1
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
3
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
4
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KK, Zhu J, Liu AC. Lifelong Chronic Sleep Disruption in a Mouse Model of Traumatic Brain Injury. Neurotrauma Rep 2024; 5:61-73. [PMID: 38288298 PMCID: PMC10823169 DOI: 10.1089/neur.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.
Collapse
Affiliation(s)
- Andrew R. Morris
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erwin K. Gudenschwager Basso
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Miguel A. Gutierrez-Monreal
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rawad Daniel Arja
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Firas H. Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Christopher G. Janus
- Center for Translational Research in Neurodegenerative Disease (CTRND), Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kevin K.W. Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jiepei Zhu
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Pasam T, Dandekar MP. Insights from Rodent Models for Improving Bench-to-Bedside Translation in Traumatic Brain Injury. Methods Mol Biol 2024; 2761:599-622. [PMID: 38427264 DOI: 10.1007/978-1-0716-3662-6_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KKW, Zhu J, Liu AC. Sleep Disruption in a Mouse Model of Chronic Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566553. [PMID: 38014315 PMCID: PMC10680804 DOI: 10.1101/2023.11.10.566553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.
Collapse
|
7
|
Dean T, Ghaemmaghami J, Corso J, Gallo V. The cortical NG2-glia response to traumatic brain injury. Glia 2023; 71:1164-1175. [PMID: 36692058 PMCID: PMC10404390 DOI: 10.1002/glia.24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant worldwide cause of morbidity and mortality. A chronic neurologic disease bearing the moniker of "the silent epidemic," TBI currently has no targeted therapies to ameliorate cellular loss or enhance functional recovery. Compared with those of astrocytes, microglia, and peripheral immune cells, the functions and mechanisms of NG2-glia following TBI are far less understood, despite NG2-glia comprising the largest population of regenerative cells in the mature cortex. Here, we synthesize the results from multiple rodent models of TBI, with a focus on cortical NG2-glia proliferation and lineage potential, and propose future avenues for glia researchers to address this unique cell type in TBI. As the molecular mechanisms that regulate NG2-glia regenerative potential are uncovered, we posit that future therapeutic strategies may exploit cortical NG2-glia to augment local cellular recovery following TBI.
Collapse
Affiliation(s)
- Terry Dean
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
- Division of Critical Care Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - John Corso
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
9
|
Newell-Rogers MK, Duong A, Nazarali R, Tobin RP, Rogers SK, Shapiro LA. Unilateral Cervical Vagotomy Modulates Immune Cell Profiles and the Response to a Traumatic Brain Injury. Int J Mol Sci 2022; 23:9851. [PMID: 36077246 PMCID: PMC9456009 DOI: 10.3390/ijms23179851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
TBI induces splenic B and T cell expansion that contributes to neuroinflammation and neurodegeneration. The vagus nerve, the longest of the cranial nerves, is the predominant parasympathetic pathway allowing the central nervous system (CNS) control over peripheral organs, including regulation of inflammatory responses. One way this is accomplished is by vagus innervation of the celiac ganglion, from which the splenic nerve innervates the spleen. This splenic innervation enables modulation of the splenic immune response, including splenocyte selection, activation, and downstream signaling. Considering that the left and right vagus nerves have distinct courses, it is possible that they differentially influence the splenic immune response following a CNS injury. To test this possibility, immune cell subsets were profiled and quantified following either a left or a right unilateral vagotomy. Both unilateral vagotomies caused similar effects with respect to the percentage of B cells and in the decreased percentage of macrophages and T cells following vagotomy. We next tested the hypothesis that a left unilateral vagotomy would modulate the splenic immune response to a traumatic brain injury (TBI). Mice received a left cervical vagotomy or a sham vagotomy 3 days prior to a fluid percussion injury (FPI), a well-characterized mouse model of TBI that consistently elicits an immune and neuroimmune response. Flow cytometric analysis showed that vagotomy prior to FPI resulted in fewer CLIP+ B cells, and CD4+, CD25+, and CD8+ T cells. Vagotomy followed by FPI also resulted in an altered distribution of CD11bhigh and CD11blow macrophages. Thus, transduction of immune signals from the CNS to the periphery via the vagus nerve can be targeted to modulate the immune response following TBI.
Collapse
Affiliation(s)
- M. Karen Newell-Rogers
- School of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA
- BCell Solutions, Inc., Colorado Springs, CO 80907, USA
| | - Amanda Duong
- School of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA
| | - Rizwan Nazarali
- Department of Anesthesiology, School of Medicine, University of Colorado, Denver, CO 80309, USA
| | - Richard P. Tobin
- Department of Surgery-Surgical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susannah K. Rogers
- School of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA
| | - Lee A. Shapiro
- School of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA
| |
Collapse
|
10
|
|
11
|
Xu Y, Liu Z, Xu S, Li C, Li M, Cao S, Sun Y, Dai H, Guo Y, Chen X, Liang W. Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients 2022; 14:1431. [PMID: 35406044 PMCID: PMC9002547 DOI: 10.3390/nu14071431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.
Collapse
Affiliation(s)
- Yang Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Zejie Liu
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Shuting Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Chengxian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Yuwen Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| |
Collapse
|
12
|
Eastman CL, Fender JS, Klein P, D'Ambrosio R. Therapeutic Effects of Time-Limited Treatment with Brivaracetam on Posttraumatic Epilepsy after Fluid Percussion Injury in the Rat. J Pharmacol Exp Ther 2021; 379:310-323. [PMID: 34593559 DOI: 10.1124/jpet.121.000585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Mounting evidence suggests the synaptic vesicle glycoprotein 2A (SV2A) targeted by levetiracetam may contribute to epileptogenesis. Levetiracetam has shown anti-inflammatory, antioxidant, neuroprotective, and possible antiepileptogenic effects in brain injury and seizure/epilepsy models, and a phase 2 study has signaled a possible clinical antiepileptogenic effect. Brivaracetam shows greater affinity and specificity for SV2A than levetiracetam and broader preclinical antiseizure effects. Thus, we assessed the antiepileptogenic/disease-modifying potential of brivaracetam in an etiologically realistic rat posttraumatic epilepsy model optimized for efficient drug testing. Brivaracetam delivery protocols were designed to maintain clinical moderate-to-high plasma levels in young (5-week-old) male Sprague-Dawley rats for 4 weeks. Treatment protocols were rapidly screened in 4-week experiments using small groups of animals to ensure against rigorous testing of futile treatment protocols. The antiepileptogenic effects of brivaracetam treatment initiated 30 minutes, 4 hours, and 8 hours after rostral parasagittal fluid percussion injury (rpFPI) were then compared with vehicle-treated controls in a fully powered blind and randomized 16-week validation. Seizures were evaluated by video-electrocorticography using a 5-electrode epidural montage. Endpoint measures included incidence, frequency, duration, and spread of seizures. Group sizes and recording durations were supported by published power analyses. Three months after treatment ended, rats treated with brivaracetam starting at 4 hours post-FPI (the best-performing protocol) experienced a 38% decrease in overall incidence of seizures, 59% decrease in seizure frequency, 67% decrease in time spent seizing, and a 45% decrease in the proportion of spreading seizures that was independent of duration-based seizure definition. Thus, brivaracetam shows both antiepileptogenic and disease-modifying properties after rpFPI. SIGNIFICANCE STATEMENT: The rpFPI model, which likely incorporates epileptogenic mechanisms operating after human head injury, can be used to efficiently screen investigational treatment protocols and assess antiepileptogenic/disease-modifying effects. Our studies 1) support a role for SV2A in epileptogenesis, 2) suggest that brivaracetam and other drugs targeting SV2A should be considered for human clinical trials of prevention of post-traumatic epilepsy after head injury, and 3) provide data to inform the design of treatment protocols for clinical trials.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, University of Washington, Seattle, Washington (C.L.E., J.S.F., R.D.); and Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland (P.K.)
| | - Jason S Fender
- Department of Neurological Surgery, University of Washington, Seattle, Washington (C.L.E., J.S.F., R.D.); and Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland (P.K.)
| | - Pavel Klein
- Department of Neurological Surgery, University of Washington, Seattle, Washington (C.L.E., J.S.F., R.D.); and Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland (P.K.)
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, Washington (C.L.E., J.S.F., R.D.); and Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland (P.K.)
| |
Collapse
|
13
|
Tucker LB, McCabe JT. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Front Behav Neurosci 2021; 15:682935. [PMID: 34776887 PMCID: PMC8586518 DOI: 10.3389/fnbeh.2021.682935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anxiety is a common complaint following acquired traumatic brain injury (TBI). However, the measurement of dysfunctional anxiety behavioral states following experimental TBI in rodents is complex. Some studies report increased anxiety after TBI, whereas others find a decreased anxiety-like state, often described as increased risk-taking behavior or impulsivity. These inconsistencies may reflect a lack of standardization of experimental injury models or of behavioral testing techniques. Here, we review the most commonly employed unconditioned tests of anxiety and discuss them in a context of experimental TBI. Special attention is given to the effects of repeated testing, and consideration of potential sensory and motor confounds in injured rodents. The use of multiple tests and alternative data analysis methods are discussed, as well as the potential for the application of common data elements (CDEs) as a means of providing a format for documentation of experimental details and procedures of each published research report. CDEs may improve the rigor, reproducibility, as well as endpoint for better relating findings with clinical TBI phenotypes and the final goal of translation. While this may not resolve all incongruities in findings across laboratories, it is seen as a way forward for standardized and universal data collection for improvement of data quality and sharing, and advance therapies for neuropsychiatric symptoms that often present for decades following TBI.
Collapse
Affiliation(s)
- Laura B Tucker
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T McCabe
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
14
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
15
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
16
|
Abstract
After a concussion, a series of complex, overlapping, and disruptive events occur within the brain, leading to symptoms and behavioral dysfunction. These events include ionic shifts, damaged neuronal architecture, higher concentrations of inflammatory chemicals, increased excitatory neurotransmitter release, and cerebral blood flow disruptions, leading to a neuronal crisis. This review summarizes the translational aspects of the pathophysiologic cascade of postconcussion events, focusing on the role of excitatory neurotransmitters and ionic fluxes, and their role in neuronal disruption. We review the relationship between physiologic disruption and behavioral alterations, and proposed treatments aimed to restore the balance of disrupted processes.
Collapse
Affiliation(s)
- David R Howell
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Julia Southard
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Psychology and Neuroscience, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| |
Collapse
|
17
|
Abdul-Wahab R, Long MT, Ordaz R, Lyeth BG, Pfister BJ. Outcome measures from experimental traumatic brain injury in male rats vary with the complete temporal biomechanical profile of the injury event. J Neurosci Res 2020; 98:2027-2044. [PMID: 32741029 DOI: 10.1002/jnr.24670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/05/2022]
Abstract
Millions suffer a traumatic brain injury (TBI) each year wherein the outcomes associated with injury can vary greatly between individuals. This study postulates that variations in each biomechanical parameter of a head trauma lead to differences in histological and behavioral outcome measures that should be considered collectively in assessing injury. While trauma severity typically scales with the magnitude of injury, much less is known about the effects of rate and duration of the mechanical insult. In this study, a newly developed voice-coil fluid percussion injury system was used to investigate the effects of injury rate and fluid percussion impulse on a collection of post-injury outcomes in male rats. Collectively the data suggest a potential shift in the specificity and progression of neuronal injury and function rather than a general scaling of injury severity. While a faster, shorter fluid percussion first presents as a mild TBI, neuronal loss and some behavioral tasks were similar among the slower and faster fluid percussion injuries. This study concludes that the sequelae of neuronal degeneration and behavioral outcomes are related to the complete temporal profile of the fluid percussion and do not scale only with peak pressure.
Collapse
Affiliation(s)
- Radia Abdul-Wahab
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Mathew T Long
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rafael Ordaz
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
18
|
Ledreux A, Pryhoda MK, Gorgens K, Shelburne K, Gilmore A, Linseman DA, Fleming H, Koza LA, Campbell J, Wolff A, Kelly JP, Margittai M, Davidson BS, Granholm AC. Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Front Neurosci 2020; 14:761. [PMID: 32848549 PMCID: PMC7406890 DOI: 10.3389/fnins.2020.00761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Moira K. Pryhoda
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Kevin Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Daniel A. Linseman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Holly Fleming
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Lilia A. Koza
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Julie Campbell
- Pioneer Health and Performance, University of Denver, Denver, CO, United States
| | - Adam Wolff
- Denver Neurological Clinic, Denver, CO, United States
| | - James P. Kelly
- Marcus Institute for Brain Health, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | | |
Collapse
|
19
|
Witcher KG, Dziabis JE, Bray CE, Gordillo AJ, Kumar JE, Eiferman DS, Godbout JP, Kokiko-Cochran ON. Comparison between midline and lateral fluid percussion injury in mice reveals prolonged but divergent cortical neuroinflammation. Brain Res 2020; 1746:146987. [PMID: 32592739 DOI: 10.1016/j.brainres.2020.146987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/13/2020] [Indexed: 01/19/2023]
Abstract
Animal models are critical for determining the mechanisms mediating traumatic brain injury-induced (TBI) neuropathology. Fluid percussion injury (FPI) is a widely used model of brain injury typically applied either midline or parasagittally (lateral). Midline FPI induces a diffuse TBI, while lateral FPI induces both focal cortical injury (ipsilateral hemisphere) and diffuse injury (contralateral hemisphere). Nonetheless, discrete differences in neuroinflammation and neuropathology between these two versions of FPI remain unclear. The purpose of this study was to compare acute (4-72 h) and subacute (7 days) neuroinflammatory responses between midline and lateral FPI. Midline FPI resulted in longer righting reflex times than lateral FPI. At acute time points, the inflammatory responses to the two different injuries were similar. For instance, there was evidence of monocytes and cytokine mRNA expression in the brain with both injuries acutely. Midline FPI had the highest proportion of brain monocytes and highest IL-1β/TNFα mRNA expression 24 h later. NanoString nCounter analysis 7 days post-injury revealed robust and prolonged expression of inflammatory-related genes in the cortex after midline FPI compared to lateral FPI; however, Iba-1 cortical immunoreactivity was increased with lateral FPI. Thus, midline and lateral FPI caused similar cortical neuroinflammatory responses acutely and mRNA expression of inflammatory genes was detectable in the brain 7 days later. The primary divergence was that inflammatory gene expression was greater and more diverse subacutely after midline FPI. These results provide novel insight to variations between midline and lateral FPI, which may recapitulate unique temporal pathogenesis.
Collapse
Affiliation(s)
- Kristina G Witcher
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Alan J Gordillo
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Julia E Kumar
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Daniel S Eiferman
- Department of Surgery, The Ohio State University, 395 W 12(th) Ave, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W 12(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, 333 W 10(th) Ave, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W 12(th) Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Hamilton KA, Santhakumar V. Current ex Vivo and in Vitro Approaches to Uncovering Mechanisms of Neurological Dysfunction after Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:18-24. [PMID: 32548365 PMCID: PMC7297186 DOI: 10.1016/j.cobme.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury often leads to progressive alterations at the molecular to circuit levels resulting in epilepsy and memory impairments. Ex vivo and in vitro models have provided a powerful platform for investigating the multimodal alteration after trauma. Recent ex vivo analyses using voltage sensitive dye imaging, optogenetics, and glutamate uncaging have revealed circuit abnormalities following in vivo brain injury. In vitro injury models have enabled examination of early and progressive changes in activity while development of three-dimensional organoids derived from human induced pluripotent stem cells have opened novel avenues for injury research. Here, we highlight recent advances in ex vivo and in vitro systems, focusing on their potential for advancing mechanistic understandings, possible limitations, and implications for therapeutics.
Collapse
Affiliation(s)
- Kelly Andrew Hamilton
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
21
|
Ma X, Agas A, Siddiqui Z, Kim K, Iglesias-Montoro P, Kalluru J, Kumar V, Haorah J. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater 2020; 5:124-132. [PMID: 32128463 PMCID: PMC7042674 DOI: 10.1016/j.bioactmat.2020.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) impacts over 3.17 million Americans. Management of hemorrhage and coagulation caused by vascular disruption after TBI is critical for the recovery of patients. Cerebrovascular pathologies play an important role in the underlying mechanisms of TBI. The objective of this study is to evaluate a novel regenerative medicine for the injured tissue after brain injury. We utilized a recently described synthetic growth factor with angiogenic potential to facilitate vascular growth in situ at the injury site. Previous work has shown how this injectable self-assembling peptide-based hydrogel (SAPH) creates a regenerative microenvironment for neovascularization at the injury site. Supramolecular assembly allows for thixotropy; the injectable drug delivery system provides sustained in vivo efficacy. In this study, a moderate blunt injury model was used to cause physical vascular damage and hemorrhage. The angiogenic SAPH was then applied directly on the injured rat brain. At day 7 post-TBI, significantly more blood vessels were observed than the sham and injury control group, as well as activation of VEGF-receptor 2, demonstrating the robust angiogenic response elicited by the angiogenic SAPH. Vascular markers von-Willebrand factor (vWF) and α-smooth muscle actin (α-SMA) showed a concomitant increase with blood vessel density in response to the angiogenic SAPH. Moreover, blood brain barrier integrity and blood coagulation were also examined as the parameters to indicate wound recovery post TBI. Neuronal rescue examination by NeuN and myelin basic protein staining showed that the angiogenic SAPH may provide and neuroprotective benefit in the long-term recovery.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Agnieszka Agas
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - KaKyung Kim
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Patricia Iglesias-Montoro
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jagathi Kalluru
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - James Haorah
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
22
|
Animal Models of Post-Traumatic Epilepsy. Diagnostics (Basel) 2019; 10:diagnostics10010004. [PMID: 31861595 PMCID: PMC7169449 DOI: 10.3390/diagnostics10010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury is the leading cause of morbidity and mortality worldwide, with the incidence of post-traumatic epilepsy increasing with the severity of the head injury. Post-traumatic epilepsy (PTE) is defined as a recurrent seizure disorder secondary to trauma to the brain and has been described as one of the most devastating complications associated with TBI (Traumatic Brain Injury). The goal of this review is to characterize current animal models of PTE and provide succinct protocols for the development of each of the currently available animal models. The development of translational and effective animal models for post-traumatic epilepsy is critical in both elucidating the underlying pathophysiology associated with PTE and providing efficacious clinical breakthroughs in the management of PTE.
Collapse
|
23
|
Hemorrhage Associated Mechanisms of Neuroinflammation in Experimental Traumatic Brain Injury. J Neuroimmune Pharmacol 2019; 15:181-195. [DOI: 10.1007/s11481-019-09882-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
24
|
East L, Lyon M, Agrawal P, Islam Z, Newell M, Hockman T, Heger IM, Xu H, Kuchinski AM, Gibson RW. Increased Intracranial Pressure Damages Optic Nerve Structural Support. J Neurotrauma 2019; 36:3132-3137. [PMID: 31256706 DOI: 10.1089/neu.2019.6490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Optic nerve sheath diameter (ONSD) is used clinically as a noninvasive measure for elevated intracranial pressure (ICP). This study had two purposes: to investigate the immediate effects optic nerve sheath (ONS) dilation post-ICP increase on trabecular fibers connecting the optic nerve to the ONS and to document any changes in these fibers 30 days post-increased ICP. In a swine model, ICP was increased by inflating a Foley catheter balloon in the epidural space. Three control pigs received the catheter insertion without inflation (no increase in ICP) and four experimental pigs received the catheter with inflation (increased ICP). The control and two randomly selected pigs with increased ICP were euthanized immediately after the procedure. The two other pigs were euthanized 30 days post-catheter inflation. For all pigs, the ONS was removed and imaged using a scanning electron microscope, calculating percent porosity values. Porosity values for the experimental groups (Immediately measured [IM] μ = 0.5749; Delayed measured [DM] μ = 0.5714) were larger than the control group (μ = 0.4336) and statistically significant (IM vs. Control, p = 0.0018; DM vs. Control, p = 0.0092). There was no significant difference (p = 0.9485) in porosity of the DM group when compared with the IM group. This study demonstrated that the trabecular fibers immediately post-increased ICP (ONS dilation) were more porous than the control and remained statistically different (more porous) after 30 days. These results suggest a structural change that occurs in the ONS with elevations in ICP.
Collapse
Affiliation(s)
- Lauren East
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Matthew Lyon
- Department of Emergency Medicine, Augusta University, Augusta, Georgia.,Center for Ultrasound Education, Augusta University, Augusta, Georgia
| | - Parth Agrawal
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zulqar Islam
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Maegan Newell
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Tyler Hockman
- Division of Laboratory Animal Services, Augusta University, Augusta, Georgia
| | - Ian M Heger
- Department of Neurosurgery, Augusta University, Augusta, Georgia
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, Georgia
| | | | - Robert W Gibson
- Department of Emergency Medicine, Augusta University, Augusta, Georgia
| |
Collapse
|
25
|
Li L, Tan HP, Liu CY, Yu LT, Wei DN, Zhang ZC, Lu K, Zhao KS, Maegele M, Cai DZ, Gu ZT. Polydatin prevents the induction of secondary brain injury after traumatic brain injury by protecting neuronal mitochondria. Neural Regen Res 2019; 14:1573-1582. [PMID: 31089056 PMCID: PMC6557083 DOI: 10.4103/1673-5374.255972] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/16/2019] [Indexed: 01/07/2023] Open
Abstract
Polydatin is thought to protect mitochondria in different cell types in various diseases. Mitochondrial dysfunction is a major contributing factor in secondary brain injury resulting from traumatic brain injury. To investigate the protective effect of polydatin after traumatic brain injury, a rat brain injury model of lateral fluid percussion was established to mimic traumatic brain injury insults. Rat models were intraperitoneally injected with polydatin (30 mg/kg) or the SIRT1 activator SRT1720 (20 mg/kg, as a positive control to polydatin). At 6 hours post-traumatic brain injury insults, western blot assay was used to detect the expression of SIRT1, endoplasmic reticulum stress related proteins and p38 phosphorylation in cerebral cortex on the injured side. Flow cytometry was used to analyze neuronal mitochondrial superoxide, mitochondrial membrane potential and mitochondrial permeability transition pore opened. Ultrastructural damage in neuronal mitochondria was measured by transmission electron microscopy. Our results showed that after treatment with polydatin, release of reactive oxygen species in neuronal mitochondria was markedly reduced; swelling of mitochondria was alleviated; mitochondrial membrane potential was maintained; mitochondrial permeability transition pore opened. Also endoplasmic reticulum stress related proteins were inhibited, including the activation of p-PERK, spliced XBP-1 and cleaved ATF6. SIRT1 expression and activity were increased; p38 phosphorylation and cleaved caspase-9/3 activation were inhibited. Neurological scores of treated rats were increased and the mortality was reduced compared with the rats only subjected to traumatic brain injury. These results indicated that polydatin protectrd rats from the consequences of traumatic brain injury and exerted a protective effect on neuronal mitochondria. The mechanisms may be linked to increased SIRT1 expression and activity, which inhibits the p38 phosphorylation-mediated mitochondrial apoptotic pathway. This study was approved by the Animal Care and Use Committee of the Southern Medical University, China (approval number: L2016113) on January 1, 2016.
Collapse
Affiliation(s)
- Li Li
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
- Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, Guangdong Province, China
- Department of Orthopedics, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Hong-Ping Tan
- Department of Epilepsy Surgery, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong Province, China
| | - Cheng-Yong Liu
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Lin-Tao Yu
- Department of Emergency, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Da-Nian Wei
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Zi-Chen Zhang
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Kui Lu
- Department of Emergency, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Ke-Sen Zhao
- Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, Guangdong Province, China
| | - Marc Maegele
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
- Department of Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Cologne, Germany
| | - Dao-Zhang Cai
- Department of Orthopedics, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
| | - Zheng-Tao Gu
- Department of Treatment Center for Traumatic Injuries, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics · Guangdong Province, Guangzhou, Guangdong Province, China
- Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Armstead WM, Vavilala MS. Improving Understanding and Outcomes of Traumatic Brain Injury Using Bidirectional Translational Research. J Neurotrauma 2019; 37:2372-2380. [PMID: 30834818 DOI: 10.1089/neu.2018.6119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical trials in traumatic brain injury (TBI) have failed to demonstrate therapeutic effects even when there appears to be good evidence for efficacy in one or more appropriate pre-clinical models. While existing animal models mimic the injury, difficulties in translating promising therapeutics are exacerbated by the lack of alignment of discrete measures of the underlying injury pathology between the animal models and human subjects. To address this mismatch, we have incorporated reverse translation of bedside experience to inform pre-clinical studies in a large animal (pig) model of TBI that mirror practical clinical assessments. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. Vasoactive agents clinically used to elevate MAP to increase CPP after TBI, such as phenylephrine (Phe), dopamine (DA), norepinephrine (NE), and epinephrine (EPI), however, have not been compared sufficiently regarding effect on CPP, autoregulation, and survival after TBI, and clinically, current vasoactive agent use is variable. The cerebral effects of these clinically commonly used vasoactive agents are not known. This review will emphasize pediatric work and will describe bidirectional translational studies using a more human-like animal model of TBI to identify better therapeutic strategies to improve outcome post-injury. These studies in addition investigated the mechanism(s) involved in improvement of outcome in the setting of TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care and University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology, Pediatrics, and Neurological Surgery, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Huang G, Cao X, Li Y, Zhou C, Li L, Wang K, Li H, Yu P, Jin Y, Gao L. Gene expression profile of the hippocampus of rats subjected to traumatic brain injury. J Cell Biochem 2019; 120:15776-15789. [PMID: 31074048 DOI: 10.1002/jcb.28848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Guo‐Hui Huang
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Xiang‐Yuan Cao
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Yuan‐Yuan Li
- Department of Endocrinology Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Cheng‐Cheng Zhou
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Lei Li
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Ke Wang
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Hong Li
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Peng Yu
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Yi Jin
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Liang Gao
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
28
|
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019; 56:5332-5345. [DOI: 10.1007/s12035-018-1454-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
29
|
Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, Gomez-Pinilla F, Yang X. Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun 2018; 9:3894. [PMID: 30254269 PMCID: PMC6156584 DOI: 10.1038/s41467-018-06222-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect, given the convoluted cytoarchitecture of affected brain regions such as the hippocampus. Hippocampal dysfunction during TBI results in cognitive decline that may escalate to other neurological disorders, the molecular basis of which is hidden in the genomic programs of individual cells. Using the unbiased single cell sequencing method Drop-seq, we report that concussive TBI affects previously undefined cell populations, in addition to classical hippocampal cell types. TBI also impacts cell type-specific genes and pathways and alters gene co-expression across cell types, suggesting hidden pathogenic mechanisms and therapeutic target pathways. Modulating the thyroid hormone pathway as informed by the T4 transporter transthyretin Ttr mitigates TBI-associated genomic and behavioral abnormalities. Thus, single cell genomics provides unique information about how TBI impacts diverse hippocampal cell types, adding new insights into the pathogenic pathways amenable to therapeutics in TBI and related disorders.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
Jiang J, Dai C, Niu X, Sun H, Cheng S, Zhang Z, Zhu X, Wang Y, Zhang T, Duan F, Chen X, Zhang S. Establishment of a precise novel brain trauma model in a large animal based on injury of the cerebral motor cortex. J Neurosci Methods 2018; 307:95-105. [PMID: 29960029 DOI: 10.1016/j.jneumeth.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Animal models are essential in simulating clinical diseases and facilitating relevant studies. NEW METHOD We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups. The cerebral motor cortex was identified by diffusion tensor imaging (DTI), a simple marker method, and intraoperative electrophysiological measurement. Bony windows were designed by magnetic resonance imaging (MRI) scan and DTI. During the operation, canines in the control group were under general anesthesia. The canines were operated via bony window craniotomy and dura mater opening in the sham group. After opening of the bony window and dura mater, the motor cortex was impacted by a modified electronic cortical contusion impactor (eCCI) in the model group. RESULTS Postoperative measurements revealed damage to the cerebral motor cortex and functional defects. Comparisons between preoperative and postoperative results demonstrated that the established model was successful. COMPARISON WITH EXISTING METHOD(S) Compared with conventional models, this is the first brain trauma model in large animal that was constructed based on injury to the cerebral motor cortex under the guidance of DTI, a simple marker method, and electrophysiology. CONCLUSION The method used to establish this model can be standardized to enhance reproducibility and provide a stable and precise large animal model of TBI for clinical and basic research.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Chen Dai
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Xuegang Niu
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Hongtao Sun
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Shixiang Cheng
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Zhiwen Zhang
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xu Zhu
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Tongshuo Zhang
- Department of Clinical Laboratory of Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Feng Duan
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| |
Collapse
|
31
|
Ouyang W, Wu W, Fan Z, Wang J, Pan H, Yang W. Modified device for fluid percussion injury in rodents. J Neurosci Res 2018; 96:1412-1429. [DOI: 10.1002/jnr.24261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Ouyang
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Wenhui Wu
- School of Physical Education and Health; East China Jiaotong University; Nanchang Jiangxi China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Jihui Wang
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Huiju Pan
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Weibin Yang
- Affiliated Sports Medicine Hospital, Zhejiang College of Sports; Hangzhou Zhejiang China
| |
Collapse
|
32
|
Kirov II, Whitlow CT, Zamora C. Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion. Neuroimaging Clin N Am 2018; 28:91-105. [PMID: 29157856 DOI: 10.1016/j.nic.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Vink R. Large animal models of traumatic brain injury. J Neurosci Res 2017; 96:527-535. [PMID: 28500771 DOI: 10.1002/jnr.24079] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Animal models are essential to gain a deeper understanding of the pathophysiology associated with traumatic brain injury (TBI). Rodent models of TBI have proven highly valuable with respect to the information they have provided over the years, particularly when it comes to the molecular understanding of injury mechanisms. However, there has been a failure to translate the successes in therapeutic treatment of TBI in rodents, which many believe may be related to their different brain anatomy compared with humans. Specifically, the rodent lissencephalic brain within its bony skull responds differently to injury than a human gyrencephalic brain, particularly from a biomechanical and physiological perspective. There is now far greater interest in developing more clinically relevant, large animal models of TBI so as to enhance the possibility of successful clinical translation. The current mini-review highlights the differences between lissencephalic and gyrencephalic brains, emphasizing how these differences might impact studies of TBI. Thereafter follows a summary of the different large animal models, with a critical analysis of their strengths and weaknesses.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
34
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|