1
|
Guo J, Zhang Q, Li B, Liu S, Li Y, Xing C, Ning G. Sex-related disparities in mobility, sensory function, and psychological outcomes in Wistar and Sprague-Dawley rats following spinal cord injury. Exp Neurol 2025; 388:115204. [PMID: 40054653 DOI: 10.1016/j.expneurol.2025.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Spinal cord injury (SCI) causes persistent motor, sensory, psychological, and bladder dysfunctions, with clinical evidence indicating better recovery in females compared to males. However, the mechanisms driving these sex-specific differences remain unclear. This study assessed sex- and strain-specific differences in recovery using Wistar and Sprague-Dawley (SD) rats. SCI was induced at the T10 spinal level via a contusion model, and functional recovery was evaluated through standardized tests for locomotion, sensory thresholds, psychological outcomes, and bladder function. Female rats demonstrated superior motor recovery, with higher Basso, Beattie & Bresnahan (BBB) scores and improved coordination, alongside improved sensory outcomes, evidenced by reduced mechanical pain sensitivity and longer thermal response latencies. Strain differences were observed, with SD rats exhibiting greater pain thresholds than Wistar rats. Females also showed improved bladder outcomes, including higher leak point pressure and reduced bladder volumes, while males displayed more pronounced depression-like behaviors. Cognitive performance did not differ significantly between sexes. These findings highlight sex-specific advantages in motor, sensory, and bladder function, as well as strain-dependent sensory differences, emphasizing the importance of considering sex and strain in designing targeted therapies for SCI rehabilitation.
Collapse
Affiliation(s)
- Junrui Guo
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qi Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Baicao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
2
|
Shen Z, Feng B, Lim WL, Woo T, Liu Y, Vicenzi S, Wang J, Kwon BK, Zou Y. Astrocytic Ryk signaling coordinates scarring and wound healing after spinal cord injury. Proc Natl Acad Sci U S A 2025; 122:e2417400122. [PMID: 40208942 PMCID: PMC12012454 DOI: 10.1073/pnas.2417400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/12/2025] Open
Abstract
Wound healing after spinal cord injury involves highly coordinated interactions among multiple cell types, which are poorly understood. Astrocytes play a central role in creating a border against the non-neural lesion core. To do so, astrocytes undergo dramatic morphological changes by first thickening and elongating their processes and then overlapping them to form a physical barrier. We show here that the expression of a cell-surface receptor, Ryk, is induced in astrocytes after injury in both rodent and human spinal cords. Astrocyte-specific knockout of Ryk dramatically elongated the reactive astrocytes, accelerated the formation of the border, and reduced the size of the scar. Astrocyte-specific knockout of Ryk also accelerated the injury responses of multiple cell types. Single-cell transcriptomics analyses revealed a broad range of changes in cell signaling among astrocytes, microglia, fibroblasts, and endothelial cells after astrocyte-specific Ryk knockout, suggesting that Ryk not only regulates injury responses of astrocytes but may also regulate signals emanating from astrocytes and coordinate the responses of these cell types. The elongation of astrocyte processes is mediated by NrCAM, a cell adhesion molecule induced by astrocyte-specific conditional knockout of Ryk after spinal cord injury. Our findings suggest that Ryk is a promising therapeutic target to accelerate wound healing, promote neuronal survival, and enhance functional recovery.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Bo Feng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Wei Ling Lim
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Timothy Woo
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Yanlin Liu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Silvia Vicenzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jingyi Wang
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Brian K. Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BCV5Z 1M9, Canada
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Poulen G, Douich N, Gazard CM, Mestre-Francés N, Cardoso M, Bauchet L, Vachiery-Lahaye F, Lonjon N, Gerber YN, Perrin FE. Sex and age differences in glia and myelin in nonhuman primate and human spinal cords: implications for pathology. Cell Death Discov 2025; 11:129. [PMID: 40175332 PMCID: PMC11965325 DOI: 10.1038/s41420-025-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
In a healthy central nervous system, glial cells are influenced by genetic, epigenetic, age, and sex factors. Aging typically causes astrocytes and microglia to undergo changes that reduce their neuroprotective functions and increase harmful activities. Additionally, sex-related differences in glial and myelin functions may impact neurological disorders. Despite this, few studies have investigated glial cells in primates, with most focusing on the brain. This study aims to explore whether glial cells and myelin exhibit age- and sex-related differences in the spinal cord of nonhuman primates and humans. We used immunohistochemistry and myelin staining to analyze healthy spinal cord samples from midlife and aged individuals of both sexes, focusing on Microcebus murinus (a small nonhuman primate) and humans. Primate spinal cords show distinct variations in glial markers and myelin characteristics related to sex and age, with differences varying between species. Notably, GFAP expression is sex-dependent in both primate species. We also observed greater differences in the expression of microglial markers than other glial markers. Overall, we found the opposite pattern for the g-ratio and oligodendrocytic marker between species. These findings suggest that glial cells may play a critical role in age- and sex-related differences in the prevalence and progression of spinal cord diseases.
Collapse
Affiliation(s)
- Gaëtan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Department of Neurosurgery, CHU, Montpellier, France
| | - Nacéra Douich
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Chloé M Gazard
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- PSL Research University, Paris, France
| | - Maïda Cardoso
- University of Montpellier, plateforme BNIF, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, CHU, Montpellier, France
- INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | | | - Nicolas Lonjon
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Department of Neurosurgery, CHU, Montpellier, France
| | | | - Florence E Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
4
|
Shen Z, Feng B, Lim WL, Woo T, Liu Y, Vicenzi S, Wang J, Kwon BK, Zou Y. Astrocytic Ryk signaling coordinates scarring and wound healing after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618727. [PMID: 39463959 PMCID: PMC11507886 DOI: 10.1101/2024.10.16.618727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Wound healing after spinal cord injury involves highly coordinated interactions among multiple cell types, which is poorly understood. Astrocytes play a central role in creating a border against the non-neural lesion core. To do so, astrocytes undergo dramatic morphological changes by first thickening the processes and then elongating and overlap them. We show here show that the expression of a cell-surface receptor, Ryk, is induced in astrocytes after injury in both rodent and human spinal cord. Astrocyte-specific knockout of Ryk dramatically elongated the reactive astrocytes and accelerated the formation of the border and reduced the size of the scar. Astrocyte-specific knockout of Ryk also accelerated the injury responses of multiple cell types, including the resolution of neuroinflammation. Single cell transcriptomics analyses revealed a broad range of changes cell signaling among astrocytes, microglia, fibroblasts, endothelial cell, etc, after astrocyte-specific Ryk knockout, suggesting that Ryk not only regulates the injury response of astrocytes but may also regulate signals which coordinate the responses of multiple cell types. The elongation is mediated by NrCAM, a cell adhesion molecule induced by astrocyte-specific conditional knockout of Ryk after spinal cord injury. Our findings suggest a promising therapeutic target to accelerate wound healing and promote neuronal survival and enhance functional recovery.
Collapse
|
5
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury. Exp Neurol 2024; 375:114725. [PMID: 38365132 PMCID: PMC10981559 DOI: 10.1016/j.expneurol.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin.
| |
Collapse
|
6
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6J mice on recovery after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557980. [PMID: 37745393 PMCID: PMC10516041 DOI: 10.1101/2023.09.15.557980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| |
Collapse
|
7
|
Metcalfe M, Steward O. PTEN deletion in spinal pathways via retrograde transduction with AAV-rg enhances forelimb motor recovery after cervical spinal cord injury; sex differences and late-onset pathophysiologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533502. [PMID: 36993317 PMCID: PMC10055283 DOI: 10.1101/2023.03.20.533502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Spinal cord injuries (SCI) cause permanent functional impairments due to interruption of motor and sensory pathways. Regeneration of axons does not occur due to lack of intrinsic growth capacity of adult neurons and extrinsic inhibitory factors, especially at the injury site. However, some regeneration can be achieved via deletion of the phosphatase and tensin homolog (PTEN) in cells of origin of spinal pathways. Here, we deployed an AAV variant that is retrogradely transported (AAV-rg) to deliver gene modifying cargos to the cells of origin of multiple pathways interrupted by SCI, testing whether this promoted recovery of motor function. PTEN f/f ;Rosa tdTomato mice and control Rosa tdTomato mice received injections of different doses (number of genome copies, GCs) of AAV-rg/Cre into the cervical spinal cord at the time of a C5 dorsal hemisection injury. Forelimb grip strength was tested over time using a grip strength meter. PTEN f/f ;Rosa tdTomato mice with AAV-rg/Cre (PTEN-deleted) exhibited substantial improvements in forelimb gripping ability in comparison to controls. Of note, there were major sex differences in the extent of recovery, with male mice exhibiting greater recovery than females. However, at around 5-7 weeks post-injury/injection, many mice with SCI and AAV-rg-mediated PTEN deletion began to exhibit pathophysiologies involving excessive scratching of the ears and back of the neck and rigid forward extension of the hindlimbs. These pathophysiologies increased in incidence and severity over time. Our results reveal that although intra-spinal injections of AAV-rg/Cre in PTEN f/f ;Rosa tdTomato mice can enhance forelimb motor recovery after SCI, late-developing functional abnormalities occur with the experimental conditions used here. Mechanisms underlying late-developing pathophysiologies remain to be defined.
Collapse
|
8
|
Timotius IK, Roelofs RF, Richmond-Hacham B, Noldus LPJJ, von Hörsten S, Bikovski L. CatWalk XT gait parameters: a review of reported parameters in pre-clinical studies of multiple central nervous system and peripheral nervous system disease models. Front Behav Neurosci 2023; 17:1147784. [PMID: 37351154 PMCID: PMC10284348 DOI: 10.3389/fnbeh.2023.1147784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Automated gait assessment tests are used in studies of disorders characterized by gait impairment. CatWalk XT is one of the first commercially available automated systems for analyzing the gait of rodents and is currently the most used system in peer-reviewed publications. This automated gait analysis system can generate a large number of gait parameters. However, this creates a new challenge in selecting relevant parameters that describe the changes within a particular disease model. Here, for the first time, we performed a multi-disorder review on published CatWalk XT data. We identify commonly reported CatWalk XT gait parameters derived from 91 peer-reviewed experimental studies in mice, covering six disorders of the central nervous system (CNS) and peripheral nervous system (PNS). The disorders modeled in mice were traumatic brain injury (TBI), stroke, sciatic nerve injury (SNI), spinal cord injury (SCI), Parkinson's disease (PD), and ataxia. Our review consisted of parameter selection, clustering, categorization, statistical evaluation, and data visualization. It suggests that certain gait parameters serve as potential indicators of gait dysfunction across multiple disease models, while others are specific to particular models. The findings also suggest that the more site-specific the injury is, the fewer parameters are reported to characterize its gait abnormalities. This study strives to present a clearly organized picture of gait parameters used in each one of the different mouse models, potentially helping novel CatWalk XT users to apply this information to similar or related mouse models they are working on.
Collapse
Affiliation(s)
- Ivanna K. Timotius
- Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bar Richmond-Hacham
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lucas P. J. J. Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| |
Collapse
|
9
|
Bringuier CM, Noristani HN, Perez JC, Cardoso M, Goze-Bac C, Gerber YN, Perrin FE. Up-Regulation of Astrocytic Fgfr4 Expression in Adult Mice after Spinal Cord Injury. Cells 2023; 12:cells12040528. [PMID: 36831195 PMCID: PMC9954417 DOI: 10.3390/cells12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, 34095 Montpellier, France
| | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Dietz V, Knox K, Moore S, Roberts N, Corona KK, Dulin JN. Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice. Exp Neurol 2022; 352:114048. [PMID: 35304102 DOI: 10.1016/j.expneurol.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Spinal cord injury (SCI) frequently results in immediate and sustained neurological dysfunction, including intractable neuropathic pain in approximately 60-80% of individuals. SCI induces immediate mechanical damage to spinal cord tissue followed by a period of secondary injury in which tissue damage is further propagated, contributing to the development of anatomically unique lesions. Variability in lesion size and location influences the degree of motor and sensory dysfunction incurred by an individual. We predicted that variability in lesion parameters may also explain why some, but not all, experimental animals develop mechanical sensitivity after SCI. To characterize the relationship of lesion anatomy to mechanical allodynia, we utilized a mouse cervical hemicontusion model of SCI that has been shown to lead to the development and persistence of mechanical allodynia in the ipsilateral forelimb after injury. At four weeks post-SCI, the numbers and locations of surviving neurons were quantified along with total lesion volume and nociceptive fiber sprouting. We found that the subset of animals exhibiting mechanical allodynia had significantly increased neuronal sparing in the ipsilateral dorsal horn around the lesion epicenter compared to animals that did not exhibit mechanical allodynia. Additionally, we failed to observe significant differences between groups in nociceptive fiber density in the dorsal horn around the lesion epicenter. Notably, we found that impactor probe displacement upon administration of the SCI surgery was significantly lower in sensitive animals compared with not-sensitive animals. Together, our data indicate that lesion severity negatively correlates with the manifestation of at-level mechanical hypersensitivity and suggests that sparing of dorsal horn neurons may be required for the development of neuropathic pain.
Collapse
Affiliation(s)
- Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Katelyn Knox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sherilynne Moore
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Nolan Roberts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Poulen G, Bartolami S, Noristani HN, Perrin FE, Gerber YN. Unlike Brief Inhibition of Microglia Proliferation after Spinal Cord Injury, Long-Term Treatment Does Not Improve Motor Recovery. Brain Sci 2021; 11:brainsci11121643. [PMID: 34942945 PMCID: PMC8699766 DOI: 10.3390/brainsci11121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI.
Collapse
Affiliation(s)
- Gaëtan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Department of Neurosurgery, Univ. Montpellier, CHU, Montpellier, France
| | - Sylvain Bartolami
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Harun N. Noristani
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Florence E. Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Institut Universitaire de France (IUF), France
| | - Yannick N. Gerber
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Correspondence: ; Tel.: +33-467143386
| |
Collapse
|
12
|
Poulen G, Aloy E, Bringuier CM, Mestre-Francés N, Artus EV, Cardoso M, Perez JC, Goze-Bac C, Boukhaddaoui H, Lonjon N, Gerber YN, Perrin FE. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Am J Cancer Res 2021; 11:8640-8659. [PMID: 34522204 PMCID: PMC8419033 DOI: 10.7150/thno.61833] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
No curative treatment is available for any deficits induced by spinal cord injury (SCI). Following injury, microglia undergo highly diverse activation processes, including proliferation, and play a critical role on functional recovery. In a translational objective, we investigated whether a transient pharmacological reduction of microglia proliferation after injury is beneficial for functional recovery after SCI in mice and nonhuman primates. Methods: The colony stimulating factor-1 receptor (CSF1R) regulates proliferation, differentiation, and survival of microglia. We orally administrated GW2580, a CSF1R inhibitor that inhibits microglia proliferation. In mice and nonhuman primates, we then analyzed treatment outcomes on locomotor function and spinal cord pathology. Finally, we used cell-specific transcriptomic analysis to uncover GW2580-induced molecular changes in microglia. Results: First, transient post-injury GW2580 administration in mice improves motor function recovery, promotes tissue preservation and/or reorganization (identified by coherent anti-stokes Raman scattering microscopy), and modulates glial reactivity. Second, post-injury GW2580-treatment in nonhuman primates reduces microglia proliferation, improves motor function recovery, and promotes tissue protection. Finally, GW2580-treatment in mice induced down-regulation of proliferation-associated transcripts and inflammatory associated genes in microglia that may account for reduced neuroinflammation and improved functional recovery following SCI. Conclusion: Thus, a transient oral GW2580 treatment post-injury may provide a promising therapeutic strategy for SCI patients and may also be extended to other central nervous system disorders displaying microglia activation.
Collapse
|
13
|
Isvoranu G, Manole E, Neagu M. Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 2021; 9:1050. [PMID: 34440252 PMCID: PMC8392642 DOI: 10.3390/biomedicines9081050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The present review discusses recent data regarding rodent models of spinal cord and peripheral nerve injuries in terms of gait analysis using the CatWalk system (CW), an automated and exceptionally reliable system for assessing gait abnormalities and motor coordination. CW is a good tool for both studying improvements in the walking of animals after suffering a peripheral nerve and spinal cord lesion and to select the best therapies and procedures after tissue destruction, given that it provides objective and quantifiable data. Most studies using CW for gait analysis that were published in recent years focus on injuries inflicted in the peripheral nerve, spinal cord, and brain. CW has been used in the assessment of rodent motor function through high-resolution videos, whereby specialized software was used to measure several aspects of the animal's gait, and the main characteristics of the automated system are presented here. CW was developed to assess footfall and gait changes, and it can calculate many parameters based on footprints and time. However, given the multitude of parameters, it is necessary to evaluate which are the most important under the employed experimental circumstances. By selecting appropriate animal models and evaluating peripheral nerve and spinal cord lesion regeneration using standardized methods, suggestions for new therapies can be provided, which represents the translation of this methodology into clinical application.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Husbandry Unit, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Emilia Manole
- Laboratory of Cellular Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
| | - Monica Neagu
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
14
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
15
|
Inayat S, Singh S, Ghasroddashti A, Qandeel, Egodage P, Whishaw IQ, Mohajerani MH. A Matlab-based toolbox for characterizing behavior of rodents engaged in string-pulling. eLife 2020; 9:54540. [PMID: 32589141 PMCID: PMC7347385 DOI: 10.7554/elife.54540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
String-pulling by rodents is a behavior in which animals make rhythmical body, head, and bilateral forearm as well as skilled hand movements to spontaneously reel in a string. Typical analysis includes kinematic assessment of hand movements done by manually annotating frames. Here, we describe a Matlab-based software that allows whole-body motion characterization using optical flow estimation, descriptive statistics, principal component, and independent component analyses as well as temporal measures of Fano factor, entropy, and Higuchi fractal dimension. Based on image-segmentation and heuristic algorithms for object tracking, the software also allows tracking of body, ears, nose, and forehands for estimation of kinematic parameters such as body length, body angle, head roll, head yaw, head pitch, and path and speed of hand movements. The utility of the task and software is demonstrated by characterizing postural and hand kinematic differences in string-pulling behavior of two strains of mice, C57BL/6 and Swiss Webster.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Arashk Ghasroddashti
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Qandeel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Pramuka Egodage
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
16
|
The effects of mouse strain and age on a model of unilateral cervical contusion spinal cord injury. PLoS One 2020; 15:e0234245. [PMID: 32542053 PMCID: PMC7295191 DOI: 10.1371/journal.pone.0234245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
There are approximately 1.2 million people currently living with spinal cord injury (SCI), with a majority of cases at the cervical level and half involving incomplete injuries. Yet, as most preclinical research has been focused on bilateral thoracic models, there remains a disconnect between bench and bedside that limits translational success. Here, we profile a clinically relevant model of unilateral cervical contusion injury in the mouse (30kD with 0, 2, 5, or 10 second dwell time). We demonstrate sustained behavioral deficits in performance on grip strength, cylinder reaching, horizontal ladderbeam and CatWalk automated gait analysis tasks. Beyond highlighting reliable parameters for injury assessment, we also explored the effect of mouse strain and age on injury outcome, including evaluation of constitutively immunodeficient mice relevant for neurotransplantation and cellular therapy testing. Comparison of C57Bl/6 and immunodeficient Rag2gamma(c)-/- as well as Agouti SCIDxRag2Gamma(c)-/- hybrid mouse strains revealed fine differences in post-injury ipsilateral grip strength as well as total number of rearings on the cylinder task. Differences in post-SCI contralateral forepaw duty cycle and regularity index as measured by CatWalk gait analysis between the two immunodeficient strains were also observed. Further, assessment of young (3–4 months old) and aging (16–17 months old) Rag2gamma(c)-/- mice identified age-related pre-injury differences in strength and rearing that were largely masked following cervical contusion injury; observations that may help interpret previous results in aged rodents as well as human clinical trials. Collectively, the work provides useful insight for experimental design and analysis of future pre-clinical studies in a translational unilateral cervical contusion injury model.
Collapse
|
17
|
Khan TI, Hemalatha S, Waseem M. Promising Role of Nano-Encapsulated Drugs for Spinal Cord Injury. Mol Neurobiol 2020; 57:1978-1985. [PMID: 31900861 DOI: 10.1007/s12035-019-01862-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
Abstract
Nanomaterials have been utilized for the drug delivery in the central nervous system (CNS), and many research investigators are currently focussing on this specified area. There has been a lot of advancement in the nanoparticle-mediated drug delivery to the brain. Neuronal injuries including spinal cord injury (SCI) and their targeted therapies are still in its infancy on this planet. SCI has been known to cause axonal damage followed by the loss of communication between CNS and other non-neuronal systems. SCI has been critically associated with prolonged inflammation, sensory dysfunction, and motor impairment in SCI patients. There has been a critical crosstalk in SCI and blood brain barriers (BBBs) for drug absorption and distribution in patients. There is a paucity of possible therapies for proper intervention of SCI due to selective permeability of the drugs across BBB. Nanomaterials are contemplated in the drug delivery system for SCI. In addition, self-assembled nanomicelles, lipid nanoparticles, and other co-polymers have now been explored for neuronal injuries. This review focuses on the promising approach and/or role of nanodrug delivery to target SCI in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Tasneem Ismail Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohammad Waseem
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
18
|
Keser V, Lachance JFB, Alam SS, Lim Y, Scarlata E, Kaur A, Zhang TF, Lv S, Lachapelle P, O’Flaherty C, Golden JA, Jerome-Majewska LA. Snap29 mutant mice recapitulate neurological and ophthalmological abnormalities associated with 22q11 and CEDNIK syndrome. Commun Biol 2019; 2:375. [PMID: 31633066 PMCID: PMC6789041 DOI: 10.1038/s42003-019-0601-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Synaptosomal-associated protein 29 (SNAP29) encodes a member of the SNARE family of proteins implicated in numerous intracellular protein trafficking pathways. SNAP29 maps to the 22q11.2 region and is deleted in 90% of patients with 22q11.2 deletion syndrome (22q11.2DS). Moreover, bi-allelic SNAP29 mutations in patients are responsible for CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma) syndrome. A mouse model that recapitulates abnormalities found in these syndromes is essential for uncovering the cellular basis of these disorders. In this study, we report that mice with a loss of function mutation of Snap29 on a mixed CD1;FvB genetic background recapitulate skin abnormalities associated with CEDNIK, and also phenocopy neurological and ophthalmological abnormalities found in CEDNIK and a subset of 22q11.2DS patients. Our work also reveals an unanticipated requirement for Snap29 in male fertility and supports contribution of hemizygosity for SNAP29 to the phenotypic spectrum of abnormalities found in 22q11.2DS patients.
Collapse
Affiliation(s)
- Vafa Keser
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1 Canada
| | | | | | - Youngshin Lim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Eleonora Scarlata
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H4A 3J1 Canada
- Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1 Canada
| | - Apinder Kaur
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1 Canada
| | - Tian Fang Zhang
- Department of Ophthalmology & Visual Sciences, McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1 Canada
| | - Shasha Lv
- Department of Ophthalmology & Visual Sciences, McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1 Canada
| | - Pierre Lachapelle
- Department of Ophthalmology & Visual Sciences, McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1 Canada
| | - Cristian O’Flaherty
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H4A 3J1 Canada
- Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1 Canada
| | - Jeffrey A. Golden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1 Canada
- Department of Anatomy and Cell Biology, McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1 Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1 Canada
| |
Collapse
|
19
|
Noristani H, Perrin F. Use of longitudinal magnetic resonance imaging in preclinical models of spinal cord injury. Neural Regen Res 2019; 14:771-772. [PMID: 30688261 PMCID: PMC6375030 DOI: 10.4103/1673-5374.249222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Gerber YN, Saint-Martin GP, Bringuier CM, Bartolami S, Goze-Bac C, Noristani HN, Perrin FE. CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury. Front Cell Neurosci 2018; 12:368. [PMID: 30386212 PMCID: PMC6198221 DOI: 10.3389/fncel.2018.00368] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by activation and proliferation of resident microglia as well as infiltrating peripheral monocyte-derived macrophages. Depending on the time post-lesion, positive and detrimental influences of microglia/macrophages on axonal regeneration had been reported after SCI, raising the issue whether their modulation may represent an attractive therapeutic strategy. Colony-stimulating factor 1 (CSF1) regulates microglia/macrophages proliferation, differentiation and survival thus, pharmacological treatments using CSF1 receptor (CSF1R) inhibitors had been used to ablate microglia. We analyzed the effect of chronic (10 weeks) food diet containing GW2580 (a CSF1R inhibitor) in mice that underwent lateral spinal cord hemisection (HS) at vertebral thoracic level 9. Treatment started 4 weeks prior to SCI and continued until 6 weeks post-lesion. We first demonstrate that GW2580 treatment did not modify microglial response in non-injured spinal cords. Conversely, a strong decrease in proliferating microglia was observed following SCI. Second, we showed that GW2580 treatment improved some parameters of motor recovery in injured animals through better paw placement. Using in and ex vivo magnetic resonance imaging (MRI), we then established that GW2580 treatment had no effect on lesion extension and volume. However, histological analyses revealed that GW2580-treated animals had reduced gliosis and microcavity formation following SCI. In conclusion, CSF1R blockade using GW2580 specifically inhibits SCI-induced microglia/macrophages proliferation, reduces gliosis and microcavity formations and improves fine motor recovery after incomplete SCI. Preventing microglial proliferation may offer therapeutic approach to limit neuroinflammation, promote tissue preservation and motor recovery following SCI.
Collapse
Affiliation(s)
- Yannick Nicolas Gerber
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France
| | - Guillaume Patrick Saint-Martin
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France.,UMR 5221 CNRS, University of Montpellier, Montpellier, France
| | - Claire Mathilde Bringuier
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France
| | - Sylvain Bartolami
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France
| | | | - Harun Najib Noristani
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France
| | - Florence Evelyne Perrin
- University of Montpellier, Montpellier, France.,INSERM, U1198, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|