1
|
Gulledge AT. Cholinergic Activation of Corticofugal Circuits in the Adult Mouse Prefrontal Cortex. J Neurosci 2024; 44:e1388232023. [PMID: 38050146 PMCID: PMC10860659 DOI: 10.1523/jneurosci.1388-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
2
|
Gulledge AT. Cholinergic activation of corticofugal circuits in the adult mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538437. [PMID: 37163128 PMCID: PMC10168390 DOI: 10.1101/2023.04.28.538437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In layer 5 of the neocortex, ACh promotes cortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in pairs of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic acetylcholine receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies. The cholinergic increase in sEPSP amplitudes and frequencies in PT neurons was not sensitive to blockade of GABAergic receptors with gabazine (10 µM) and CGP52432 (2.5 µM), but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in pairs of PT neurons relative to IT-PT and IT-IT pairs. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not IT, neurons with clozapine-N-oxide (5 µM) blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by preferentially amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College 74 College Street, Vail 601, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Goswamee P, Rice R, Leggett E, Zhang F, Manicka S, Porter JH, McQuiston AR. Effects of subanesthetic ketamine and (2R,6R) hydroxynorketamine on working memory and synaptic transmission in the nucleus reuniens in mice. Neuropharmacology 2022; 208:108965. [PMID: 35065945 PMCID: PMC8885971 DOI: 10.1016/j.neuropharm.2022.108965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 01/16/2023]
Abstract
RATIONALE Acute cognitive impairment and abuse potential of ketamine incentivizes the search for alternatives to ketamine for clinical management of treatment-resistant depression. Recently, (2R,6R) hydroxynorketamine ((2R,6R)-HNK), a metabolite of ketamine, has shown promise due to its reported lack of ketamine-like reinforcing properties. Nonetheless, the effect of (2R,6R)-HNK on cognition has not been reported. METHOD Adult male mice were placed in a Y-maze to measure spatial working memory (SWM) 24 h after treatment with either a single or repeated subanesthetic dose of (2R,6R)-HNK or ketamine. To determine the effect of the drug regimens on synaptic mechanisms in neural circuits deemed critical for SWM, we conducted patch-clamp electrophysiological recordings from neurons in the midline thalamic nucleus reuniens (RE) in response to optogenetic stimulation of medial prefrontal cortex (mPFC) inputs in acutely prepared brain slices. RESULTS Single or repeated treatment with a 10 mg/kg dose of either drug did not impact performance in a Y-maze. However, single administration of a ½-log higher dose (32 mg/kg) of ketamine significantly reduced SWM. The same dose of (2R,6R)-HNK did not produce SWM deficits. Interestingly, repeated administration of either drugs at the 32 mg/kg had no effect on SWM performances. Concomitant to these effects on SWM, only single injection of 32 mg/kg of ketamine was found to increase the mPFC-driven action potential firing activity in the RE neurons. Conversely, both single and repeated administration of the 32 mg/kg dose of (2R,6R)-HNK but not ketamine, increased the input resistance of the RE neurons. CONCLUSION Our results indicate that acute treatment of ketamine at 32 mg/kg increases mPFC-driven firing activity of RE neurons, and this contributes to the ketamine-mediated cognitive deficit. Secondly, sub-chronic treatment with the same dose of ketamine likely induces tolerance. Although single or repeated administration of the 32 mg/kg dose of (2R,6R)-HNK can alter intrinsic properties of RE neurons, this dose does not produce cognitive deficit or changes in synaptic mechanism in the RE.
Collapse
Affiliation(s)
- Priyodarshan Goswamee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Remington Rice
- Department of Psychology, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Leggett
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fan Zhang
- Department of Psychology, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Sofia Manicka
- Department of Psychology, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph H Porter
- Department of Psychology, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
4
|
Goswamee P, Leggett E, McQuiston AR. Nucleus Reuniens Afferents in Hippocampus Modulate CA1 Network Function via Monosynaptic Excitation and Polysynaptic Inhibition. Front Cell Neurosci 2021; 15:660897. [PMID: 34712120 PMCID: PMC8545856 DOI: 10.3389/fncel.2021.660897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
The thalamic midline nucleus reuniens modulates hippocampal CA1 and subiculum function via dense projections to the stratum lacunosum-moleculare (SLM). Previously, anatomical data has shown that reuniens inputs in the SLM form synapses with dendrites of both CA1 principal cells and inhibitory interneurons. However, the ability of thalamic inputs to excite the CA1 principal cells remains controversial. In addition, nothing is known about the impact of reuniens inputs on diverse subpopulations of interneurons in CA1. Therefore, using whole cell patch-clamp electrophysiology in ex vivo hippocampal slices of wild-type and transgenic mice, we measured synaptic responses in different CA1 neuronal subtypes to optogenetic stimulation of reuniens afferents. Our data shows that reuniens inputs mediate both excitation and inhibition of the CA1 principal cells. However, the optogenetic excitation of the reuniens inputs failed to drive action potential firing in the majority of the principal cells. While the excitatory postsynaptic currents were mediated via direct monosynaptic activation of the CA1 principal cells, the inhibitory postsynaptic currents were generated polysynaptically via activation of local GABAergic interneurons. Moreover, we demonstrate that optogenetic stimulation of reuniens inputs differentially recruit at least two distinct and non-overlapping subpopulations of local GABAergic interneurons in CA1. We show that neurogliaform cells located in SLM, and calretinin-containing interneuron-selective interneurons at the SLM/stratum radiatum border can be excited by stimulation of reuniens inputs. Together, our data demonstrate that optogenetic stimulation of reuniens afferents can mediate excitation, feedforward inhibition, and disinhibition of the postsynaptic CA1 principal cells via multiple direct and indirect mechanisms.
Collapse
Affiliation(s)
- Priyodarshan Goswamee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Elizabeth Leggett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
5
|
Palacios-Filardo J, Udakis M, Brown GA, Tehan BG, Congreve MS, Nathan PJ, Brown AJH, Mellor JR. Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits. Nat Commun 2021; 12:5475. [PMID: 34531380 PMCID: PMC8445995 DOI: 10.1038/s41467-021-25280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation.
Collapse
Affiliation(s)
- Jon Palacios-Filardo
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Matt Udakis
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Giles A Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
- OMass Therapeutics Ltd, The Schrödinger Building, Oxford, UK
| | - Benjamin G Tehan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
- OMass Therapeutics Ltd, The Schrödinger Building, Oxford, UK
| | - Miles S Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
6
|
Silkis IG. The Role of Hypothalamus in the Formation of Neural Representations of Object–Place Associations in the Hippocampus during Wakefulness and Paradoxical Sleep. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Valentino RJ, Dingledine RJ. Presynaptic Inhibitory Effects of Acetylcholine in the Hippocampus: A 40-Year Evolution of a Serendipitous Finding. J Neurosci 2021; 41:4550-4555. [PMID: 33926994 PMCID: PMC8260238 DOI: 10.1523/jneurosci.3229-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cholinergic regulation of hippocampal circuit activity has been an active area of neurophysiological research for decades. The prominent cholinergic innervation of intrinsic hippocampal circuitry, potent effects of cholinomimetic drugs, and behavioral responses to cholinergic modulation of hippocampal circuitry have driven investigators to discover diverse cellular actions of acetylcholine in distinct sites within hippocampal circuitry. Further research has illuminated how these actions organize circuit activity to optimize encoding of new information, promote consolidation, and coordinate this with recall of prior memories. The development of the hippocampal slice preparation was a major advance that accelerated knowledge of how hippocampal circuits functioned and how acetylcholine modulated these circuits. Using this preparation in the early 1980s, we made a serendipitous finding of a novel presynaptic inhibitory effect of acetylcholine on Schaffer collaterals, the projections from CA3 pyramidal neurons to dendrites of CA1 pyramidal cells. We characterized this effect at cellular and pharmacological levels, published the findings in the first volume of the Journal of Neuroscience, and proceeded to pursue other scientific directions. We were surprised and thrilled to see that, nearly 40 years later, the paper is still being cited and downloaded because the data became an integral piece of the foundation of the science of cholinergic regulation of hippocampal function in learning and memory. This Progressions article is a story of how single laboratory findings evolve through time to be confirmed, challenged, and reinterpreted by other laboratories to eventually become part of the basis of fundamental concepts related to important brain functions.
Collapse
Affiliation(s)
| | - Raymond J Dingledine
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
8
|
Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiol Stress 2021; 14:100303. [PMID: 33614865 PMCID: PMC7876631 DOI: 10.1016/j.ynstr.2021.100303] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Females that experience chronic stress during development, particularly adolescence, are the most vulnerable group to stress-induced disease. While considerable attention has been devoted to stress-induced manifestation of anxiety, depression, and PTSD, evidence indicates that a history of chronic stress is also a risk factor for cognitive decline and dementia - with females again in a higher risk group. This interplay between sex and stress history indicates specific mechanisms drive neural dysfunction across the lifespan. The presence of sex and stress steroid receptors in the hippocampus provides a point of influence for these variables to drive changes in cognitive function. Here, we used a rodent model of chronic adolescent stress (CAS) to determine the extent to which CAS modifies glutamatergic signaling resulting in cognitive dysfunction. Male and female Wistar rats born in-house remained non-stressed (NS), unmanipulated aside from standard cage cleaning, or were exposed to either physical restraint (60 min) or social defeat (CAS) each day (6 trials each), along with social isolation, throughout the adolescent period (PND 35-47). Cognition was assessed in adult (PND 80-130) male and female rats (n = 10-12) using the Barnes Maze task and the Attention Set-Shift task. Whole hippocampi were extracted from a second cohort of male and female rats (NS and CAS; n = 9-10) and processed for RNA sequencing. Brain tissue from the first cohort (n = 6) was processed for density of glutamatergic synaptic markers (GluA1, NMDA1a, and synaptophysin) or whole-cell patch clamping (n = 4) to determine glutamatergic activity in the hippocampus. Females with a history of chronic stress had shorter latencies to locate the goal box than NS controls during acquisition learning but showed an increased latency to locate the new goal box during reversal learning. This reversal deficit persisted across domains as females with a history of stress required more trials to reach criterion during the reversal phases of the Attention Set-Shift task compared to controls. Ovariectomy resulted in greater performance variability overall during reversal learning with CAS females showing worse performance. Males showed no effects of CAS history on learning or memory performance. Bioinformatic prediction using gene ontology categorization indicated that in females, postsynaptic membrane gene clusters, specifically genes related to glutamatergic synapse remodeling, were enriched with a history of stress. Structural analysis indicated that CAS did not alter glutamate receptor density in females. However, functionally, CAS females had a decreased AMPA/NMDA-dependent current ratio compared to controls indicating a weakening in synaptic strength in the hippocampus. Males showed only a slight change in density of NMDA1a labeling in the CA3 region with a history of stress. The data observed here suggest that females are at risk for impaired cognitive flexibility following a history of adolescent stress, possibly driven by changes in glutamatergic signaling.
Collapse
|
9
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|