 10.1038/s41380-024-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
The pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6]. In this study, we demonstrate that deficiency of the scaffolding protein FRMD5 leads to neurodevelopmental dysfunction and ASD-like behavior in mice. FRMD5 deficiency results in morphological abnormalities in neurons and synaptic dysfunction in mice. Frmd5-deficient mice display learning and memory dysfunction, impaired social function, and increased repetitive stereotyped behavior. Mechanistically, tandem mass tag (TMT)-labeled quantitative proteomics revealed that FRMD5 deletion affects the distribution of synaptic proteins involved in the pathological process of ASD. Collectively, our findings delineate the critical role of FRMD5 in neurodevelopment and ASD pathophysiology, suggesting potential therapeutic implications for the treatment of ASD.
Collapse
Affiliation(s)
- Tian-Jie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Ji Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Xi-Yin Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Guo-Guang Xie
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Cheng Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Yi-Nuo Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - De-Cao Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Meng-Yuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Na-Yun Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
| | - Hong-Quan Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
6
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. RESEARCH SQUARE 2024:rs.3.rs-3684653. [PMID: 38260618 PMCID: PMC10802704 DOI: 10.21203/rs.3.rs-3684653/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 255 genes that have been reported to play fundamental roles in fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The set of genes meeting these criteria provides potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G. Dorsey
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
| | - Evelina Mocci
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Malcolm V. Lane
- Translational Toxicology/Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bruce K. Krueger
- Departments of Physiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
8
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
9
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Yu J, Woo Y, Kim H, An S, Park SK, Jang SK. FMRP Enhances the Translation of 4EBP2 mRNA during Neuronal Differentiation. Int J Mol Sci 2023; 24:16319. [PMID: 38003508 PMCID: PMC10671300 DOI: 10.3390/ijms242216319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.
Collapse
Affiliation(s)
| | | | | | | | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| |
Collapse
|
11
|
Vilela J, Martiniano H, Marques AR, Santos JX, Asif M, Rasga C, Oliveira G, Vicente AM. Identification of Neurotransmission and Synaptic Biological Processes Disrupted in Autism Spectrum Disorder Using Interaction Networks and Community Detection Analysis. Biomedicines 2023; 11:2971. [PMID: 38001974 PMCID: PMC10668950 DOI: 10.3390/biomedicines11112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by communication deficits and repetitive behavioral patterns. Hundreds of candidate genes have been implicated in ASD, including neurotransmission and synaptic (NS) genes; however, the genetic architecture of this disease is far from clear. In this study, we seek to clarify the biological processes affected by NS gene variants identified in individuals with ASD and the global networks that link those processes together. For a curated list of 1216 NS candidate genes, identified in multiple databases and the literature, we searched for ultra-rare (UR) loss-of-function (LoF) variants in the whole-exome sequencing dataset from the Autism Sequencing Consortium (N = 3938 cases). Filtering for population frequency was carried out using gnomAD (N = 60,146 controls). NS genes with UR LoF variants were used to construct a network of protein-protein interactions, and the network's biological communities were identified by applying the Leiden algorithm. We further explored the expression enrichment of network genes in specific brain regions. We identified 356 variants in 208 genes, with a preponderance of UR LoF variants in the PDE11A and SYTL3 genes. Expression enrichment analysis highlighted several subcortical structures, particularly the basal ganglia. The interaction network defined seven network communities, clustering synaptic and neurotransmitter pathways with several ubiquitous processes that occur in multiple organs and systems. This approach also uncovered biological pathways that are not usually associated with ASD, such as brain cytochromes P450 and brain mitochondrial metabolism. Overall, the community analysis suggests that ASD involves the disruption of synaptic and neurotransmitter pathways but also ubiquitous, but less frequently implicated, biological processes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
12
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
13
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
14
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
15
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Kainer D, Templeton AR, Prates ET, Jacboson D, Allan ER, Climer S, Garvin MR. Structural variants identified using non-Mendelian inheritance patterns advance the mechanistic understanding of autism spectrum disorder. HGG ADVANCES 2023; 4:100150. [PMID: 36340933 PMCID: PMC9634371 DOI: 10.1016/j.xhgg.2022.100150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The heritability of autism spectrum disorder (ASD), based on 680,000 families and five countries, is estimated to be nearly 80%, yet heritability reported from SNP-based studies are consistently lower, and few significant loci have been identified with genome-wide association studies. This gap in genomic information may reside in rare variants, interaction among variants (epistasis), or cryptic structural variation (SV) and may provide mechanisms that underlie ASD. Here we use a method to identify potential SVs based on non-Mendelian inheritance patterns in pedigrees using parent-child genotypes from ASD families and demonstrate that they are enriched in ASD-risk genes. Most are in non-coding genic space and are over-represented in expression quantitative trait loci, suggesting that they affect gene regulation, which we confirm with their overlap of differentially expressed genes in postmortem brain tissue of ASD individuals. We then identify an SV in the GRIK2 gene that alters RNA splicing and a regulatory region of the ACMSD gene in the kynurenine pathway as significantly associated with a non-verbal ASD phenotype, supporting our hypothesis that these currently excluded loci can provide a clearer mechanistic understanding of ASD. Finally, we use an explainable artificial intelligence approach to define subgroups demonstrating their use in the context of precision medicine.
Collapse
Affiliation(s)
- David Kainer
- Computational Systems Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alan R. Templeton
- Department of Biology, Washington University – St Louis, St. Louis, MO, USA
| | - Erica T. Prates
- Computational Systems Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel Jacboson
- Computational Systems Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Sharlee Climer
- Department of Computer Science, University of Missouri, St. Louis, MO, USA
| | - Michael R. Garvin
- Computational Systems Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Williwaw Biosciences, LLC, Clarkston, MI, USA
| |
Collapse
|
17
|
Brandenburg C, Griswold AJ, Van Booven DJ, Kilander MBC, Frei JA, Nestor MW, Dykxhoorn DM, Pericak-Vance MA, Blatt GJ. Transcriptomic analysis of isolated and pooled human postmortem cerebellar Purkinje cells in autism spectrum disorders. Front Genet 2022; 13:944837. [PMID: 36437953 PMCID: PMC9683032 DOI: 10.3389/fgene.2022.944837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2023] Open
Abstract
At present, the neuronal mechanisms underlying the diagnosis of autism spectrum disorder (ASD) have not been established. However, studies from human postmortem ASD brains have consistently revealed disruptions in cerebellar circuitry, specifically reductions in Purkinje cell (PC) number and size. Alterations in cerebellar circuitry would have important implications for information processing within the cerebellum and affect a wide range of human motor and non-motor behaviors. Laser capture microdissection was performed to obtain pure PC populations from a cohort of postmortem control and ASD cases and transcriptional profiles were compared. The 427 differentially expressed genes were enriched for gene ontology biological processes related to developmental organization/connectivity, extracellular matrix organization, calcium ion response, immune function and PC signaling alterations. Given the complexity of PCs and their far-ranging roles in response to sensory stimuli and motor function regulation, understanding transcriptional differences in this subset of cerebellar cells in ASD may inform on convergent pathways that impact neuronal function.
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Hussman Institute for Autism, Baltimore, MD, United States
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | | | | | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | - Gene J. Blatt
- Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
18
|
Chen WX, Liu B, Zhou L, Xiong X, Fu J, Huang ZF, Tan T, Tang M, Wang J, Tang YP. De novo mutations within metabolism networks of amino acid/protein/energy in Chinese autistic children with intellectual disability. Hum Genomics 2022; 16:52. [PMID: 36320054 PMCID: PMC9623983 DOI: 10.1186/s40246-022-00427-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is often accompanied by intellectual disability (ID). Despite extensive studies, however, the genetic basis for this comorbidity is still not clear. In this study, we tried to develop an analyzing pipeline for de novo mutations and possible pathways related to ID phenotype in ASD. Whole-exome sequencing (WES) was performed to screen de novo mutations and candidate genes in 79 ASD children together with their parents (trios). The de novo altering genes and relative pathways which were associated with ID phenotype were analyzed. The connection nodes (genes) of above pathways were selected, and the diagnostic value of these selected genes for ID phenotype in the study population was also evaluated. RESULTS We identified 89 de novo mutant genes, of which 34 genes were previously reported to be associated with ASD, including double hits in the EGF repeats of NOTCH1 gene (p.V999M and p.S1027L). Interestingly, of these 34 genes, 22 may directly affect intelligence quotient (IQ). Further analyses revealed that these IQ-related genes were enriched in protein synthesis, energy metabolism, and amino acid metabolism, and at least 9 genes (CACNA1A, ALG9, PALM2, MGAT4A, PCK2, PLEKHA1, PSME3, ADI1, and TLE3) were involved in all these three pathways. Seven patients who harbored these gene mutations showed a high prevalence of a low IQ score (< 70), a non-verbal language, and an early diagnostic age (< 4 years). Furthermore, our panel of these 9 genes reached a 10.2% diagnostic rate (5/49) in early diagnostic patients with a low IQ score and also reached a 10% diagnostic yield in those with both a low IQ score and non-verbal language (4/40). CONCLUSION We found some new genetic disposition for ASD accompanied with intellectual disability in this study. Our results may be helpful for etiologic research and early diagnoses of intellectual disability in ASD. Larger population studies and further mechanism studies are warranted.
Collapse
Affiliation(s)
- Wen-Xiong Chen
- grid.410737.60000 0000 8653 1072The Assessment and Intervention Center for Autistic Children, Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Bin Liu
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China ,grid.258164.c0000 0004 1790 3548Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, 518102 Guangdong China
| | - Lijie Zhou
- grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiaoli Xiong
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Jie Fu
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Zhi-Fang Huang
- grid.410737.60000 0000 8653 1072The Assessment and Intervention Center for Autistic Children, Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Ting Tan
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
| | - Mingxi Tang
- grid.488387.8Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jun Wang
- grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ya-Ping Tang
- grid.410737.60000 0000 8653 1072Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China ,grid.412719.8Department of Pediatric Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| |
Collapse
|
19
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
20
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
21
|
Moreau MM, Pietropaolo S, Ezan J, Robert BJA, Miraux S, Maître M, Cho Y, Crusio WE, Montcouquiol M, Sans N. Scribble Controls Social Motivation Behavior through the Regulation of the ERK/Mnk1 Pathway. Cells 2022; 11:cells11101601. [PMID: 35626639 PMCID: PMC9139383 DOI: 10.3390/cells11101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Social behavior is a basic domain affected by several neurodevelopmental disorders, including ASD and a heterogeneous set of neuropsychiatric disorders. The SCRIB gene that codes for the polarity protein SCRIBBLE has been identified as a risk gene for spina bifida, the most common type of neural tube defect, found at high frequencies in autistic patients, as well as other congenital anomalies. The deletions and mutations of the 8q24.3 region encompassing SCRIB are also associated with multisyndromic and rare disorders. Nonetheless, the potential link between SCRIB and relevant social phenotypes has not been fully investigated. Hence, we show that Scribcrc/+ mice, carrying a mutated version of Scrib, displayed reduced social motivation behavior and social habituation, while other behavioral domains were unaltered. Social deficits were associated with the upregulation of ERK phosphorylation, together with increased c-Fos activity. Importantly, the social alterations were rescued by both direct and indirect pERK inhibition. These results support a link between polarity genes, social behaviors and hippocampal functionality and suggest a role for SCRIB in the etiopathology of neurodevelopmental disorders. Furthermore, our data demonstrate the crucial role of the MAPK/ERK signaling pathway in underlying social motivation behavior, thus supporting its relevance as a therapeutic target.
Collapse
Affiliation(s)
- Maïté M. Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Jérôme Ezan
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Benjamin J. A. Robert
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Sylvain Miraux
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques UMR5536, 33077 Bordeaux, France;
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Yoon Cho
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Wim E. Crusio
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Mireille Montcouquiol
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| |
Collapse
|
22
|
KIAA0319 influences cilia length, cell migration and mechanical cell-substrate interaction. Sci Rep 2022; 12:722. [PMID: 35031635 PMCID: PMC8760330 DOI: 10.1038/s41598-021-04539-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.
Collapse
|
23
|
Tran V, Goyette MA, Martínez-García M, Jiménez de Domingo A, Fernández-Mayoralas DM, Fernández-Perrone AL, Tirado P, Calleja-Pérez B, Álvarez S, Côté JF, Fernández-Jaén A. Biallelic ELMO3 mutations and loss of function for DOCK-mediated RAC1 activation result in intellectual disability. Small GTPases 2022; 13:48-55. [PMID: 33660564 PMCID: PMC9707537 DOI: 10.1080/21541248.2021.1888557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The engulfment and cell motility 3 (ELMO3) protein belongs to the ELMO-family of proteins. ELMO proteins form a tight complex with the DOCK1-5 guanine nucleotide exchange factors that regulate RAC1 spatiotemporal activation and signalling. DOCK proteins and RAC1 are known to have fundamental roles in central nervous system development. Here, we searched for homozygous or compound heterozygous mutations in the ELMO3 gene in 390 whole exomes sequenced in trio in individuals with neurodevelopmental disorders compatible with a genetic origin. We found a compound heterozygous mutation in ELMO3 (c.1153A>T, p.Ser385Cys and c.1009 G > A, p.Val337Ile) in a 5 year old male child with autism spectrum disorder (ASD) and developmental delay. These mutations did not interfere with the formation of an ELMO3/DOCK1 complex, but markedly impaired the ability of the complex to promote RAC1-GTP-loading. Consequently, cells expressing DOCK1 and either of the ELMO3 mutants displayed impaired migration and invasion. Collectively, our results suggest that biallelic loss-of-function mutations in ELMO3 may cause a developmental delay and provide new insight into the role of ELMO3 in neurodevelopmental as well as the pathological consequences of ELMO3 mutations.
Collapse
Affiliation(s)
- Viviane Tran
- Laboratory of Cytoskeletal Organization and Cell Migration, Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada,Department of Biochemistry and Molecular Medicine, Université De Montréal, Montréal, QC, Canada
| | - Marie-Anne Goyette
- Laboratory of Cytoskeletal Organization and Cell Migration, Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada,Molecular Biology Programs, Université De Montréal, Montréal, QC, Canada
| | | | | | | | | | - Pilar Tirado
- Department of Pediatric Neurology. Hospital Universitario La Paz. Madrid. Spain
| | | | - Sara Álvarez
- Department of Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Jean-François Côté
- Laboratory of Cytoskeletal Organization and Cell Migration, Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada,Department of Biochemistry and Molecular Medicine, Université De Montréal, Montréal, QC, Canada,Molecular Biology Programs, Université De Montréal, Montréal, QC, Canada,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology. ónsalud. Madrid. Spain,Department of Pediatric Neurology, Medicine School. Universidad Europea De, Madrid, Spain,CONTACT Alberto Fernández-Jaén Cytoskeletal Organization and Cell Migration Laboratory Montreal Clinical Research Institute (IRCM)110 Avenue Des, Pins, Ouest, Canada
| |
Collapse
|
24
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol Psychiatry 2021; 26:7550-7559. [PMID: 34262135 DOI: 10.1038/s41380-021-01199-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.
Collapse
|
26
|
Dhanjal DS, Bhardwaj S, Chopra C, Singh R, Patocka J, Plucar B, Nepovimova E, Valis M, Kuca K. Millennium Nutrient N,N-Dimethylglycine (DMG) and its Effectiveness in Autism Spectrum Disorders. Curr Med Chem 2021; 29:2632-2651. [PMID: 34823458 DOI: 10.2174/0929867328666211125091811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Autism is a neurodevelopmental disorder belonging to the autism spectrum disorder (ASD). In ASDs, the individuals show substantial impairments in social communication, repetitive behaviours, and sensory behaviours deficits in the early stages of their life. Globally, the prevalence of autism is estimated to be less than 1%, especially in high-income countries. In recent decades, there has been a drastic increase in the incidence of ASD, which has put ASD into the category of epidemics. Presently, two US Food and Drug Administration-approved drugs, aripiprazole and risperidone are used to treat symptoms of agitation and irritability in autistic children. However, to date, no medication has been found to treat the core symptoms of ASD. The adverse side effects of conventional medicine and limited treatment options have led families and parents of autistic children to turn to complementary and alternative medicine (CAM) treatments, which are perceived as relatively safe compared to conventional medicine. Recently, N,N-dimethylglycine (DMG), a dietary supplement, has emerged as a useful supplement to improve the mental and physical state of children with ASD. The current review discusses ASD, the prevalence of ASD, CAM approach and efficacy of CAM treatment in children with ASD. Moreover, it highlights the chemistry, pharmacological effect, and clinical studies of DMG, highlighting its potential for improving the lifestyle of children with ASD.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Sonali Bhardwaj
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Chirag Chopra
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Reena Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Jiri Patocka
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Czech Republic
| | - Bohumir Plucar
- Reflex Therapy Laboratory, Udolni 393/18, 602 00 Brno. Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove. Czech Republic
| | - Martin Valis
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| | - Kamil Kuca
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| |
Collapse
|
27
|
Nassir N, Bankapur A, Samara B, Ali A, Ahmed A, Inuwa IM, Zarrei M, Safizadeh Shabestari SA, AlBanna A, Howe JL, Berdiev BK, Scherer SW, Woodbury-Smith M, Uddin M. Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells. Hum Genomics 2021; 15:68. [PMID: 34802461 PMCID: PMC8607722 DOI: 10.1186/s40246-021-00368-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of 'brain to behaviour' pathogenic mechanisms, remains largely unknown. METHODS We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). RESULTS We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10-11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10-11, oligodendrocyte, p < 1.31 × 10-09). CONCLUSION Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.
Collapse
Affiliation(s)
- Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Asma Bankapur
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Bisan Samara
- Biomedical Engineering Department, McGill University, Montréal, QC, Canada
| | - Abdulrahman Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Awab Ahmed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ibrahim M Inuwa
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mehdi Zarrei
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Ammar AlBanna
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,The Mental Health Center of Excellence, Al Jalila Children's Speciality Hospital, Dubai, UAE
| | - Jennifer L Howe
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Stephen W Scherer
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE. .,Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada.
| |
Collapse
|
28
|
Barón-Mendoza I, Maqueda-Martínez E, Martínez-Marcial M, De la Fuente-Granada M, Gómez-Chavarin M, González-Arenas A. Changes in the Number and Morphology of Dendritic Spines in the Hippocampus and Prefrontal Cortex of the C58/J Mouse Model of Autism. Front Cell Neurosci 2021; 15:726501. [PMID: 34616277 PMCID: PMC8488392 DOI: 10.3389/fncel.2021.726501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) has a broad range of neurobiological characteristics, including alterations in dendritic spines, where approximately 90% of excitatory synapses occur. Therefore, changes in their number or morphology would be related to atypical brain communication. The C58/J inbred mouse strain displays low sociability, impaired communication, and stereotyped behavior; hence, it is considered among the animal models suitable for the study of idiopathic autism. Thus, this study aimed to evaluate the dendritic spine differences in the hippocampus and the prefrontal cortex of C58/J mice. We found changes in the number of spines and morphology in a brain region-dependent manner: a subtle decrease in spine density in the prefrontal cortex, higher frequency of immature phenotype spines characterized by filopodia-like length or small morphology, and a lower number of mature phenotype spines with mushroom-like or wide heads in the hippocampus. Moreover, an in silico analysis showed single nucleotide polymorphisms (SNPs) at genes collectively involved in regulating structural plasticity with a likely association with ASD, including MAP1A (Microtubule-Associated Protein 1A), GRM7 (Metabotropic Glutamate Receptor, 7), ANKRD11 (Ankyrin Repeat Domain 11), and SLC6A4 (Solute Carrier Family 6, member 4), which might support the relationship between the C58/J strain genome, an autistic-like behavior, and the observed anomalies in the dendritic spines.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emely Maqueda-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Martínez-Marcial
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol De la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita Gómez-Chavarin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
Shiota Y, Matsudaira I, Takeuchi H, Ono C, Tomita H, Kawashima R, Taki Y. The influence of NRXN1 on systemizing and the brain structure in healthy adults. Brain Imaging Behav 2021; 16:692-701. [PMID: 34529206 DOI: 10.1007/s11682-021-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Certain behavioral characteristics of autism spectrum disorder can be found in otherwise healthy people. Individuals with difficulties in social adaptation may have subclinical autistic traits; however, effective biomarkers of these traits have not yet been established. There is a dire need for objective indices of these traits that combine behavior, brain images, and genetic information. In this study, we examined the association among a single nucleotide polymorphism of NRXN1 (rs858932; C/G), autistic traits, and brain structure in 311 healthy adults. We found that carriers of minor alleles (carriers of the G-allele) had significantly higher systemizing scores than major-allele (C-allele) homozygotes. Furthermore, the regional white matter volume in the right anterior limb of the internal capsule was significantly greater in carriers of the G-allele than in C-allele homozygotes. To the best of our knowledge, this is the first report of NRXN1 rs858932 being involved in systemizing and the brain structure of healthy adults. Our findings provide insight into the effects of genetics on autistic traits and their respective neural substrates.
Collapse
Affiliation(s)
- Yuka Shiota
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Traetta ME, Uccelli NA, Zárate SC, Gómez Cuautle D, Ramos AJ, Reinés A. Long-Lasting Changes in Glial Cells Isolated From Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder. Front Pharmacol 2021; 12:707859. [PMID: 34421599 PMCID: PMC8374432 DOI: 10.3389/fphar.2021.707859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Cristina Zárate
- Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Gómez Cuautle
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Bakoev S, Getmantseva L, Kostyunina O, Bakoev N, Prytkov Y, Usatov A, Tatarinova TV. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia. PeerJ 2021; 9:e11595. [PMID: 34249494 PMCID: PMC8256806 DOI: 10.7717/peerj.11595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Breeding practices adopted at different farms are aimed at maximizing the profitability of pig farming. In this work, we have analyzed the genetic diversity of Large White pigs in Russia. We compared genomes of historic and modern Large White Russian breeds using 271 pig samples. We have identified 120 candidate regions associated with the differentiation of modern and historic pigs and analyzed genomic differences between the modern farms. The identified genes were associated with height, fitness, conformation, reproductive performance, and meat quality.
Collapse
Affiliation(s)
- Siroj Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia.,Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
| | - Lyubov Getmantseva
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Olga Kostyunina
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Nekruz Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Yuri Prytkov
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | | | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, United States of America.,Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia.,Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute for General Genetics, Moscow, Russia
| |
Collapse
|
32
|
Frei JA, Niescier RF, Bridi MS, Durens M, Nestor JE, Kilander MBC, Yuan X, Dykxhoorn DM, Nestor MW, Huang S, Blatt GJ, Lin YC. Regulation of Neural Circuit Development by Cadherin-11 Provides Implications for Autism. eNeuro 2021; 8:ENEURO.0066-21.2021. [PMID: 34135003 PMCID: PMC8266214 DOI: 10.1523/eneuro.0066-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurologic condition characterized by alterations in social interaction and communication, and restricted and/or repetitive behaviors. The classical Type II cadherins cadherin-8 (Cdh8, CDH8) and cadherin-11 (Cdh11, CDH11) have been implicated as autism risk gene candidates. To explore the role of cadherins in the etiology of autism, we investigated their expression patterns during mouse brain development and in autism-specific human tissue. In mice, expression of cadherin-8 and cadherin-11 was developmentally regulated and enriched in the cortex, hippocampus, and thalamus/striatum during the peak of dendrite formation and synaptogenesis. Both cadherins were expressed in synaptic compartments but only cadherin-8 associated with the excitatory synaptic marker neuroligin-1. Induced pluripotent stem cell (iPSC)-derived cortical neural precursor cells (NPCs) and cortical organoids generated from individuals with autism showed upregulated CDH8 expression levels, but downregulated CDH11. We used Cdh11 knock-out (KO) mice of both sexes to analyze the function of cadherin-11, which could help explain phenotypes observed in autism. Cdh11-/- hippocampal neurons exhibited increased dendritic complexity along with altered neuronal and synaptic activity. Similar to the expression profiles in human tissue, levels of cadherin-8 were significantly elevated in Cdh11 KO brains. Additionally, excitatory synaptic markers neuroligin-1 and postsynaptic density (PSD)-95 were both increased. Together, these results strongly suggest that cadherin-11 is involved in regulating the development of neuronal circuitry and that alterations in the expression levels of cadherin-11 may contribute to the etiology of autism.
Collapse
Affiliation(s)
- Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Madel Durens
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Jonathan E Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | | | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Michael W Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| |
Collapse
|
33
|
Steubler V, Erdinger S, Back MK, Ludewig S, Fässler D, Richter M, Han K, Slomianka L, Amrein I, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J 2021; 40:e107471. [PMID: 34008862 PMCID: PMC8204861 DOI: 10.15252/embj.2020107471] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.
Collapse
Affiliation(s)
- Vicky Steubler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Erdinger
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Michaela K Back
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Susann Ludewig
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Dominique Fässler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Max Richter
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Kang Han
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Lutz Slomianka
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Irmgard Amrein
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jakob von Engelhardt
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - David P Wolfer
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Institute of Human Movement SciencesETH ZurichZurichSwitzerland
| | - Martin Korte
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Ulrike C Müller
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
34
|
Frei JA, Brandenburg CJ, Nestor JE, Hodzic DM, Plachez C, McNeill H, Dykxhoorn DM, Nestor MW, Blatt GJ, Lin YC. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open 2021; 10:bio056457. [PMID: 34100899 PMCID: PMC8214424 DOI: 10.1242/bio.056457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule layer, as well as inhibitory neurons in the molecular layer. Furthermore, subcellular characterization revealed FAT1 localization in neurites and soma of granule neurons, as well as being present in the synaptic plasma membrane and postsynaptic densities. Interestingly, FAT1 expression was decreased in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) from individuals with ASD. These findings suggest a novel role for FAT1 in postnatal development and may be particularly important for cerebellum function. As the cerebellum is one of the vulnerable brain regions in ASD, our study warrants further investigation of FAT1 in the disease etiology.
Collapse
Affiliation(s)
- Jeannine A. Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Cheryl J. Brandenburg
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Graduate Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan E. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Didier M. Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Celine Plachez
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Derek M. Dykxhoorn
- Hussman Institute for Human Genomics and John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Michael W. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Gene J. Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| |
Collapse
|
35
|
Lee J, Avramets D, Jeon B, Choo H. Modulation of Serotonin Receptors in Neurodevelopmental Disorders: Focus on 5-HT7 Receptor. Molecules 2021; 26:molecules26113348. [PMID: 34199418 PMCID: PMC8199608 DOI: 10.3390/molecules26113348] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Since neurodevelopmental disorders (NDDs) influence more than 3% of children worldwide, there has been intense investigation to understand the etiology of disorders and develop treatments. Although there are drugs such as aripiprazole, risperidone, and lurasidone, these medications are not cures for the disorders and can only help people feel better or alleviate their symptoms. Thus, it is required to discover therapeutic targets in order to find the ultimate treatments of neurodevelopmental disorders. It is suggested that abnormal neuronal morphology in the neurodevelopment process is a main cause of NDDs, in which the serotonergic system is emerging as playing a crucial role. From this point of view, we noticed the correlation between serotonin receptor subtype 7 (5-HT7R) and NDDs including autism spectrum disorder (ASD), fragile X syndrome (FXS), and Rett syndrome (RTT). 5-HT7R modulators improved altered behaviors in animal models and also affected neuronal morphology via the 5-HT7R/G12 signaling pathway. Through the investigation of recent studies, it is suggested that 5-HT7R could be a potential therapeutic target for the treatment of NDDs.
Collapse
Affiliation(s)
- Jieon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Diana Avramets
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Correspondence: (B.J.); (H.C.); Tel.: +82-2-958-5191 (B.J.); +82-2-958-5157 (H.C.)
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Korea; (J.L.); (D.A.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (B.J.); (H.C.); Tel.: +82-2-958-5191 (B.J.); +82-2-958-5157 (H.C.)
| |
Collapse
|
36
|
Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 2021; 22:407-422. [PMID: 34050339 DOI: 10.1038/s41583-021-00467-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Noam E Ziv
- Technion Faculty of Medicine and Network Biology Research Labs, Technion City, Haifa, Israel
| | - Hitoshi Okazaki
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan.,Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Ma H, Su L, Xia W, Wang W, Tan G, Jiao J. MacroH2A1.2 deficiency leads to neural stem cell differentiation defects and autism-like behaviors. EMBO Rep 2021; 22:e52150. [PMID: 34046991 DOI: 10.15252/embr.202052150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of the nervous system requires precise regulation. Any disturbance in the regulation process can lead to neurological developmental diseases, such as autism and schizophrenia. Histone variants are important components of epigenetic regulation. The function and mechanisms of the macroH2A (mH2A) histone variant during brain development are unknown. Here, we show that deletion of the mH2A isoform mH2A1.2 interferes with neural stem cell differentiation in mice. Deletion of mH2A1.2 affects neurodevelopment, enhances neural progenitor cell (NPC) proliferation, and reduces NPC differentiation in the developing mouse brain. mH2A1.2-deficient mice exhibit autism-like behaviors, such as deficits in social behavior and exploratory abilities. We identify NKX2.2 as an important downstream effector gene and show that NKX2.2 expression is reduced after mH2A1.2 deletion and that overexpression of NKX2.2 rescues neuronal abnormalities caused by mH2A1.2 loss. Our study reveals that mH2A1.2 reduces the proliferation of neural progenitors and enhances neuronal differentiation during embryonic neurogenesis and that these effects are at least in part mediated by NKX2.2. These findings provide a basis for studying the relationship between mH2A1.2 and neurological disorders.
Collapse
Affiliation(s)
- Hongyan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Xia
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Guohe Tan
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Regenerative Medicine, School of Basic Medical Sciences and Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
38
|
Curtis D. Investigation of Association of Rare, Functional Genetic Variants With Heavy Drinking and Problem Drinking in Exome Sequenced UK Biobank Participants. Alcohol Alcohol 2021; 57:421-428. [PMID: 33893496 PMCID: PMC9270990 DOI: 10.1093/alcalc/agab031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Aims The study aimed to identify specific genes and functional genetic variants affecting susceptibility to two alcohol-related phenotypes: heavy drinking and problem drinking. Methods Phenotypic and exome sequence data were downloaded from the UK Biobank. Reported drinks in the last 24 hours were used to define heavy drinking, while responses to a mental health questionnaire defined problem drinking. Gene-wise weighted burden analysis was applied, with genetic variants which were rarer and/or had a more severe functional effect being weighted more highly. Additionally, previously reported variants of interest were analysed inidividually. Results Of exome sequenced subjects, for heavy drinking, there were 8166 cases and 84,461 controls, while for problem drinking, there were 7811 cases and 59,606 controls. No gene was formally significant after correction for multiple testing, but three genes possibly related to autism were significant at P < 0.001, FOXP1, ARHGAP33 and CDH9, along with VGF which may also be of psychiatric interest. Well established associations with rs1229984 in ADH1B and rs671 in ALDH2 were confirmed, but previously reported variants in ALDH1B1 and GRM3 were not associated with either phenotype. Conclusions This large study fails to conclusively implicate any novel genes or variants. It is possible that more definitive results will be obtained when sequence data for the remaining UK Biobank participants become available and/or if data can be obtained for a more extreme phenotype such as alcohol dependence disorder. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK.,Centre for Psychiatry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
39
|
Traetta ME, Codagnone MG, Uccelli NA, Ramos AJ, Zárate S, Reinés A. Hippocampal neurons isolated from rats subjected to the valproic acid model mimic in vivo synaptic pattern: evidence of neuronal priming during early development in autism spectrum disorders. Mol Autism 2021; 12:23. [PMID: 33676530 PMCID: PMC7937248 DOI: 10.1186/s13229-021-00428-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are synaptopathies characterized by area-specific synaptic alterations and neuroinflammation. Structural and adhesive features of hippocampal synapses have been described in the valproic acid (VPA) model. However, neuronal and microglial contribution to hippocampal synaptic pattern and its time-course of appearance is still unknown. METHODS Male pups born from pregnant rats injected at embryonic day 10.5 with VPA (450 mg/kg, i.p.) or saline (control) were used. Maturation, exploratory activity and social interaction were assessed as autistic-like traits. Synaptic, cell adhesion and microglial markers were evaluated in the CA3 hippocampal region at postnatal day (PND) 3 and 35. Primary cultures of hippocampal neurons from control and VPA animals were used to study synaptic features and glutamate-induced structural remodeling. Basal and stimuli-mediated reactivity was assessed on microglia primary cultures isolated from control and VPA animals. RESULTS At PND3, before VPA behavioral deficits were evident, synaptophysin immunoreactivity and the balance between the neuronal cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) were preserved in the hippocampus of VPA animals along with the absence of microgliosis. At PND35, concomitantly with the establishment of behavioral deficits, the hippocampus of VPA rats showed fewer excitatory synapses and increased NCAM/PSA-NCAM balance without microgliosis. Hippocampal neurons from VPA animals in culture exhibited a preserved synaptic puncta number at the beginning of the synaptogenic period in vitro but showed fewer excitatory synapses as well as increased NCAM/PSA-NCAM balance and resistance to glutamate-induced structural synaptic remodeling after active synaptogenesis. Microglial cells isolated from VPA animals and cultured in the absence of neurons showed similar basal and stimuli-induced reactivity to the control group. Results indicate that in the absence of glia, hippocampal neurons from VPA animals mirrored the in vivo synaptic pattern and suggest that while neurons are primed during the prenatal period, hippocampal microglia are not intrinsically altered. CONCLUSIONS Our study suggests microglial role is not determinant for developing neuronal alterations or counteracting neuronal outcome in the hippocampus and highlights the crucial role of hippocampal neurons and structural plasticity in the establishment of the synaptic alterations in the VPA rat model.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Calle Paraguay 2155 3er piso, 1121 Ciudad de Buenos Aires, Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
41
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
42
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
43
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
44
|
Ashitha SNM, Ramachandra NB. Integrated Functional Analysis Implicates Syndromic and Rare Copy Number Variation Genes as Prominent Molecular Players in Pathogenesis of Autism Spectrum Disorders. Neuroscience 2020; 438:25-40. [DOI: 10.1016/j.neuroscience.2020.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023]
|
45
|
Lenge M, Marini C, Canale E, Napolitano A, De Masi S, Trivisano M, Mei D, Longo D, Rossi Espagnet MC, Lucenteforte E, Barba C, Specchio N, Guerrini R. Quantitative MRI-Based Analysis Identifies Developmental Limbic Abnormalities in PCDH19 Encephalopathy. Cereb Cortex 2020; 30:6039-6050. [PMID: 32582916 DOI: 10.1093/cercor/bhaa177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Protocadherin-19 (PCDH19) is a calcium dependent cell-adhesion molecule involved in neuronal circuit formation with prevalent expression in the limbic structures. PCDH19-gene mutations cause a developmental encephalopathy with prominent infantile onset focal seizures, variably associated with intellectual disability and autistic features. Diagnostic neuroimaging is usually unrevealing. We used quantitative MRI to investigate the cortex and white matter in a group of 20 PCDH19-mutated patients. By a statistical comparison between quantitative features in PCDH19 brains and in a group of age and sex matched controls, we found that patients exhibited bilateral reductions of local gyrification index (lGI) in limbic cortical areas, including the parahippocampal and entorhinal cortex and the fusiform and lingual gyri, and altered diffusivity features in the underlying white matter. In patients with an earlier onset of seizures, worse psychiatric manifestations and cognitive impairment, reductions of lGI and diffusivity abnormalities in the limbic areas were more pronounced. Developmental abnormalities involving the limbic structures likely represent a measurable anatomic counterpart of the reduced contribution of the PCDH19 protein to local cortical folding and white matter organization and are functionally reflected in the phenotypic features involving cognitive and communicative skills as well as local epileptogenesis.
Collapse
Affiliation(s)
- Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Carla Marini
- Child Neuropsychiatry Unit, Maternal Child Department, University Hospital Ospedali Riuniti, 60100 Ancona, Italy
| | - Edoardo Canale
- Paediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16100 Genova, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Salvatore De Masi
- Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Davide Mei
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy.,NESMOS Department, Sapienza University, 00100 Rome, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Carmen Barba
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,IRCCS Stella Maris Foundation, 56018 Pisa, Italy
| |
Collapse
|
46
|
Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL, Blakely RD. Ex vivo Quantitative Proteomic Analysis of Serotonin Transporter Interactome: Network Impact of the SERT Ala56 Coding Variant. Front Mol Neurosci 2020; 13:89. [PMID: 32581705 PMCID: PMC7295033 DOI: 10.3389/fnmol.2020.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Altered serotonin (5-HT) signaling is associated with multiple brain disorders, including major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). The presynaptic, high-affinity 5-HT transporter (SERT) tightly regulates 5-HT clearance after release from serotonergic neurons in the brain and enteric nervous systems, among other sites. Accumulating evidence suggests that SERT is dynamically regulated in distinct activity states as a result of environmental and intracellular stimuli, with regulation perturbed by disease-associated coding variants. Our lab identified a rare, hypermorphic SERT coding substitution, Gly56Ala, in subjects with ASD, finding that the Ala56 variant stabilizes a high-affinity outward-facing conformation (SERT∗) that leads to elevated 5-HT uptake in vitro and in vivo. Hyperactive SERT Ala56 appears to preclude further activity enhancements by p38α mitogen-activated protein kinase (MAPK) and can be normalized by pharmacological p38α MAPK inhibition, consistent with SERT Ala56 mimicking, constitutively, a high-activity conformation entered into transiently by p38α MAPK activation. We hypothesize that changes in SERT-interacting proteins (SIPs) support the shift of SERT into the SERT∗ state which may be captured by comparing the composition of SERT Ala56 protein complexes with those of wildtype (WT) SERT, defining specific interactions through comparisons of protein complexes recovered using preparations from SERT–/– (knockout; KO) mice. Using quantitative proteomic-based approaches, we identify a total of 459 SIPs, that demonstrate both SERT specificity and sensitivity to the Gly56Ala substitution, with a striking bias being a loss of SIP interactions with SERT Ala56 compared to WT SERT. Among this group are previously validated SIPs, such as flotillin-1 (FLOT1) and protein phosphatase 2A (PP2A), whose functions are believed to contribute to SERT microdomain localization and regulation. Interestingly, our studies nominate a number of novel SIPs implicated in ASD, including fragile X mental retardation 1 protein (FMR1) and SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), of potential relevance to long-standing evidence of serotonergic contributions to ASD. Further investigation of these SIPs, and the broader networks they engage, may afford a greater understanding of ASD as well as other brain and peripheral disorders associated with perturbed 5-HT signaling.
Collapse
Affiliation(s)
- Meagan A Quinlan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Ran Ye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
47
|
Rusconi F, Battaglioli E, Venturin M. Psychiatric Disorders and lncRNAs: A Synaptic Match. Int J Mol Sci 2020; 21:ijms21093030. [PMID: 32344798 PMCID: PMC7246907 DOI: 10.3390/ijms21093030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation.
Collapse
Affiliation(s)
- Francesco Rusconi
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| | | | - Marco Venturin
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| |
Collapse
|
48
|
Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K. Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci 2020; 77:1511-1530. [PMID: 31659414 PMCID: PMC7166181 DOI: 10.1007/s00018-019-03336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Proper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets. This review provides a comprehensive summary of the kinases that are notably involved in regulating neurite formation, which is a complex process that involves cytoskeletal rearrangements, addition of plasma membrane to increase neuronal surface area, coupling of cytoskeleton/plasma membrane, metabolic regulation, and regulation of neuronal differentiation. Since kinases are key regulators of these functions during neuromorphogenesis, they have high potential for use as therapeutic targets for axon regeneration after injury or disease where neurite formation is disrupted.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
49
|
Shen W, Kilander MBC, Bridi MS, Frei JA, Niescier RF, Huang S, Lin YC. Tomosyn regulates the small RhoA GTPase to control the dendritic stability of neurons and the surface expression of AMPA receptors. J Neurosci Res 2020; 98:1213-1231. [PMID: 32133675 PMCID: PMC7216846 DOI: 10.1002/jnr.24608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Tomosyn, a protein encoded by syntaxin‐1‐binding protein 5 (STXBP5) gene, has a well‐established presynaptic role in the inhibition of neurotransmitter release and the reduction of synaptic transmission by its canonical interaction with the soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor machinery. However, the postsynaptic role of tomosyn in dendritic arborization, spine stability, and trafficking of ionotropic glutamate receptors remains to be elucidated. We used short hairpin RNA to knock down tomosyn in mouse primary neurons to evaluate the postsynaptic cellular function and molecular signaling regulated by tomosyn. Knockdown of tomosyn led to an increase of RhoA GTPase activity accompanied by compromised dendritic arborization, loss of dendritic spines, decreased surface expression of AMPA receptors, and reduced miniature excitatory postsynaptic current frequency. Inhibiting RhoA signaling was sufficient to rescue the abnormal dendritic morphology and the surface expression of AMPA receptors. The function of tomosyn regulating RhoA is mediated through the N‐terminal WD40 motif, where two variants each carrying a single nucleotide mutation in this region were found in individuals with autism spectrum disorder (ASD). We demonstrated that these variants displayed loss‐of‐function phenotypes. Unlike the wild‐type tomosyn, these two variants failed to restore the reduced dendritic complexity, spine density, as well as decreased surface expression of AMPA receptors in tomosyn knockdown neurons. This study uncovers a novel role of tomosyn in maintaining neuronal function by inhibiting RhoA activity. Further analysis of tomosyn variants also provides a potential mechanism for explaining cellular pathology in ASD.
Collapse
Affiliation(s)
- Wenjuan Shen
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | | | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| |
Collapse
|
50
|
Sardaar S, Qi B, Dionne-Laporte A, Rouleau GA, Rabbany R, Trakadis YJ. Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia. BMC Psychiatry 2020; 20:92. [PMID: 32111185 PMCID: PMC7049199 DOI: 10.1186/s12888-020-02503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. METHODS In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). RESULTS In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. CONCLUSIONS Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.
Collapse
Affiliation(s)
- Sameer Sardaar
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bill Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Alexandre Dionne-Laporte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Reihaneh Rabbany
- School of Computer Science, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, QC, Canada
| | - Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medical Genetics, McGill University Health Center Room A04.3140, Montreal Children's Hospital,1001 Boul. Décarie, H4A 3J1, Montreal, Quebec, Canada.
| |
Collapse
|