1
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: A new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2026; 21:62-80. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Orchanian SB, Hsiao EY. The microbiome as a modulator of neurological health across the maternal-offspring interface. J Clin Invest 2025; 135:e184314. [PMID: 39959974 PMCID: PMC11827852 DOI: 10.1172/jci184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The maternal microbiome is emerging as an important factor that influences the neurological health of mothers and their children. Recent studies highlight how microbial communities in the maternal gut can shape early-life development in ways that inform long-term health trajectories. Research on the neurodevelopmental effects of maternal microbiomes is expanding our understanding of the microbiome-gut-brain axis to include signaling across the maternal-offspring unit during the perinatal period. In this Review, we synthesize existing literature on how the maternal microbiome modulates brain function and behavior in both mothers and their developing offspring. We present evidence from human and animal studies showing that the maternal microbiome interacts with environmental factors to impact risk for neurodevelopmental abnormalities. We further discuss molecular and cellular mechanisms that facilitate maternal-offspring crosstalk for neuromodulation. Finally, we consider how advancing understanding of these complex interactions could lead to microbiome-based interventions for promoting maternal and offspring health.
Collapse
Affiliation(s)
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
3
|
Vella VR, Holman PJ, Bodnar TS, Raineki C. Ontogenetic Neuroimmune Changes Following Prenatal Alcohol Exposure: Implications for Neurobehavioral Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:15-39. [PMID: 40128473 DOI: 10.1007/978-3-031-81908-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This chapter reviews the enduring effects of prenatal alcohol exposure (PAE) on neuroimmune function across the lifespan, including discussion of associated neurobehavioral alterations. Alcohol has potent teratogenic effects, with a large body of work linking PAE to perturbations in neuroimmune function. These PAE-related neuroimmune disturbances may have downstream effects on neurobehavioral function given the critical role of the neuroimmune system in central nervous system development. The neuroimmune system matures over time, playing distinct roles depending on the developmental processes occurring within that maturational stage. This chapter thus takes an ontogenetic approach to understanding how PAE induces unique neuroimmune changes across the lifespan, beginning with a review of changes in early life before moving into adolescence and ending in adulthood. The focus will be on work utilizing rodent models, which allow for more tightly controlled conditions than are possible in human research. The chapter concludes with a discussion of possible mechanisms underlying the developmental changes in neuroimmune function following PAE, with a specific focus on the role of the gut microbiota.
Collapse
Affiliation(s)
- Victoria R Vella
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Parker J Holman
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Tamara S Bodnar
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada.
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
4
|
Blair HJ, Morales L, Cryan JF, Aburto MR. Neuroglia and the microbiota-gut-brain axis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:171-196. [PMID: 40122624 DOI: 10.1016/b978-0-443-19104-6.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Glial cells are key players in the regulation of nervous system functioning in both the central and enteric nervous systems. Glial cells are dynamic and respond to environmental cues to modulate their activity. Increasing evidence suggests that these signals include those originating from the gut microbiota, the community of microorganisms, including bacteria, viruses, archaea, and protozoa, that inhabit the gut. The gut microbiota and the brain communicate in a bidirectional manner across multiple signaling pathways and interfaces that together comprise the microbiota-gut-brain axis. Here, we detail the role of glial cells, including astrocytes, microglia, and oligodendrocytes in the central nervous system, and glial cells in the enteric nervous system along this gut-brain axis. We review what is known regarding the modulation of glia by microbial signals, in particular by microbial metabolites which signal to the brain through systemic circulation and via the vagus nerve. In addition, we highlight what is yet to be discovered regarding the role of other gut microbiota signaling pathways in glial cell modulation and the challenges of research in this area.
Collapse
Affiliation(s)
- Hugo J Blair
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorena Morales
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - María R Aburto
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Liu Y, Zhang J, Yang G, Tang C, Li X, Lu L, Long K, Sun J, Ding Y, Li X, Li M, Ge L, Ma J. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Front Microbiol 2024; 15:1398631. [PMID: 38933022 PMCID: PMC11201156 DOI: 10.3389/fmicb.2024.1398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-β/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Guitao Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
7
|
Kambe J, Usuda K, Inoue R, Hirayama K, Ito M, Suenaga K, Masukado S, Liu H, Miyata S, Li C, Kimura I, Yamamoto Y, Nagaoka K. Hydrogen peroxide in breast milk is crucial for gut microbiota formation and myelin development in neonatal mice. Gut Microbes 2024; 16:2359729. [PMID: 38816999 PMCID: PMC11146441 DOI: 10.1080/19490976.2024.2359729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Early life environment influences mammalian brain development, a growing area of research within the Developmental Origins of Health and Disease framework, necessitating a deeper understanding of early life factors on children's brain development. This study introduces a mouse model, LAO1 knockout mice, to investigate the relationship between breast milk, the gut microbiome, and brain development. The results reveal that breast milk's reactive oxygen species (ROS) are vital in shaping the neonatal gut microbiota. Decreased hydrogen peroxide (H2O2) levels in milk disrupt the gut microbiome and lead to abnormal metabolite production, including D-glucaric acid. This metabolite inhibits hippocampal myelin formation during infancy, potentially contributing to behavioral abnormalities observed in adulthood. These findings suggest that H2O2 in breast milk is crucial for normal gut microbiota formation and brain development, with implications for understanding and potentially treating neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Jun Kambe
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kento Usuda
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuhiko Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ken Suenaga
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sora Masukado
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hong Liu
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shiho Miyata
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Liu L, Xiang M, Cai X, Wu B, Chen C, Cai N, Ao D. Multi-omics analyses of gut microbiota via 16S rRNA gene sequencing, LC-MS/MS and diffusion tension imaging reveal aberrant microbiota-gut-brain axis in very low or extremely low birth weight infants with white matter injury. BMC Microbiol 2023; 23:387. [PMID: 38057706 PMCID: PMC10699022 DOI: 10.1186/s12866-023-03103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE The goal of this study was to comprehensively investigate the characteristics of gut microbiota dysbiosis and metabolites levels in very low or extremely low birth weight (VLBW/ELBW) infants with white matter injury (WMI). METHODS In this prospective cohort study, preterm infants with gestational age < 32 weeks and weight < 1.5 kg were investigated. Additionally, fecal samples were collected on days zero, 14d and 28d after admission to the intensive care unit. All subjects underwent brain scan via MRI and DTI at a corrected gestational age of 37 ~ 40 weeks. Based on the results of MRI examination, the VLBW/ELBW infants were divided into two groups: WMI and non-WMI. Finally, based on a multi-omics approach, we performed 16S rRNA gene sequencing, LC-MS/MS, and diffusion tension imaging to identify quantifiable and informative biomarkers for WMI. RESULT We enrolled 23 patients with and 48 patients without WMI. The results of 16S RNA sequencing revealed an increase in the number of Staphylococcus and Acinetobacter species in the fecal samples of infants with WMI, as well as increasing levels of S. caprae and A._johnsonii. LEfSe analysis (LDA ≥ 4) showed that the WMI group carried an abundance of Staphylococcus species including S. caprae, members of the phyla Bacteroidota and Actinobacteriota, and Acinetobacter species. A total of 139 metabolic markers were significantly and differentially expressed between WMI and nWMI. KEGG pathway enrichment analysis revealed that the WMI group showed significant downregulation of 17 metabolic pathways including biosynthesis of arginine and primary bile acids. The WMI group showed delayed brain myelination, especially in the paraventricular white matter and splenium of corpus callosum. Staphylococcus species may affect WMI by downregulating metabolites such as cholic acid, allocholic acid, and 1,3-butadiene. Gut microbiota such as Acinetobacter and Bacteroidetes may alter white matter structurally by upregulating metabolites such as cinobufagin. CONCLUSION Based on 16S RNA sequencing results, severe gut microbiota dysbiosis was observed in the WMI group. The results might reveal damage to potential signaling pathways of microbiota-gut-brain axis in gut microbiota. The mechanism was mediated via downregulation of the bile acid biosynthetic pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangsheng Cai
- Guangzhou Cadre Health Management Center, Guangzhou Eleventh People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Benqing Wu
- University of the Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Chaohong Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
9
|
Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, Han W, Jung S. Nuanced contribution of gut microbiome in the early brain development of mice. Gut Microbes 2023; 15:2283911. [PMID: 38010368 PMCID: PMC10768743 DOI: 10.1080/19490976.2023.2283911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae Ung Lee
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
| | - Han-Gyu Bae
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sven Pettersson
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weiping Han
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
10
|
Li L, Yang J, Liu T, Shi Y. Role of the gut-microbiota-metabolite-brain axis in the pathogenesis of preterm brain injury. Biomed Pharmacother 2023; 165:115243. [PMID: 37517290 DOI: 10.1016/j.biopha.2023.115243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Brain injury, a common complication in preterm infants, includes the destruction of the key structural and functional connections of the brain and causes neurodevelopmental disorders; it has high morbidity and mortality rates. The exact mechanism underlying brain injury in preterm infants is unclear. Intestinal flora plays a vital role in brain development and the maturation of the immune system in infants; however, detailed understanding of the gut microbiota-metabolite-brain axis in preterm infants is lacking. In this review, we summarise the key mechanisms by which the intestinal microbiota contribute to neurodevelopment and brain injury in preterm infants, with special emphasis on the influence of microorganisms and their metabolites on the regulation of neurocognitive development and neurodevelopmental risks related to preterm birth, infection and neonatal necrotising enterocolitis (NEC). This review provides support for the development and application of novel therapeutic strategies, including probiotics, prebiotics, synbiotics, and faecal bacteria transplantation targeting at brain injury in preterm infants.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
11
|
Gerasco JE, Hathaway‐Schrader JD, Poulides NA, Carson MD, Okhura N, Westwater C, Hatch NE, Novince CM. Commensal Microbiota Effects on Craniofacial Skeletal Growth and Morphology. JBMR Plus 2023; 7:e10775. [PMID: 37614301 PMCID: PMC10443078 DOI: 10.1002/jbm4.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 08/25/2023] Open
Abstract
Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joy E. Gerasco
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Orthodontics, Adam's School of DentistryUniversity of North CarolinaChapel HillNCUSA
| | - Jessica D. Hathaway‐Schrader
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nicole A. Poulides
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Naoto Okhura
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Microbiology and Immunology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
12
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
13
|
Sobierajski E, Lauer G, Czubay K, Grabietz H, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct 2023; 228:947-966. [PMID: 37000250 PMCID: PMC10147765 DOI: 10.1007/s00429-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - German Lauer
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Katrin Czubay
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Hannah Grabietz
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
14
|
Lee SY, Li SC, Yang CY, Kuo HC, Chou WJ, Wang LJ. Gut Leakage Markers and Cognitive Functions in Patients with Attention-Deficit/Hyperactivity Disorder. CHILDREN 2023; 10:children10030513. [PMID: 36980071 PMCID: PMC10047799 DOI: 10.3390/children10030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a commonly seen mental disorder in children. Intestinal permeability may be associated with the pathogenesis of ADHD. The study herein investigated the role of gut leakage biomarkers in the susceptibility of ADHD. A total of 130 children with ADHD and 73 healthy controls (HC) individuals were recruited. Serum concentrations of zonulin, occludin, and defensin (DEFA1) were determined. Visual attention was assessed with Conners’ continuous performance test (CPT). In order to rate participants’ ADHD core symptoms at home and school, their parents and teachers completed the Swanson, Nolan, and Pelham—Version IV Scale (SNAP-IV), respectively. We found significantly lower DEFA1 levels in the ADHD group compared to that in the HC group (p = 0.008), but not serum levels of zonulin and occludin. The serum levels of DEFA1 showed an inverse correlation with the inattention scores in the SNAP-IV parent form (p = 0.042) and teacher form (p = 0.010), and the hyperactivity/impulsivity scores in the SNAP-IV teacher form (p = 0.014). The serum levels of occludin showed a positive correlation with the subtest of detectability in the CPT (p = 0.020). Our study provides new reference into the relation between gut leakage markers and cognition, which may advance research of the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| |
Collapse
|