1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Vedovato-Dos-Santos JH, Tooze RS, Sithambaram S, McCann E, Alanay Y, Dogan OA, Kilercik M, Bingol A, Ozek MM, Johnson D, Nellaker C, Wilkie AOM, Twigg SRF. BCL11B-related disease: a single phenotypic entity? Eur J Hum Genet 2025; 33:451-460. [PMID: 40033098 PMCID: PMC11985952 DOI: 10.1038/s41431-025-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Craniosynostosis (CRS), the premature fusion of sutures between the skull bones, is characterised by a long "tail" of rare genetic diagnoses. This means that pathogenic variants in many genes are responsible for a minority of cases, and identifying these disease genes and delineating the associated phenotype is extremely important for patient diagnosis and for genetic counselling of families. One such gene is BCL11B. Heterozygous pathogenic variants in BCL11B have been described as causative for two Mendelian phenotypes, but until recently the gene remained only marginally associated with CRS. We have carried out a systematic review of literature, providing evidence that BCL11B-related disease (BRD) should be regarded as a single phenotypic entity. Furthermore, we describe four new patients, all of whom presented with CRS, thus expanding the phenotype of BRD and highlighting CRS as an important diagnostic clue.
Collapse
Affiliation(s)
- J Heather Vedovato-Dos-Santos
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Jesus College, Oxford, UK
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sivagamy Sithambaram
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Emma McCann
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Ozlem A Dogan
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Meltem Kilercik
- Division of Medical Biochemistry, Department Of Basic Sciences, Acibadem University, School Of Medicine, Istanbul, Turkey
| | - Aysen Bingol
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Memet M Ozek
- Department of Neurosurgery, Acibadem University, School of Medicine, Istanbul, Turkey
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christoffer Nellaker
- Big Data Institute, Nuffield Department of Women's & Reproductive Health (NDWRH), University of Oxford, Oxford, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Huschet LA, Kliem FP, Wienand P, Wunderlich CM, Ribeiro A, Bustos-Martínez I, Barco Á, Wunderlich FT, Lech M, Robles MS. FrozONE: quick cell nucleus enrichment for comprehensive proteomics analysis of frozen tissues. Life Sci Alliance 2025; 8:e202403130. [PMID: 39667914 PMCID: PMC11638322 DOI: 10.26508/lsa.202403130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Subcellular fractionation allows for the investigation of compartmentalized processes in individual cellular organelles. Nuclear enrichment methods commonly employ the use of density gradients combined with ultracentrifugation for freshly isolated tissues. Although it is broadly used in combination with proteomics, this approach poses several challenges when it comes to scalability and applicability for frozen material. To overcome these limitations, we developed FrozONE (Frozen Organ Nucleus Enrichment), a nucleus enrichment and proteomics workflow for frozen tissues. By extensively benchmarking our workflow against alternative methods, we showed that FrozONE is a faster, simpler, and more scalable alternative to conventional ultracentrifugation methods. FrozONE allowed for the study, profiling, and classification of nuclear proteomes in different tissues with complex cellular heterogeneity, ensuring optimal nucleus enrichment from different cell types and quantitative resolution for low abundant proteins. In addition to its performance in healthy mouse tissues, FrozONE proved to be very efficient for the characterization of liver nuclear proteome alterations in a pathological condition, diet-induced nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lukas A Huschet
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Peter Wienand
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| |
Collapse
|
4
|
Susemihl A, Geist N, Grabarczyk P, Schmidt CA, Delcea M, Schulig L. Double the Double: Revisiting BCL11B's Multimerization. Proteins 2025. [PMID: 39976228 DOI: 10.1002/prot.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
The transcription factor B Cell Lymphoma/Leukemia 11B (BCL11B) exerts a bi-directional function in cancer, with its role as an emerging therapeutic target in cancer treatment being particularly intriguing. BCL11B knockouts in cultured T cells revealed the acquisition of properties characteristic of natural killer cells, hinting at its importance in innate versus adaptive immune regulation. Our previous studies using Förster Resonance Energy Transfer-assisted Fluorescence-Activated Cell Sorting and Hybrid Solvent Replica-Exchange Simulations indicated that BCL11B forms dimers, with this being a prerequisite for its activity. However, size exclusion chromatography and crosslinking experiments have challenged this view, suggesting that BCL11B forms tetramers instead. An atypical CCHC zinc finger motif within the N-terminal region of the protein mediates multimerization and a novel 3D structure is presented based on extensive replica-exchange simulations in strong agreement with experimental data. The physiological relevance of multimer formation of this zinc finger protein has been demonstrated previously. Therefore, understanding the nature of BCL11B's multimerization could potentially enhance our ability to target this protein effectively, hopefully paving the way for novel BCL11B-targeted therapies.
Collapse
Affiliation(s)
- Anne Susemihl
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Christian A Schmidt
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Lessel I, Baresic A, Chinn IK, May J, Goenka A, Chandler KE, Posey JE, Afenjar A, Averdunk L, Bedeschi MF, Besnard T, Brager R, Brick L, Brugger M, Brunet T, Byrne S, Calle-Martín ODL, Capra V, Cardenas P, Chappé C, Chong HJ, Cogne B, Conboy E, Cope H, Courtin T, Deb W, Dilena R, Dubourg C, Elgizouli M, Fernandes E, Fitzgerald KK, Gangi S, George-Abraham JK, Gucsavas-Calikoglu M, Haack TB, Hadonou M, Hanker B, Hüning I, Iascone M, Isidor B, Järvelä I, Jin JJ, Jorge AAL, Josifova D, Kalinauskiene R, Kamsteeg EJ, Keren B, Kessler E, Kölbel H, Kozenko M, Kubisch C, Kuechler A, Leal SM, Leppälä J, Luu SM, Lyon GJ, Madan-Khetarpal S, Mancardi M, Marchi E, Mehta L, Menendez B, Morel CF, Harasink SM, Nevay DL, Nigro V, Odent S, Oegema R, Pappas J, Pastore MT, Perilla-Young Y, Platzer K, Powell-Hamilton N, Rabin R, Rekab A, Rezende RC, Robert L, Romano F, Scala M, Poths K, Schrauwen I, Sebastian J, Short J, Sidlow R, Sullivan J, Szakszon K, Tan QKG, Wagner M, Wieczorek D, Yuan B, Maeding N, Strunk D, Begtrup A, Banka S, Lupski JR, Tolosa E, Lessel D. DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders. Am J Hum Genet 2025; 112:394-413. [PMID: 39798569 DOI: 10.1016/j.ajhg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.
Collapse
Affiliation(s)
- Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Anja Baresic
- Division of Computing and Data Science, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan May
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra Afenjar
- Département de Génétique Paris, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, APHP, Sorbonne Université, Paris, France
| | - Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Thomas Besnard
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Lauren Brick
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Céline Chappé
- Service d'oncohematologie pédiatrique, CHU Rennes, 35000 Rennes, France
| | - Hey J Chong
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital, Pittsburgh, PA 15224, USA
| | - Benjamin Cogne
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Thomas Courtin
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Wallid Deb
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuropathophysiology Unit, Milan, Italy
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, 35033 Rennes, France; University Rennes, CNRS, IGDR, UMR 6290, 35000 Rennes, France
| | - Magdeldin Elgizouli
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Erica Fernandes
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | | | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 28, 20122 Milan, Italy
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA; Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Muge Gucsavas-Calikoglu
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Medard Hadonou
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, 24128 Bergamo, Italy
| | - Bertrand Isidor
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, P.O. Box 720, 00251 Helsinki, Finland
| | - Jay J Jin
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil; Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Dragana Josifova
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ruta Kalinauskiene
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elena Kessler
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Mariya Kozenko
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Suzanne M Leal
- Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, Columbia University, New York, NY 10032, USA; Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Juha Leppälä
- The Wellbeing Services County of South Ostrobothnia, 60280 Seinäjoki, Finland
| | - Sharon M Luu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA; George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Margherita Mancardi
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Epicare Network for Rare Disease, Genoa, Italy
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Lakshmi Mehta
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Beatriz Menendez
- Division of Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Chantal F Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Sue Moyer Harasink
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Dayna-Lynn Nevay
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Sylvie Odent
- Clinical Genetics, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; University Rennes, CNRS, INSERM, Institut de génétique et développement de Rennes, UMR 6290, ERL U1305, Rennes, France
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - John Pappas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yezmin Perilla-Young
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Rachel Rabin
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aisha Rekab
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leema Robert
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy; U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Poths
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John Short
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Katalin Szakszon
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Queenie K G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Munich, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
6
|
Chen Y, Zhang Z, Chen Y, Liu P, Yi S, Fan C, Zhao W, Liu J. Investigating the shared genetic links between hypothyroidism and psychiatric disorders: a large-scale genomewide cross-trait analysis. J Affect Disord 2025; 369:312-320. [PMID: 39353512 DOI: 10.1016/j.jad.2024.08.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Associations between thyroid diseases and psychiatric disorders have been mainly described before. However, the genetic mechanism behind hypothyroidism and psychiatric disorders remains unexplained. METHODS We examined the genetic architecture of hypothyroidism and 8 psychiatric disorders. Firstly, the global and local genetic relationship between the paired traits was explored. Secondly, cross-trait analysis was performed to investigate the genomic loci and genes between psychiatric disorders and hypothyroidism. Thirdly, the significant expression of these genes and the causal relationships were investigated. Lastly, enrichment analysis was conducted on these genes to explore their biological mechanisms. RESULTS We observed significant positive genetic correlations between psychiatric disorders and hypothyroidism. The cross-trait meta-analysis identified 62 shared genetic loci between hypothyroidism and psychiatric disorders. The colocalization analysis additionally revealed 15 potential pleiotropic loci with a posterior probabilities.H4 (PP·H4) value >0.7. We also found 2308 genes shared between both traits, which were highly enriched in biological pathways such as immune cell differentiation and autoimmune diseases, as well as in tissue structures like the frontal cortex and cerebral cortex. Especially, many pleiotropic genes were significantly expressed for multiple pairwise traits, such as BCL11B, RERE, and SUOX. Lastly, the Latent causal variable model (LCV) analysis did not find any causal components in the genetic structure between them. LIMITATIONS The limitations of this study include that the conclusions were drawn from a European population. CONCLUSIONS These findings not only deepens our understanding of their biological mechanisms but also has significant implications for the intervention and treatment of these diseases.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, 1#, Qiuyang Road, Fuzhou, Fujian Province 350122, People's Republic of China.
| | - Yongyi Chen
- Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| |
Collapse
|
7
|
Soheili-Nezhad S, Schijven D, Mars RB, Fisher SE, Francks C. Distinct impact modes of polygenic disposition to dyslexia in the adult brain. SCIENCE ADVANCES 2024; 10:eadq2754. [PMID: 39693421 DOI: 10.1126/sciadv.adq2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Dyslexia is a common and partially heritable condition that affects reading ability. In a study of up to 35,231 adults, we explored the structural brain correlates of genetic disposition to dyslexia. Individual dyslexia-disposing genetic variants showed distinct patterns of association with brain structure. Independent component analysis revealed various brain networks that each had their own genomic profiles related to dyslexia susceptibility. Circuits involved in motor coordination, vision, and language were implicated. Polygenic scores for eight traits genetically correlated with dyslexia, including cognitive, behavioral, and reading-related psychometric measures, showed partial similarities to dyslexia in terms of brain-wide associations. Notably, microstructure of the internal capsule was consistently implicated across all of these genetic dispositions, while lower volume of the motor cortex was more specifically associated with dyslexia genetic disposition alone. These findings reveal genetic and neurobiological features that may contribute to dyslexia and its associations with other traits at the population level.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Przybylski GK, Przybylska J, Li Y. Dual role of BCL11B in T-cell malignancies. BLOOD SCIENCE 2024; 6:e00204. [PMID: 39295773 PMCID: PMC11410336 DOI: 10.1097/bs9.0000000000000204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The zinc finger transcription factor B-cell CLL/lymphoma 11B gene (BCL11B, CTIP2) plays a crucial role in T-cell development, but its role in T-cell malignancies has not yet been definitively clarified. In the literature, 2 contradictory hypotheses on the function of BCL11B exist. One suggests that BCL11B functions as tumor suppressor gene, and the other suggests that BCL11B functions as oncogene. The aim of this review is to revise the current knowledge about the function of BCL11B in T-cell malignancies, confront these 2 hypotheses and present a new model of dual role of BCL11B in T-cell malignancies and potential new therapeutic approach, based on recent findings of the function of BCL11B in DNA damage repair. Decreased BCL11B expression, resulting in deficient DNA repair, may facilitate DNA mutations in rapidly proliferating T-cell progenitors that undergo gene rearrangements, thereby leading to malignant transformation. On the other hand, decreased BCL11B expression and inefficient DNA repair may result in accumulation of DNA damages in genes crucial for the cell survival and in apoptosis of malignant T cells. We hypothesize that T-cell malignancies expressing high levels of BCL11B might be dependent on it. In those cases, targeted inhibition of BCL11B expression may have a therapeutic effect. The antitumor effect of BCL11B suppression might be strengthened by generation of induced T to NK cells (ITNK). Therefore, there is an urgent need to develop a specific BCL11B inhibitor.
Collapse
Affiliation(s)
| | - Julia Przybylska
- Department of Rheumatology, Independent Public Health Care Facility, Międzychód, Poland
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Zhang Y, Yu Z, Wong KC, Li X. Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering. Bioinformatics 2024; 40:btae451. [PMID: 39012523 PMCID: PMC11272174 DOI: 10.1093/bioinformatics/btae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
MOTIVATION Spatial transcriptomics can quantify gene expression and its spatial distribution in tissues, thus revealing molecular mechanisms of cellular interactions underlying tissue heterogeneity, tissue regeneration, and spatially localized disease mechanisms. However, existing spatial clustering methods often fail to exploit the full potential of spatial information, resulting in inaccurate identification of spatial domains. RESULTS In this paper, we develop a deep graph contrastive clustering framework, stDGCC, that accurately uncovers underlying spatial domains via explicitly modeling spatial information and gene expression profiles from spatial transcriptomics data. The stDGCC framework proposes a spatially informed graph node embedding model to preserve the topological information of spots and to learn the informative and discriminative characterization of spatial transcriptomics data through self-supervised contrastive learning. By simultaneously optimizing the contrastive learning loss, reconstruction loss, and Kullback-Leibler (KL) divergence loss, stDGCC achieves joint optimization of feature learning and topology structure preservation in an end-to-end manner. We validate the effectiveness of stDGCC on various spatial transcriptomics datasets acquired from different platforms, each with varying spatial resolutions. Our extensive experiments demonstrate the superiority of stDGCC over various state-of-the-art clustering methods in accurately identifying cellular-level biological structures. AVAILABILITY Code and data are available from https://github.com/TimE9527/stDGCC and https://figshare.com/projects/stDGCC/186525. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yingxi Zhang
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Zhuohan Yu
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Garone G, Capuano A, Amodio D, Nicita F, Travaglini L, Graziola F, De Benedictis A, Frascarelli F, Parisi P, Pizzi S, Tartaglia M, Marras CE, Niceta M. BCL11B-Related Dystonia: Further Evidence of an Emerging Cause of Childhood-Onset Generalized Dystonia. Mov Disord Clin Pract 2024; 11:897-901. [PMID: 38801144 PMCID: PMC11233837 DOI: 10.1002/mdc3.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Giacomo Garone
- Neurology, Epilepsy and Movement Disorders UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and PsychologySapienza University of RomeRomeItaly
| | - Alessandro Capuano
- Child and Adolescent Neuropsychiatric Unit, Azienda Sanitaria Locale ViterboViterboItaly
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and VaccinologyBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesco Nicita
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative DisordersBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Lorena Travaglini
- Laboratory of Medical GeneticsBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Federica Graziola
- Department of Paediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | | | | - Pasquale Parisi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and PsychologySapienza University of RomeRomeItaly
| | - Simone Pizzi
- Genetics and Rare Diseases Research DivisionBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Marco Tartaglia
- Genetics and Rare Diseases Research DivisionBambino Gesù Children's Hospital, IRCCSRomeItaly
| | | | - Marcello Niceta
- Genetics and Rare Diseases Research DivisionBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
11
|
Saleh MA, Amer-Sarsour F, Berant A, Pasmanik-Chor M, Kobo H, Sharabi Y, Vatine GD, Ashkenazi A. Chronic and acute exposure to rotenone reveals distinct Parkinson's disease-related phenotypes in human iPSC-derived peripheral neurons. Free Radic Biol Med 2024; 213:164-173. [PMID: 38246514 DOI: 10.1016/j.freeradbiomed.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Peripheral autonomic nervous system (P-ANS) dysfunction is a critical non-motor phenotype of Parkinson's disease (PD). The majority of PD cases are sporadic and lack identified PD-associated genes involved. Epidemiological and animal model studies suggest an association with pesticides and other environmental toxins. However, the cellular mechanisms underlying toxin induced P-ANS dysfunctions remain unclear. Here, we mapped the global transcriptome changes in human induced pluripotent stem cell (iPSC) derived P-ANS sympathetic neurons during inhibition of the mitochondrial respiratory chain by the PD-related pesticide, rotenone. We revealed distinct transcriptome profiles between acute and chronic exposure to rotenone. In the acute stage, there was a down regulation of specific cation channel genes, known to mediate electrophysiological activity, while in the chronic stage, the human P-ANS neurons exhibited dysregulation of anti-apoptotic and Golgi apparatus-related pathways. Moreover, we identified the sodium voltage-gated channel subunit SCN3A/Nav1.3 as a potential biomarker in human P-ANS neurons associated with PD. Our analysis of the rotenone-altered coding and non-coding transcriptome of human P-ANS neurons may thus provide insight into the pathological signaling events in the sympathetic neurons during PD progression.
Collapse
Affiliation(s)
- Mahmood Ali Saleh
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Fatima Amer-Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Asaf Berant
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hila Kobo
- Genomics Research Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yehonatan Sharabi
- Hypertension Unit, Department of Medicine, Sheba Medical Center, Tel Hashomer and Faculty of Medicine, Tel Aviv University, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel.
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
12
|
Akintunde JK, Falomo IM, Akinbohun OM, Erinoso SO, Ugwor E, Folayan AD, Ateate AD. Naringin corrects renal failure related to Lesch-Nyhan disease in a rat model via NOS-cAMP-PKA and BDNF/TrkB pathways. J Biochem Mol Toxicol 2024; 38:e23558. [PMID: 37865952 DOI: 10.1002/jbt.23558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
This study explored the effect of naringin (NAR) on HGPRT1 deficiency and hyperuricemia through NOS-cAMP-PKA and BDNF/TrkB signaling pathways induced by caffeine (CAF) and KBrO3 in a rat model. Sixty-three adult male albino rats were randomly assigned into nine (n = 7) groups. Group I: control animals, Group II was treated with 100 mg/kg KBrO3 , Group III was treated with 250 mg/kg CAF, Group IV was treated with 100 mg/kg KBrO3 + 250 mg/kg CAF, Group V was administered with 100 mg/kg KBrO3 + 100 mg/kg haloperidol, Group VI was administered with 100 mg/kg KBrO3 + 50 mg/kg NAR, Group VII was administered with 500 mg/kg CAF + 50 mg/kg NAR, and Group VIII was administered with 100 mg/kg KBrO3 + 250 mg/kg CAF + 50 mg/kg NAR. Finally, group IX was treated with 50 mg/kg NAR. The exposure of rats to KBrO3 and CAF for 21 days induced renal dysfunction linked with Lesch-Nyhan disease. NAR obliterated renal dysfunction linked with Lesch-Nyhan disease by decreasing uric acid, renal malondialdehyde level, inhibiting the activities of arginase, and phosphodiesterase-51 (PDE-51) with corresponding upregulation of brain derived-neurotrophic factor and its receptor (BDNF-TrkB), Bcl11b, HGPRT1, and DARPP-32. Additionally, renal failure related to Lesch-Nyhan disease was remarkably corrected by NAR as shown by the reduced activities of AChE and enzymes of ATP hydrolysis (ATPase, AMPase, and ADA) with affiliated increase in the NO level. This study therefore validates NAR as nontoxic and effective chemotherapy against kidney-related Lesch-Nyhan disease by mitigating effects of toxic food additives and enzymes of ATP-hydrolysis via NOS-cAMP-PKA and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Jacob K Akintunde
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Idowu M Falomo
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oreoluwa M Akinbohun
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - S O Erinoso
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Emmanuel Ugwor
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adeniyi D Folayan
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A D Ateate
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
13
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
Mizrahi L, Choudhary A, Ofer P, Goldberg G, Milanesi E, Kelsoe JR, Gurwitz D, Alda M, Gage FH, Stern S. Immunoglobulin genes expressed in lymphoblastoid cell lines discern and predict lithium response in bipolar disorder patients. Mol Psychiatry 2023; 28:4280-4293. [PMID: 37488168 PMCID: PMC10827667 DOI: 10.1038/s41380-023-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.
Collapse
Affiliation(s)
- Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Polina Ofer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Gabriela Goldberg
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 2E2, Canada
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
15
|
Zhang Y, Lu Z, Sun Y, Zhang X, Li Q, Li M, Liao Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Yan H, Zhang D, Yue W. Predictive role of pulvinar in social functional outcome of schizophrenia. Psychiatry Res 2023; 327:115419. [PMID: 37598626 DOI: 10.1016/j.psychres.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Identifying objective biological subtypes that predict long-term functional outcomes is crucial for understanding neurobiological mechanisms and identifying potential targets. Using resting-state functional magnetic resonance imaging data from 178 patients and 70 controls, we explored social function patterns using latent profile analysis. Long-term outcomes were compared among the biological subtypes using K-means clustering. Partial least squares regression (PLSR) was used to identify gene expression profiles associated with alterations in activity by leveraging transcriptional data from the Allen Human Brain Atlas. In patients with more functional impairment, left medial pulvinar (PM) exhibited significantly lower regional homogeneity of brain activity (ReHo, [95% CI (0.06-0.27), P = 0.002), a finding validated in the independent cohort. Functional connectivity between PM and secondary visual cortex displayed a suggestive decrease. Patients belonging to "higher pulvinar ReHo - better information processing" demonstrated better long-term outcomes and acute treatment response [95% CI (11.2-34.4), P < 0.001]. The PLSR component of imaging-transcriptomic associations partly explained the ReHo differences among patients with varying levels of functional impairment. It revealed enrichment of genes in the synaptic signaling pathway. Pathological changes in the pulvinar may affect social functioning. Higher pulvinar ReHo and better information processing, two objective biomarkers, have a predictive value for better long-term functional outcomes.
Collapse
Affiliation(s)
- Yuyanan Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhe Lu
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yaoyao Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiao Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Qianqian Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Mingzhu Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yundan Liao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhewei Kang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiaoyang Feng
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Guorui Zhao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Junyuan Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yang Yang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Hao Yan
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Dai Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing 100191, China.
| |
Collapse
|
16
|
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, Sjöström M, Chou J, Chang K, Moreno-Rodriguez T, Shrestha R, Baskin A, Zhu X, Weinstein AS, Younger N, Alumkal JJ, Beer TM, Chi KN, Evans CP, Gleave M, Lara PN, Reiter RE, Rettig MB, Witte ON, Wyatt AW, Feng FY, Small EJ, Quigley DA. The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer. Cancer Res 2023; 83:2763-2774. [PMID: 37289025 PMCID: PMC10425725 DOI: 10.1158/0008-5472.can-23-0593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.
Collapse
Affiliation(s)
- Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kevin Chang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Avi Baskin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Noah Younger
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joshi J. Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Tomasz M. Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher P. Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Department of Urologic Surgery, University of California Davis, Sacramento, California
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Primo N. Lara
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Rob E. Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Matthew B. Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Fischer A, Lersch R, de Andrade Krätzig N, Strong A, Friedrich MJ, Weber J, Engleitner T, Öllinger R, Yen HY, Kohlhofer U, Gonzalez-Menendez I, Sailer D, Kogan L, Lahnalampi M, Laukkanen S, Kaltenbacher T, Klement C, Rezaei M, Ammon T, Montero JJ, Schneider G, Mayerle J, Heikenwälder M, Schmidt-Supprian M, Quintanilla-Martinez L, Steiger K, Liu P, Cadiñanos J, Vassiliou GS, Saur D, Lohi O, Heinäniemi M, Conte N, Bradley A, Rad L, Rad R. In vivo interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution. CELL GENOMICS 2023; 3:100276. [PMID: 36950387 PMCID: PMC10025556 DOI: 10.1016/j.xgen.2023.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Mathias J. Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Hsi-Yu Yen
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Liz Kogan
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Majdaddin Rezaei
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Juan J. Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Mathias Heikenwälder
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - George S. Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0PT, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
18
|
Ke L, Lu Y, Gao H, Hu C, Zhang J, Zhao Q, Sun Z, Peng Z. Identification of potential diagnostic and prognostic biomarkers for sepsis based on machine learning. Comput Struct Biotechnol J 2023; 21:2316-2331. [PMID: 37035547 PMCID: PMC10073883 DOI: 10.1016/j.csbj.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background To identify potential diagnostic and prognostic biomarkers of the early stage of sepsis. Methods The differentially expressed genes (DEGs) between sepsis and control transcriptomes were screened from GSE65682 and GSE134347 datasets. The candidate biomarkers were identified by the least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analyses. The diagnostic and prognostic abilities of the markers were evaluated by plotting receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to further elucidate the molecular mechanisms and immune-related processes. Finally, the potential biomarkers were validated in a septic mouse model by qRT-PCR and western blotting. Results Eleven DEGs were identified between the sepsis and control samples, including YOD1, GADD45A, BCL11B, IL1R2, UGCG, TLR5, S100A12, ITK, HP, CCR7 and C19orf59 (all AUC>0.9). Furthermore, the survival analysis identified YOD1, GADD45A, BCL11B and IL1R2 as the prognostic biomarkers of sepsis. According to GSEA, four DEGs were significantly associated with immune-related processes. In addition, ssGSEA demonstrated a significant difference in the enriched immune cell populations between the sepsis and control groups (all P < 0.05). Moreover, YOD1, GADD45A and IL1R2 were upregulated, and BCL11B was downregulated in the heart, liver, lungs, and kidneys of the septic mice model. Conclusions We identified four potential immune-releated diagnostic and prognostic gene markers for sepsis that offer new insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Yasu Lu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
- Correspondence to: Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
- Correspondence to: Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
19
|
Fujita T, Sakai K, Uehara N, Hoshi Y, Mori A, Koyama H, Sato M, Saito K, Osaki Y, Nishio K, Doi K. Genetic variants of cancer‑associated genes analyzed using next‑generation sequencing in small sporadic vestibular schwannomas. Oncol Lett 2023; 25:121. [PMID: 36844630 PMCID: PMC9950330 DOI: 10.3892/ol.2023.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Vestibular schwannoma (VS) is the most common tumor of the cerebellopontine angle. Despite the increasing diagnosis of sporadic VS over the past decade, the use of traditional microsurgeries to treat VS has decreased. This is likely a result of the adoption of serial imaging as the most common initial evaluation and treatment strategy, especially for small-sized VS. However, the pathobiology of VSs remains unclear, and elucidating the genetic information of tumor tissue may reveal novel insights. The present study performed a comprehensive genomic analysis of all exons in the key tumor suppressor and oncogenes from 10 small (<15 mm) sporadic VS samples. The evaluations identified NF2, SYNE1, IRS2, APC, CIC, SDHC, BRAF, NUMA1, EXT2, HRAS, BCL11B, MAGI1, RNF123, NLRP1, ASXL1, ADAMTS20, TAF1L, XPC, DDB2 and ETS1 as mutated genes. The current study could not draw any new conclusions about the relationship between VS-related hearing loss and gene mutations; however, it did reveal that NF2 was the most frequently mutated gene in small sporadic VS.
Collapse
Affiliation(s)
- Takeshi Fujita
- Department of Otolaryngology Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan,Correspondence to: Dr Takeshi Fujita, Department of Otolaryngology Head and Neck Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuoku, Kobe, Hyogo 650-0017, Japan, E-mail:
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsumi Uehara
- Department of Otolaryngology Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yujiro Hoshi
- Department of Otorhinolaryngology, Mitsui Memorial Hospital, Tokyo 101-8643, Japan
| | - Anjin Mori
- Department of Otorhinolaryngology - Head and Neck Surgery, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Mitsuo Sato
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuya Saito
- Department of Otorhinolaryngology, Izumi City General Hospital, Izumi, Osaka 594-0073, Japan
| | - Yasuhiro Osaki
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
20
|
Eto K, Machida O, Yanagishita T, Shimojima Yamamoto K, Chiba K, Aihara Y, Hasegawa Y, Nagata M, Ishihara Y, Miyashita Y, Asano Y, Nagata S, Yamamoto T. Novel BCL11B truncation variant in a patient with developmental delay, distinctive features, and early craniosynostosis. Hum Genome Var 2022; 9:43. [PMID: 36470856 PMCID: PMC9722650 DOI: 10.1038/s41439-022-00220-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities (MIM # 618092) is a congenital disorder derived from pathogenic variants of the B-cell leukemia/lymphoma 11B gene (BCL11B). Several variants have been reported to date. Here, through comprehensive genomic analysis, a novel BCL11B truncation variant, NM_138576.4(BCL11B_v001): c.2439_2452dup [p.(His818Argfs*31)], was identified in a Japanese male patient with developmental delay, distinctive features, and early craniosynostosis.
Collapse
Affiliation(s)
- Kaoru Eto
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Osamu Machida
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan
| | - Tomoe Yanagishita
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- grid.410818.40000 0001 0720 6587Department of Transfusion Medicine and Cell Processing, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kentaro Chiba
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yasuo Aihara
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuuki Hasegawa
- grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Miho Nagata
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuki Ishihara
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Asano
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoru Nagata
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Akintunde JK, Abinu OS, Taiwo KF, Sodiq RA, Folayan AD, Ate AD. Disorders of Hippocampus Facilitated by Hypertension in Purine Metabolism Deficiency is Repressed by Naringin, a Bi-flavonoid in a Rat Model via NOS/cAMP/PKA and DARPP-32, BDNF/TrkB Pathways. Neurotox Res 2022; 40:2148-2166. [PMID: 36098940 DOI: 10.1007/s12640-022-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023]
Abstract
Individuals who are hypertensive have a higher tendency of predisposition to other genetic diseases including purine metabolism deficiency. Therefore, the search for nontoxic and effective chemo protective agents to abrogate hypertension-mediated genetic disease is vital. This study therefore investigated the repressive effect of naringin (NAR) against disorder of hippocampus facilitated by hypertension in purine metabolism deficiency. Male albino rats randomly assigned into nine groups (n = 7) were treated for 35 days. Group I: control animals, Group II was treated with 100 mg/kg KBrO3, Group III was treated with 250 mg/kg caffeine, and Group IV was treated with 100 mg/kg KBrO3 + 250 mg/kg caffeine. Group V was administered with 100 mg/kg KBrO3 + 100 mg/kg haloperidol. Group VI was administered with 100 mg/kg KBrO3 + 50 mg/kg NAR. Group VII was administered with 250 mg/kg caffeine + 50 mg/kg NAR, and Group VIII was administered with 100 mg/kg KBrO3 + 250 mg/kg caffeine + 50 mg/kg NAR. Finally, group IX was treated with 50 mg/kg NAR. The sub-acute exposure to KBrO3 and CAF induced hypertension and mediated impairment in the hippocampus cells. This was apparent by the increase in PDE-51, arginase, and enzymes of ATP hydrolysis (ATPase and AMPase) with a simultaneous increase in cholinergic (AChE and BuChE) and adenosinergic (ADA) enzymes. The hypertensive-mediated hippocampal impairment was associated to alteration of NO and AC signaling coupled with lower expression of brain-derived neurotrophic factor and its receptor (BDNF-TrkB), down regulation of Bcl11b and DARPP-32 which are neurodevelopmental proteins, and hypoxanthine accumulation. However, these features of CAF-mediated hippocampal damage in KBrO3-induced hypertensive rats were repressed by post-treatment with NAR via production of neuro-inflammatory mediators, attenuation of biochemical alterations, stabilizing neurotransmitter enzymes, regulating NOS/cAMP/PKA and DARPP-32, BDNF/TrkB signaling, and restoring hippocampal tissues.
Collapse
Affiliation(s)
- J K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O S Abinu
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - K F Taiwo
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - R A Sodiq
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A D Folayan
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A D Ate
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
22
|
Harrer P, Leppmeier V, Berger A, Demund S, Winkelmann J, Berweck S, Zech M. A de novo BCL11B variant case manifesting with dystonic movement disorder regarding the article “BCL11B-related disorder in two canadian children: Expanding the clinical phenotype (Prasad et al., 2020).”. Eur J Med Genet 2022; 65:104635. [DOI: 10.1016/j.ejmg.2022.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
23
|
Song S, Creus Muncunill J, Galicia Aguirre C, Tshilenge KT, Hamilton BW, Gerencser AA, Benlhabib H, Cirnaru MD, Leid M, Mooney SD, Ellerby LM, Ehrlich ME. Postnatal Conditional Deletion of Bcl11b in Striatal Projection Neurons Mimics the Transcriptional Signature of Huntington's Disease. Biomedicines 2022; 10:2377. [PMID: 36289639 PMCID: PMC9598565 DOI: 10.3390/biomedicines10102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington's disease (HD), Parkinson's disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, Bcl11b (also known as Ctip2), is required for striatal development, but the function of Bcl11b in adult MSNs in vivo has not been investigated. We conditionally deleted Bcl11b specifically in postnatal MSNs and performed a transcriptomic and behavioral analysis on these mice. Multiple enrichment analyses showed that the D9-Cre-Bcl11btm1.1Leid transcriptional profile was similar to the HD gene expression in mouse and human data sets. A Gene Ontology enrichment analysis linked D9-Cre-Bcl11btm1.1Leid to calcium, synapse organization, specifically including the dopaminergic synapse, protein dephosphorylation, and HDAC-signaling, commonly dysregulated pathways in HD. D9-Cre-Bcl11btm1.1Leid mice had decreased DARPP-32/Ppp1r1b in MSNs and behavioral deficits, demonstrating the dysregulation of a subtype of the dopamine D2 receptor expressing MSNs. Finally, in human HD isogenic MSNs, the mislocalization of BCL11B into nuclear aggregates points to a mechanism for BCL11B loss of function in HD. Our results suggest that BCL11B is important for the function and maintenance of mature MSNs and Bcl11b loss of function drives, in part, the transcriptomic and functional changes in HD.
Collapse
Affiliation(s)
- Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jordi Creus Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Galicia Aguirre
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sean D. Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lisa M. Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Affiliation(s)
- Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Du H, Wang Z, Guo R, Yang L, Liu G, Zhang Z, Xu Z, Tian Y, Yang Z, Li X, Chen B. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb Cortex 2022; 32:3611-3632. [PMID: 34963132 PMCID: PMC9433425 DOI: 10.1093/cercor/bhab437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
26
|
Alfei E, Cattaneo E, Spaccini L, Iascone M, Veggiotti P, Doneda C. Progressive Clinical and Neuroradiological Findings in a Child with BCL11B Missense Mutation: Expanding the Phenotypic Spectrum of Related Disorder. Neuropediatrics 2022; 53:283-286. [PMID: 34844266 DOI: 10.1055/s-0041-1736193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report a patient affected by BCL11B-related disorder, providing the first extensive demonstration of clinical and neuroradiological progressive course of the disease, with possible implications on the way it is studied and followed-up. Never described clinical aspects such as toes abnormalities and hypospadias widen the range of dysmorphisms associated with this condition. Our data suggest that BCL11B mutations may be implicated not only in impaired morphogenesis and hematopoiesis but also in progressive central nervous system damage, which remains to be further investigated and clarified.
Collapse
Affiliation(s)
- Enrico Alfei
- Pediatric Neurology Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital, Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, Italy
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
27
|
Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco-Ibañez JM, Crespo C, Gutierrez A, Nacher J. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat 2022; 16:851432. [PMID: 35464133 PMCID: PMC9027810 DOI: 10.3389/fnana.2022.851432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
This work provides evidence of the presence of immature neurons in the human brain, specifically in the layer II of the cerebral cortex. Using surgical samples from epileptic patients and post-mortem tissue, we have found cells with different levels of dendritic complexity (type I and type II cells) expressing DCX and PSA-NCAM and lacking expression of the mature neuronal marker NeuN. These immature cells belonged to the excitatory lineage, as demonstrated both by the expression of CUX1, CTIP2, and TBR1 transcription factors and by the lack of the inhibitory marker GAD67. The type II cells had some puncta expressing inhibitory and excitatory synaptic markers apposed to their perisomatic and peridendritic regions and ultrastructural analysis suggest the presence of synaptic contacts. These cells did not present glial cell markers, although astroglial and microglial processes were found in close apposition to their somata and dendrites, particularly on type I cells. Our findings confirm the presence of immature neurons in several regions of the cerebral cortex of humans of different ages and define their lineage. The presence of some mature features in some of these cells suggests the possibility of a progressively integration as excitatory neurons, as described in the olfactory cortex of rodents.
Collapse
Affiliation(s)
- Simona Coviello
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Emilio Varea
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - José Miguel Blasco-Ibañez
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Carlos Crespo
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Antonio Gutierrez
- Unidad de Cirugía de la Epilepsia, Hospital Universitario La Fe, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia (INCLIVA), Valencia, Spain
- *Correspondence: Juan Nacher,
| |
Collapse
|
28
|
Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun 2022; 13:1739. [PMID: 35365632 PMCID: PMC8976049 DOI: 10.1038/s41467-022-29439-6] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining the spatial context of the tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to use their spatial information carefully. To this end, we develop a graph attention auto-encoder framework STAGATE to accurately identify spatial domains by learning low-dimensional latent embeddings via integrating spatial information and gene expression profiles. To better characterize the spatial similarity at the boundary of spatial domains, STAGATE adopts an attention mechanism to adaptively learn the similarity of neighboring spots, and an optional cell type-aware module through integrating the pre-clustering of gene expressions. We validate STAGATE on diverse spatial transcriptomics datasets generated by different platforms with different spatial resolutions. STAGATE could substantially improve the identification accuracy of spatial domains, and denoise the data while preserving spatial expression patterns. Importantly, STAGATE could be extended to multiple consecutive sections to reduce batch effects between sections and extracting three-dimensional (3D) expression domains from the reconstructed 3D tissue effectively.
Collapse
Affiliation(s)
- Kangning Dong
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
29
|
Achour M, Ferdousi F, Sasaki K, Isoda H. Luteolin Modulates Neural Stem Cells Fate Determination: In vitro Study on Human Neural Stem Cells, and in vivo Study on LPS-Induced Depression Mice Model. Front Cell Dev Biol 2021; 9:753279. [PMID: 34790666 PMCID: PMC8591246 DOI: 10.3389/fcell.2021.753279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Luteolin is a natural flavone with neurotrophic effects observed on different neuronal cell lines. In the present study, we aimed to assess the effect of luteolin on hNSCs fate determination and the LPS-induced neuroinflammation in a mouse model of depression with astrocytogenesis defect. hNSCs were cultured in basal cell culture medium (control) or medium supplemented with luteolin or AICAR, a known inducer of astrogenesis. A whole-genome transcriptomic analysis showed that luteolin upregulated the expressions of genes related to neurotrophin, dopaminergic, hippo, and Wnt signaling pathways, and downregulated the genes involved in p53, TNF, FOXO, and Notch signaling pathways. We also found that astrocyte-specific gene GFAP, as well as other genes of the key signaling pathways involved in astrogenesis such as Wnt, BMP, and JAK-STAT pathways were upregulated in luteolin-treated hNSCs. On the other hand, neurogenesis and oligodendrogenesis-related genes, TUBB3, NEUROD 1 and 6, and MBP, were downregulated in luteolin-treated hNSCs. Furthermore, immunostaining showed that percentages of GFAP+ cells were significantly higher in luteolin- and AICAR-treated hNSCs compared to control hNSCs. Additionally, RT-qPCR results showed that luteolin upregulated the expressions of GFAP, BMP2, and STAT3, whereas the expression of TUBB3 remained unchanged. Next, we evaluated the effects of luteolin in LPS-induced mice model of depression that represents defects in astrocytogenesis. We found that oral administration of luteolin (10 mg/Kg) for eight consecutive days could decrease the immobility time on tail suspension test, a mouse behavioral test measuring depression-like behavior, and attenuate LPS-induced inflammatory responses by significantly decreasing IL-6 production in mice brain-derived astrocytes and serum, and TNFα and corticosterone levels in serum. Luteolin treatment also significantly increased mature BDNF, dopamine, and noradrenaline levels in the hypothalamus of LPS-induced depression mice. Though the behavioral effects of luteolin did not reach statistical significance, global gene expression analyses of mice hippocampus and brain-derived NSCs highlighted the modulatory effects of luteolin on different signaling pathways involved in the pathophysiology of depression. Altogether, our findings suggest an astrocytogenic potential of luteolin and its possible therapeutic benefits in neuroinflammatory and neurodegenerative diseases. However, further studies are required to identify the specific mechanism of action of luteolin.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Liu L, Wang H, Zhang X, Chen R. Identification of Potential Biomarkers in Neonatal Sepsis by Establishing a Competitive Endogenous RNA Network. Comb Chem High Throughput Screen 2021; 23:369-380. [PMID: 32233999 DOI: 10.2174/1386207323666200401121204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neonatal sepsis is a serious and difficult-to-diagnose systemic infectious disease occurring during the neonatal period. OBJECTIVE This study aimed to identify potential biomarkers of neonatal sepsis and explore its underlying mechanisms. METHODS We downloaded the neonatal sepsis-related gene profile GSE25504 from the NCBI Gene Expression Omnibus (GEO) database. The differentially expressed RNAs (DERs) were screened and identified using LIMMA. Then, the functions of the DERs were evaluated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a competing endogenous RNA (ceRNA) network was constructed and functional analyses were performed. RESULTS The initial screening identified 444 differentially expressed (DE)-mRNAs and 45 DElncRNAs. GO analysis showed that these DE-mRNAs were involved in immune response, defense response, and positive regulation of immune system process. KEGG analysis showed that these DE-mRNAs were enriched in 30 activated pathways and 6 suppressed pathways, and those with the highest scores were the IL-17 signaling pathway and ribosome. Next, 722 miRNAs associated with the identified lncRNAs were predicted using miRWalk. A ceRNA network was constructed that included 6 lncRNAs, 11 mRNAs, and 55 miRNAs. In this network, HCP5, LINC00638, XIST and TP53TG1 were hub nodes. Functional analysis of this network identified some essential immune functions, hematopoietic functions, osteoclast differentiation, and primary immunodeficiency as associated with neonatal sepsis. CONCLUSION HCP5, LINC00638, TP53TG1, ST20-AS1, and SERPINB9P1 may be potential biomarkers of neonatal sepsis and may be useful for rapid diagnosis; the biological process of the immune response was related to neonatal sepsis.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hong Wang
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xiaofei Zhang
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Rui Chen
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| |
Collapse
|
31
|
The genetic architecture of the human thalamus and its overlap with ten common brain disorders. Nat Commun 2021; 12:2909. [PMID: 34006833 PMCID: PMC8131358 DOI: 10.1038/s41467-021-23175-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
The thalamus is a vital communication hub in the center of the brain and consists of distinct nuclei critical for consciousness and higher-order cortical functions. Structural and functional thalamic alterations are involved in the pathogenesis of common brain disorders, yet the genetic architecture of the thalamus remains largely unknown. Here, using brain scans and genotype data from 30,114 individuals, we identify 55 lead single nucleotide polymorphisms (SNPs) within 42 genetic loci and 391 genes associated with volumes of the thalamus and its nuclei. In an independent validation sample (n = 5173) 53 out of the 55 lead SNPs of the discovery sample show the same effect direction (sign test, P = 8.6e-14). We map the genetic relationship between thalamic nuclei and 180 cerebral cortical areas and find overlapping genetic architectures consistent with thalamocortical connectivity. Pleiotropy analyses between thalamic volumes and ten psychiatric and neurological disorders reveal shared variants for all disorders. Together, these analyses identify genetic loci linked to thalamic nuclei and substantiate the emerging view of the thalamus having central roles in cortical functioning and common brain disorders.
Collapse
|
32
|
Gaillard L, Goverde A, van den Bosch QCC, Jehee FS, Brosens E, Veenma D, Magielsen F, de Klein A, Mathijssen IMJ, van Dooren MF. Case Report and Review of the Literature: Congenital Diaphragmatic Hernia and Craniosynostosis, a Coincidence or Common Cause? Front Pediatr 2021; 9:772800. [PMID: 34900871 PMCID: PMC8662985 DOI: 10.3389/fped.2021.772800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that presents as either an isolated diaphragm defect or as part of a complex disorder with a wide array of anomalies (complex CDH). Some patients with complex CDH display distinct craniofacial anomalies such as craniofrontonasal dysplasia or craniosynostosis, defined by the premature closure of cranial sutures. Using clinical whole exome sequencing (WES), we found a BCL11B missense variant in a patient with a left-sided congenital diaphragmatic hernia as well as sagittal suture craniosynostosis. We applied targeted sequencing of BCL11B in patients with craniosynostosis or with a combination of craniosynostosis and CDH. This resulted in three additional BCL11B missense mutations in patients with craniosynostosis. The phenotype of the patient with both CDH as well as craniosynostosis was similar to the phenotype of previously reported patients with BCL11B missense mutations. Although these findings imply that both craniosynostosis as well as CDH may be associated with BCL11B mutations, further studies are required to establish whether BCL11B variants are causative mutations for both conditions or if our finding was coincidental.
Collapse
Affiliation(s)
- Linda Gaillard
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Quincy C C van den Bosch
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda S Jehee
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Danielle Veenma
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Irene M J Mathijssen
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
33
|
Daher MT, Bausero P, Agbulut O, Li Z, Parlakian A. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System. Front Cell Dev Biol 2020; 8:581674. [PMID: 33363142 PMCID: PMC7758212 DOI: 10.3389/fcell.2020.581674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ctip2/Bcl11b is a zinc finger transcription factor with dual action (repression/activation) that couples epigenetic regulation to gene transcription during the development of various tissues. It is involved in a variety of physiological responses under healthy and pathological conditions. Its role and mechanisms of action are best characterized in the immune and nervous systems. Furthermore, its implication in the development and homeostasis of other various tissues has also been reported. In the present review, we describe its role in skin development, adipogenesis, tooth formation and cranial suture ossification. Experimental data from several studies demonstrate the involvement of Bcl11b in the control of the balance between cell proliferation and differentiation during organ formation and repair, and more specifically in the context of stem cell self-renewal and fate determination. The impact of mutations in the coding sequences of Bcl11b on the development of diseases such as craniosynostosis is also presented. Finally, we discuss genome-wide association studies that suggest a potential influence of single nucleotide polymorphisms found in the 3’ regulatory region of Bcl11b on the homeostasis of the cardiovascular system.
Collapse
Affiliation(s)
- Marie-Thérèse Daher
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Pedro Bausero
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Ara Parlakian
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
34
|
Doostparast Torshizi A, Ionita-Laza I, Wang K. Cell Type-Specific Annotation and Fine Mapping of Variants Associated With Brain Disorders. Front Genet 2020; 11:575928. [PMID: 33343624 PMCID: PMC7744805 DOI: 10.3389/fgene.2020.575928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Common genetic variants confer susceptibility to a large number of complex brain disorders. Given that such variants predominantly localize in non-coding regions of the human genome, there is a significant challenge to predict and characterize their functional consequences. More importantly, most available computational methods, generally defined as context-free methods, output prediction scores regarding the functionality of genetic variants irrespective of the context, i.e., the tissue or cell-type affected by a disease, limiting the ability to predict the functional consequences of common variants on brain disorders. In this study, we introduce a comparative multi-step pipeline to investigate the relative effectiveness of context-specific and context-free approaches to prioritize disease causal variants. As an experimental case, we focused on schizophrenia (SCZ), a debilitating neuropsychiatric disease for which a large number of susceptibility variants is identified from genome-wide association studies. We tested over two dozen available methods and examined potential associations between the cell/tissue-specific mapping scores and open chromatin accessibility, and provided a prioritized map of SCZ risk loci for in vitro or in-vivo functional analysis. We found extensive differences between context-free and tissue-specific approaches and showed how they may play complementary roles. As a proof of concept, we found a few sets of genes, through a consensus mapping of both categories, including FURIN to be among the top hits. We showed that the genetic variants in this gene and related genes collectively dysregulate gene expression patterns in stem cell-derived neurons and characterize SCZ phenotypic manifestations, while genes which were not shared among highly prioritized candidates in both approaches did not demonstrate such characteristics. In conclusion, by combining context-free and tissue-specific predictions, our pipeline enables prioritization of the most likely disease-causal common variants in complex brain disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
35
|
Lee JH, Saito Y, Park SJ, Nakai K. Existence and possible roles of independent non-CpG methylation in the mammalian brain. DNA Res 2020; 27:dsaa020. [PMID: 32970817 PMCID: PMC7750974 DOI: 10.1093/dnares/dsaa020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Methylated non-CpGs (mCpHs) in mammalian cells yield weak enrichment signals and colocalize with methylated CpGs (mCpGs), thus have been considered byproducts of hyperactive methyltransferases. However, mCpHs are cell type-specific and associated with epigenetic regulation, although their dependency on mCpGs remains to be elucidated. In this study, we demonstrated that mCpHs colocalize with mCpGs in pluripotent stem cells, but not in brain cells. In addition, profiling genome-wide methylation patterns using a hidden Markov model revealed abundant genomic regions in which CpGs and CpHs are differentially methylated in brain. These regions were frequently located in putative enhancers, and mCpHs within the enhancers increased in correlation with brain age. The enhancers with hypermethylated CpHs were associated with genes functionally enriched in immune responses, and some of the genes were related to neuroinflammation and degeneration. This study provides insight into the roles of non-CpG methylation as an epigenetic code in the mammalian brain genome.
Collapse
Affiliation(s)
- Jong-Hun Lee
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
36
|
Prasad M, Balci TB, Prasad C, Andrews JD, Lee R, Jurkiewicz MT, Napier MP, Colaiacovo S, Guillen Sacoto MJ, Karp N. BCL11B-related disorder in two canadian children: Expanding the clinical phenotype. Eur J Med Genet 2020; 63:104007. [PMID: 32659295 DOI: 10.1016/j.ejmg.2020.104007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
The product of the BCL11B (B-Cell Leukemia 11) gene is a bi-functional transcriptional regulator that can act as either a repressor or an activator. It plays an important role in the development of the nervous, immune, and cutaneous systems, and is also involved in dental and craniofacial development. BCL11B-Related Disorder (BCL11BRD) is a novel rare neurodevelopmental disorder associated with mutations in BCL11B. A total of 17 patients have been described in the literature thus far. The main symptoms of BCL11BRD include global developmental delay, speech impairment, dental anomalies, feeding difficulties, refractive errors, dysmorphic features, and immunological abnormalities. In this report, we describe two Canadian girls, with pathogenic de novo BCL11B variants, both diagnosed via exome sequencing. One of the patients had global developmental delay, dental anomalies, dysmorphic features, dyskinesia and hypotonia; the latter two symptoms have not been previously reported in patients with BCL11BRD. She also had dysgenesis of corpus callosum and dilatation of the frontal horns of lateral ventricles, a brain anomaly that has been previously reported in only one other patient. The second patient had developmental delay, dysmorphic features, spasticity in lower limbs and dental anomalies. Our report contributes to the knowledge of the BCL11BRD, expands the clinical phenotype, and can also aid with genetic counseling of newly identified patients.
Collapse
Affiliation(s)
- M Prasad
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - T B Balci
- Schulich School of Medicine and Dentistry, Western University, Department of Pediatrics, Division of Medical Genetics, London Health Sciences Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - C Prasad
- Schulich School of Medicine and Dentistry, Western University, Department of Pediatrics, Division of Medical Genetics, London Health Sciences Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - J D Andrews
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - R Lee
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Dentistry, London Health Sciences Centre, London, Ontario, Canada
| | - M T Jurkiewicz
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medical Imaging, London Health Sciences Centre, London, Ontario, Canada
| | - M P Napier
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, Ontario, Canada
| | - S Colaiacovo
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, Ontario, Canada
| | | | - N Karp
- Schulich School of Medicine and Dentistry, Western University, Department of Pediatrics, Division of Medical Genetics, London Health Sciences Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
37
|
Li S, Liu H, Bian S, Sha X, Li Y, Wang Y. The accelerated aging model reveals critical mechanisms of late-onset Parkinson's disease. BioData Min 2020; 13:4. [PMID: 32536974 PMCID: PMC7288517 DOI: 10.1186/s13040-020-00215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Late-onset Parkinson’s disease (LOPD) is a common neurodegenerative disorder and lacks disease-modifying treatments, attracting major attentions as the aggravating trend of aging population. There were numerous evidences supported that accelerated aging was the primary risk factor for LOPD, thus pointed out that the mechanisms of PD should be revealed thoroughly based on aging acceleration. However, how PD was triggered by accelerated aging remained unclear and the systematic prediction model was needed to study the mechanisms of PD. Results In this paper, an improved PD predictor was presented by comparing with the normal aging process, and both aging and PD markers were identified herein using machine learning methods. Based on the aging scores, the aging acceleration network was constructed thereby, where the enrichment analysis shed light on key characteristics of LOPD. As a result, dysregulated energy metabolisms, the cell apoptosis, neuroinflammation and the ion imbalances were identified as crucial factors linking accelerated aging and PD coordinately, along with dysfunctions in the immune system. Conclusions In short, mechanisms between aging and LOPD were integrated by our computational pipeline.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Hongxin Liu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Shiyu Bian
- China Medical University, The Queen's University of Belfast Joint College, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, 200031 China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433 China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203 China
| | - Yin Wang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001 Liaoning Province China
| |
Collapse
|
38
|
Yang S, Kang Q, Hou Y, Wang L, Li L, Liu S, Liao H, Cao Z, Yang L, Xiao Z. Mutant BCL11B in a Patient With a Neurodevelopmental Disorder and T-Cell Abnormalities. Front Pediatr 2020; 8:544894. [PMID: 33194885 PMCID: PMC7641641 DOI: 10.3389/fped.2020.544894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: BCL11B encodes B-cell lymphoma/leukemia 11B, a transcription factor that participates in the differentiation and migration of neurons and lymphocyte cells. De novo mutations of BCL11B have been associated with neurodevelopmental disorder and immunodeficiency, such as immunodeficiency 49 (IMD49) and intellectual developmental disorder with speech delay, dysmorphic facies, and T-cell abnormalities (IDDSFTA). However, the pathogenesis of the neurodevelopmental disorder and T-cell deficiency is still mysterious. The strategy to distinguish these two diseases in detail is also unclear. Methods: A patient with unique clinical features was identified. Multiple examinations were applied for evaluation. Whole-exome sequencing (WES) and Sanger sequencing were also performed for the identification of the disease-causing mutation. Results: We reported a 17-month-old girl with intellectual disability, speech impairment, and delay in motor development. She presented with mild dysmorphic facial features and weak functional movement. MRI indicated the abnormal myelination of the white matter. Immunological analysis showed normal levels of RTEs and γδT cells but a deficiency of naive T cells. Genetic sequencing identified a de novo heterozygous frameshift mutation c.1192_1196delAGCCC in BCL11B. Conclusions: An IDDSFTA patient of East Asian origin was reported. The unreported neurological display, immunophenotype, and a novel disease-causing mutation of the patient extended the spectrum of clinical features and genotypes of IDDSFTA.
Collapse
Affiliation(s)
- Sai Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Qingyun Kang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Lili Wang
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Liping Li
- Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Shulei Liu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | | | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Neurology, Hunan Children's Hospital, Changsha, China.,Research Institute of Pediatrics, Hunan Children's Hospital, Changsha, China.,Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
39
|
Ratié L, Desmaris E, García-Moreno F, Hoerder-Suabedissen A, Kelman A, Theil T, Bellefroid EJ, Molnár Z. Loss of Dmrt5 Affects the Formation of the Subplate and Early Corticogenesis. Cereb Cortex 2019; 30:3296-3312. [PMID: 31845734 PMCID: PMC7197206 DOI: 10.1093/cercor/bhz310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip2+ cortical neurons in Dmrt5−/− mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons. We observed the altered split of preplate and the reduced SP and disturbed radial migration of cortical neurons into cortical plate in Dmrt5−/− brains and demonstrated an increase in the proportion of multipolar cells in primary neuronal cultures from Dmrt5−/− embryonic brains. Dmrt5 affects cortical development with specific time sensitivity that we described in two conditional mice with slightly different deletion time. We only observed a transient SP phenotype at E15.5, but not by E18.5 after early (Dmrt5lox/lox;Emx1Cre), but not late (Dmrt5lox/lox;NestinCre) deletion of Dmrt5. SP was less disturbed in Dmrt5lox/lox;Emx1Cre and Dmrt3−/− brains than in Dmrt5−/− and affects dorsomedial cortex more than lateral and caudal cortex. Our study demonstrates a novel function of Dmrt5 in the regulation of early SP formation and radial cortical neuron migration. Summary Statement Our study demonstrates a novel function of Dmrt5 in regulating marginal zone and subplate formation and migration of cortical neurons to cortical plate.
Collapse
Affiliation(s)
- Leslie Ratié
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Elodie Desmaris
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, E-48940 Leioa, Spain.,IKERBASQUE Foundation, 48013 Bilbao, Spain
| | | | - Alexandra Kelman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
40
|
BCL11B regulates MICA/B-mediated immune response by acting as a competitive endogenous RNA. Oncogene 2019; 39:1514-1526. [PMID: 31673069 DOI: 10.1038/s41388-019-1083-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer immune surveillance is an important host protection process that inhibits carcinogenesis and maintains cellular homeostasis. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, by a combined bioinformatics prediction and experimental approach, we identify BCL11B 3'-UTR as a putative MICA and MICB ceRNA. We demonstrate in several human cell lines of different origins that the knockdown of BCL11B downregulates surface expression of MICA and MICB. Furthermore, we demonstrate miRNA dependency of BCL11B-mediated MICA and MICB regulation in Dicer knockdown HCT116 cells. In addition, MICA/B-targeting miRNAs (miR-17, miR-93, miR-20a, miR-20b, miR-106a, and miR-106b) repressed the expression of BCL11B by targeting its 3'-UTR. Moreover, we showed that the BCL11B knockdown-mediated downregulation of MICA/B resulted in reduced NK cell elimination in vitro and in vivo through reduced recognition of NKG2D. Of particular significance, BCL11B displays tumor-suppressive properties. The expression of BCL11B is downregulated in colon cancer tissues and associated with a reduced median survival of colon cancer patients. Taken together, our study revealed a new mechanism of BCL11B that prevents immune evasion of cancerous cells by upregulation of the NKG2D ligands MICA and MICB in a ceRNA manner.
Collapse
|
41
|
Qiao F, Wang C, Luo C, Wang Y, Shao B, Tan J, Hu P, Xu Z. A De Novo heterozygous frameshift mutation identified in BCL11B causes neurodevelopmental disorder by whole exome sequencing. Mol Genet Genomic Med 2019; 7:e897. [PMID: 31347296 PMCID: PMC6732278 DOI: 10.1002/mgg3.897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/12/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background Next‐generation sequencing has been invaluable to delineate the genetic etiology of neurodevelopmental disorders (NDDs) in recent years. BCL11B, encoding Cys2His2 zinc finger transcription factor, is essential for the development of immune and neural systems. Methods Herein, we describe a Chinese girl presenting craniofacial abnormalities, developmental delay and intellectual disability with speech impairment. Exomes of genes were enriched with the Agilent SureSelect QXT ALL Human Exon V6 kit and sequenced on Illumina Hiseq 2500 platform. Results After variants filtering and annotation, we identified a de novo heterozygous 11bp frameshift mutation NM_138576.4: c.2190_2200delGGACGCACGAC (p.Thr730Thrfs*151) in exon 4 of BCL11B, which is expected to escape nonsense‐mediated mRNA decay and probably result in a truncated protein with lack of the C‐terminal DNA‐binding zinc‐finger domains. Conclusion This is the first report of NDD caused by a BCL11B variant in a Chinese population. The mutation identified in this report broadens the knowledge of mutation spectrum of BCL11B and might help in genetic counseling and reducing reproductive risk.
Collapse
Affiliation(s)
- Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Chen Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| |
Collapse
|
42
|
HIV brain latency as measured by CSF BcL11b relates to disrupted brain cellular energy in virally suppressed HIV infection. AIDS 2019; 33:433-441. [PMID: 30475266 DOI: 10.1097/qad.0000000000002076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigated whether HIV brain latency was associated with brain injury in virally suppressed HIV infection. DESIGN Observational cross-sectional and longitudinal study. METHODS The study included 26 virally suppressed HIV-infected men (61.5% with HIV-associated neurocognitive disorder) who undertook cerebrospinal fluid (CSF) analyses at baseline. They also completed a proton magnetic resonance spectroscopy (1H MRS) and neuropsychological assessments at baseline and 18 months. To quantify whether there was residual brain HIV transcription, we measured CSF HIV-tat. As an HIV brain latency biomarker, we used concentrations of CSF BcL11b - a microglia transcription factor that inhibits HIV transcription. Concurrently, we assessed neuroinflammation with CSF neopterin, neuronal injury with CSF neurofilament light-chain (NFL), and in-vivo neurochemistry with 1H MRS of N-acetyl aspartate (NAA), choline (Cho), creatine, myo-inositol (MI), glutamine/glutamate (Glx) in the frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate nucleus area. RESULTS Baseline adjusted regression models for neopterin, NFL, and tat showed that a higher CSF BcL11b was consistently associated with lower FWM creatine (when adjusted for neopterin: β = -0.30, P = 0.15; when adjusted for NFL: β = -0.47, P = 0.04; and when adjusted for tat: β = -0.47, P = 0.02). In longitudinal analyses, we found no time effect, but a consistent BcL11b altering effect on FWM creatine. The effect reached a significant moderate effect size range when corrected for CSF NFL (β = -0.36, P = 0.02) and CSF tat (β = -0.34, P = 0.02). CONCLUSIONS Reduced frontal white matter total creatine may indicate subclinical HIV brain latency-related injury. H MRS may offer a noninvasive option to measure HIV brain latency.
Collapse
|
43
|
Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen KLI, Hempel M, Haack TB, Baresic A, Genetti CA, Funari MFA, Lessel I, Kuhlmann L, Simon R, Liu P, Denecke J, Kuechler A, de Kruijff I, Shoukier M, Lek M, Mullen T, Lüdecke HJ, Lerario AM, Kobbe R, Krieger T, Demeer B, Lebrun M, Keren B, Nava C, Buratti J, Afenjar A, Shinawi M, Guillen Sacoto MJ, Gauthier J, Hamdan FF, Laberge AM, Campeau PM, Louie RJ, Cathey SS, Prinz I, Jorge AAL, Terhal PA, Lenhard B, Wieczorek D, Strom TM, Agrawal PB, Britsch S, Tolosa E, Kubisch C. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 2018; 141:2299-2311. [PMID: 29985992 PMCID: PMC6061686 DOI: 10.1093/brain/awy173] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Gehbauer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Lyon Neuroscience Research Center, Inserm U1028 - CNRS UMR5292 - UCBLyon1, GENDEV Team, Bron, France
| | | | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anja Baresic
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, London, UK
| | - Casie A Genetti
- Divisions of Genetics and Genomics and Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Kuhlmann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ineke de Kruijff
- Department of Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Thomas Mullen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institute of Human Genetics, University Clinic, Heinrich-Heine University, Düsseldorf, Germany
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, USA
| | - Robin Kobbe
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Thorsten Krieger
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedicte Demeer
- Unité de Génétique Clinique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Marine Lebrun
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Nava
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julien Buratti
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Afenjar
- Département de génétique médicale, Sorbonne Université, GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Centre de Référence déficiences intellectuelles de causes rares, Hôpital Armand Trousseau, F-75012 Paris, France
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicin, St. Louis, MO, USA
| | | | - Julie Gauthier
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada
| | - Fadi F Hamdan
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada
| | - Anne-Marie Laberge
- Division of Medical Genetics and Research Center, CHU Sainte-Justine and Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | | | - Sara S Cathey
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Institute of Human Genetics, University Clinic, Heinrich-Heine University, Düsseldorf, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Pankaj B Agrawal
- Divisions of Genetics and Genomics and Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Rimpelä JM, Pörsti IH, Jula A, Lehtimäki T, Niiranen TJ, Oikarinen L, Porthan K, Tikkakoski A, Virolainen J, Kontula KK, Hiltunen TP. Genome-wide association study of nocturnal blood pressure dipping in hypertensive patients. BMC MEDICAL GENETICS 2018; 19:110. [PMID: 29973135 PMCID: PMC6032801 DOI: 10.1186/s12881-018-0624-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
Background Reduced nocturnal fall (non-dipping) of blood pressure (BP) is a predictor of cardiovascular target organ damage. No genome-wide association studies (GWAS) on BP dipping have been previously reported. Methods To study genetic variation affecting BP dipping, we conducted a GWAS in Genetics of Drug Responsiveness in Essential Hypertension (GENRES) cohort (n = 204) using the mean night-to-day BP ratio from up to four ambulatory BP recordings conducted on placebo. Associations with P < 1 × 10− 5 were further tested in two independent cohorts: Haemodynamics in Primary and Secondary Hypertension (DYNAMIC) (n = 183) and Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic Syndrome (DILGOM) (n = 180). We also tested the genome-wide significant single nucleotide polymorphism (SNP) for association with left ventricular hypertrophy in GENRES. Results In GENRES GWAS, rs4905794 near BCL11B achieved genome-wide significance (β = − 4.8%, P = 9.6 × 10− 9 for systolic and β = − 4.3%, P = 2.2 × 10− 6 for diastolic night-to-day BP ratio). Seven additional SNPs in five loci had P values < 1 × 10− 5. The association of rs4905794 did not significantly replicate, even though in DYNAMIC the effect was in the same direction (β = − 0.8%, P = 0.4 for systolic and β = − 1.6%, P = 0.13 for diastolic night-to-day BP ratio). In GENRES, the associations remained significant even during administration of four different antihypertensive drugs. In separate analysis in GENRES, rs4905794 was associated with echocardiographic left ventricular mass (β = − 7.6 g/m2, P = 0.02). Conclusions rs4905794 near BCL11B showed evidence for association with nocturnal BP dipping. It also associated with left ventricular mass in GENRES. Combined with earlier data, our results provide support to the idea that BCL11B could play a role in cardiovascular pathophysiology. Electronic supplementary material The online version of this article (10.1186/s12881-018-0624-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenni M Rimpelä
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Ilkka H Pörsti
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Antti Jula
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Teemu J Niiranen
- National Institute for Health and Welfare (THL), Helsinki, Finland.,National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Lasse Oikarinen
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Porthan
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Tikkakoski
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Juha Virolainen
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo K Kontula
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Timo P Hiltunen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
| |
Collapse
|
45
|
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci 2017; 10:243. [PMID: 28824374 PMCID: PMC5540894 DOI: 10.3389/fnmol.2017.00243] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Yuanbin Xie
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGoettingen, Germany
| |
Collapse
|