1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
3
|
Suimon Y, Nishimura M, Murata M, Yoshida S, Yokoi K, Dong Z, Kuno N, Fujii S, Tanei ZI, Yabe I, Noda K, Ishida S. Leucine-Rich Repeat Kinase 2 Promotes Disintegration of Retinal Pigment Epithelial Cell: Implication in the Pathogenesis of Dry Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00103-8. [PMID: 40204187 DOI: 10.1016/j.ajpath.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Recent epidemiologic studies have shown that patients with age-related macular degeneration (AMD) have a considerably higher risk of developing Parkinson disease (PD) later in life, suggesting a possible link between these diseases. However, the common mechanisms between these two diseases remain obscure, although the pathophysiology of each has been well investigated. In this study, we sought to explore the shared pathologic features of AMD and PD by focusing on leucine-rich repeat kinase 2 (LRRK2) and α-synuclein, both of which play crucial roles in PD pathogenesis. Immunohistochemistry for LRRK2 and α-synuclein was performed on human eye specimens. The effect of LRRK2 on retinal pigment epithelium (RPE) cell function was investigated using the RPE cell line hTERT-RPE1. Retinal morphology and function were examined in LRRK2-G2019S transgenic mice, representing mutants with increased kinase activity of LRRK2. Immunohistochemistry revealed that LRRK2 and α-synuclein were present in the RPE layer of the human eye. Overexpression of LRRK2 in RPE cells increased α-synuclein and induced cell death. LRRK2 inhibited α-synuclein degradation via phosphorylation of RAB GTPases. LRRK2-G2019S transgenic mice exhibited apoptosis of RPE and photoreceptors, choroidal thinning, and reduced electroretinogram amplitude, on top of α-synuclein protein accumulation in the RPE cell layer. Taken together, the current study revealed that LRRK2 is one of the key molecules involved in the common pathologic mechanisms of AMD and PD.
Collapse
Affiliation(s)
- Yuka Suimon
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Moemi Nishimura
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shiho Yoshida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Yokoi
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zhenyu Dong
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Kuno
- D. Western Therapeutics Institute, Inc., Nagoya, Japan
| | - Shinobu Fujii
- D. Western Therapeutics Institute, Inc., Nagoya, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Sapporo Sousei East Clinic, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Zhong C, Gao X, Chen Q, Guan B, Wu W, Ma Z, Tao M, Liu X, Ding Y, Fei Y, Liu Y, Lu B, Li Z. R406 and its structural analogs reduce SNCA/α-synuclein levels via autophagic degradation. Autophagy 2025:1-17. [PMID: 40143425 DOI: 10.1080/15548627.2025.2483886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The presence of neuronal Lewy bodies mainly composed of SNCA/α-synuclein aggregations is a pathological feature of Parkinson disease (PD), whereas reducing SNCA protein levels may slow the progression of this disease. We hypothesized that compounds enhancing SNCA's interaction with MAP1LC3/LC3 May increase its macroautophagic/autophagic degradation. Here, we conducted small molecule microarray (SMM)-based screening to identify such compounds and revealed that the compound R406 could decrease SNCA protein levels in an autophagy-dependent manner. We further validated the proposed mechanism, in which knockdown of essential gene ATG5 for autophagy formation and using the autophagy inhibitor chloroquine (CQ) blocked the effect of R406. Additionally, R406 also reduced the levels of phosphorylated serine 129 of SNCA (p-S129-SNCA) in SNCA preformed fibrils (PFFs)-induced cellular models and rescued neuron degeneration. Importantly, we confirmed that R406 could alleviate PD-relevant disease phenotypes in human SNCA PFFs-induced cellular models and PD patient-derived organoid models. Taken together, we demonstrated the possibility of lowering SNCA levels by enhancing its autophagic degradation by compounds increasing SNCA-LC3 interactions.Abbreviations: ATTEC: autophagy-tethering compounds; BafA1: bafilomycin A1; BiFC: bimolecular fluorescence complementation; CQ: chloroquine; hMOs: human midbrain organoids; iPSC: induced pluripotent stem cells; MBP: maltose-binding protein; mHTT: mutant huntingtin; OI-RD: oblique-incidence reflectivity difference; PFFs: preformed fibrils; p-S129-SNCA: phosphorylated serine 129 of SNCA; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SMM: small molecule microarray; SNCA: synuclein alpha; SYK: spleen associated tyrosine kinase.
Collapse
Affiliation(s)
- Chao Zhong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoge Gao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qi Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bowen Guan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wanli Wu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiqiang Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xihuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu Ding
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Boxun Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaoyang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Francisco M, Grau R. Biofilm proficient Bacillus subtilis prevents neurodegeneration in Caenorhabditis elegans Parkinson's disease models via PMK-1/p38 MAPK and SKN-1/Nrf2 signaling. Sci Rep 2025; 15:9864. [PMID: 40118903 PMCID: PMC11928646 DOI: 10.1038/s41598-025-93737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
Parkinson's disease (PD) is a no-curable neurodegenerative disease of pandemic distribution for which only palliative treatments are available. A hallmark of PD is injury to dopaminergic neurons in the substantia nigra pars compacta. Here, we report that Caenorhabditis elegans colonized by biofilm-forming Bacillus subtilis is resistant to injury of dopaminergic neurons caused by treatment with the PD-related neurotoxin 6-hydroxydopamine (6-OHDA). Biofilm-forming B. subtilis-colonized C. elegans display dopamine-dependent behaviors indistinguishable from those of 6-OHDA-untreated worms colonized by gut commensal E. coli OP50. In C. elegans PD model strains with early dopaminergic neuron decay or overexpressing human alpha-synuclein, biofilm-forming B. subtilis colonization had neuroprotective effects and prevents alpha-synulcein aggregation, respectively. The B. subtilis-controlled insulin/IGF-1 signaling (ILS), whose downregulation prevents aging-related PD, is not involved in protecting against 6-OHDA-related injury. We demonstrate that biofilm-forming B. subtilis activates PMK-1 (p38 MAPK)/SKN-1 (Nrf2) signaling, which protects C. elegans from 6-OHDA-induced dopaminergic neuron injury.
Collapse
Affiliation(s)
- Marcos Francisco
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET-Argentina, Kyojin Laboratories S.A. Castellanos 1335, 2000, Rosario, Santa Fe, Argentina
| | - Roberto Grau
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET-Argentina, Kyojin Laboratories S.A. Castellanos 1335, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
6
|
Ismael S, Baitamouni S, Lee D. Neuroprotective Role of Cyclic AMP Signaling in Dopaminergic Degeneration Induced by a Parkinson's Disease Toxin, Rotenone. NEUROSCI 2025; 6:24. [PMID: 40137868 PMCID: PMC11946696 DOI: 10.3390/neurosci6010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/04/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. While dopamine precursor levodopa and D2 receptor agonists are commonly used to alleviate PD symptoms, these treatments do not halt or reverse disease progression. Thus, developing effective neuroprotective strategies remains a critical goal. In this study, we explored neuroprotective mechanisms in a Drosophila primary neuronal culture model of PD, created by administering the environmental toxin rotenone. Using the chemogenetic DREADD (designer receptors exclusively activated by designer drugs) system, we selectively activated cAMP signaling in DA neurons within the rotenone-induced model. Our results demonstrate that increasing cAMP signaling via Gs-coupled DREADD (rM3Ds) is protective against DA neurodegeneration. Furthermore, overexpression of the catalytic PKA-C1 subunit fully rescued DA neurons from rotenone-induced degeneration, with this effect restricted to DA neurons where PKA-C1 was specifically overexpressed. These findings reveal that cAMP-PKA signaling activation is neuroprotective in DA neurons against rotenone-induced degeneration, offering promising insights for developing targeted therapeutic strategies to slow or prevent PD pathology progression.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; (S.I.); (S.B.)
- Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region-F.R., Iraq
| | - Sarah Baitamouni
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; (S.I.); (S.B.)
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; (S.I.); (S.B.)
| |
Collapse
|
7
|
Liang M, Chu L, Yue Z. New Multiomic Studies Shed Light on Cellular Diversity and Neuronal Susceptibility in Parkinson's Disease. Mov Disord 2025; 40:431-437. [PMID: 39812497 DOI: 10.1002/mds.30097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms. Continued advancements in experimental technologies and sophisticated computational tools will be essential in uncovering a network of neuronal vulnerability and prioritizing disease modifiers for novel therapeutics development. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marianna Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Linh Chu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
9
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2025; 62:2292-2313. [PMID: 39103716 PMCID: PMC11772535 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Waller SE, Stockwell JB, Fung VSC, Anstey KJ, Colebatch JG, Markoulli M, Krishnan AV. Topical review: Ocular surface abnormalities in neurodegenerative disorders. Optom Vis Sci 2025; 102:68-77. [PMID: 39792646 DOI: 10.1097/opx.0000000000002215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
SIGNIFICANCE In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers. BACKGROUND This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development. Corneal confocal microscopy, traditionally used for studying corneal health, offers high-resolution imaging of corneal nerves and has shown promise for examining systemic diseases such as Alzheimer disease and Parkinson's disease. Complementarily, tear fluid analysis, known for its ease of collection, reflects systemic changes in neurodegenerative conditions. CONCLUSION Together, these noninvasive techniques provide insights into disease onset and progression and hold potential for advancing diagnostic and treatment strategies.
Collapse
Affiliation(s)
| | | | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - James G Colebatch
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
11
|
Gao W, Wu X, Wang Y, Lu F, Liu F. Brazilin-Rich Extract from Caesalpinia sappan L. Attenuated the Motor Deficits and Neurodegeneration in MPTP/p-Induced Parkinson's Disease Mice by Regulating Gut Microbiota and Inhibiting Inflammatory Responses. ACS Chem Neurosci 2025; 16:181-194. [PMID: 39711007 DOI: 10.1021/acschemneuro.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Parkinson's disease (PD) is a complicated neurological disease with an unclear pathogenesis. However, dysregulation of gut microbiota and inflammation response play crucial roles in the progression of PD. Caesalpinia sappan L., a traditional medicinal plant containing brazilin as its primary active compound, is known for its anti-inflammatory and neuroprotective properties. However, the impact of C. sappan L. extract (SE) on PD through the regulation of the microbiota-gut-brain axis remains unclear. This study investigated the effects and mechanisms of a 91.23% brazilin-enriched SE on MPTP/p-induced PD mice. Results showed that SE significantly ameliorated motor deficits and protected dopaminergic neurons in PD mice. Additionally, SE reduced oxidative stress and inflammation in the brain. SE also restored gut microbiota by increasing Firmicutes and decreasing Bacteroidetes, alongside enhancing the production of short-chain fatty acids (SCFAs) like butyric acid. Furthermore, SE mitigated intestinal barrier damage by enhancing the expression of ZO-1 and occludin, thereby decreasing lipopolysaccharide leakage and inflammatory factor release. Molecular simulations suggested that butyric acid may maintain intestinal integrity by stabilizing ZO-I and occludin conformations. In conclusion, SE exhibited a protective effect on motor deficits and neurodegeneration in PD by regulating gut microbiota and SCFAs, repairing the intestinal barrier, and mitigating inflammatory responses.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
12
|
Nie S, Li B, Wang M, Chen Z, Ren J, Li Z, Xu X, Qian Z, Xie Z, Han J, Zhang Z, Zhang Z, Zhu Y, Chen Z, Yang X, Ye K. Sox6 and ALDH1A1 Truncation by Asparagine Endopeptidase Defines Selective Neuronal Vulnerability in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409477. [PMID: 39573918 PMCID: PMC11727119 DOI: 10.1002/advs.202409477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Indexed: 01/14/2025]
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNpc) demonstrate regionally selective susceptibility in Parkinson's disease (PD) compared to those in the ventral tegmental area (VTA). However, the molecular mechanism for this distinct vulnerability remains unclear. Here, it is shown that Legumain, also known as asparagine endopeptidase (AEP), is activated in a subgroup of SRY-box transcription factor 6 /Aldehyde dehydrogenase 1 family member A1, (Sox6+/ALDH1A1+) neurons in the ventral tier of the SNpc and cleaves Sox6 and ALDH1A1, leading to repression of Special AT-rich sequence binding protein 1 (Satb1) that is a dimeric/tetrameric transcription factor specifically binding to AT-rich DNA sequences, and toxic dopamine metabolite accumulation. AEP cuts Sox6 and ALDH1A1 in dopaminergic neurons that project to the locus coeruleus (LC), abolishing Sox6's transcriptive and ALDH1A1's enzymatic activities. Co-expressing AEP-truncated Sox6 and ALDH1A1 fragments in 3-month-old A53T SNCA transgenic mice accelerates dopamine degeneration, whereas expressing AEP-resistant Sox6 N336A/N446A and ALDH1A1 N220A mutants alleviates rotenone-induced PD pathologies. Hence, different circuitries and intrinsic properties of dopaminergic neurons in the SNpc and VTA render differential predispositions in PD.
Collapse
Affiliation(s)
- Shuke Nie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Bowei Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Institute of Advanced TechnologyUniversity of Chinese Academy of ScienceShenzhenGuangdong518055China
| | - Mengmeng Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zijun Chen
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Jiayan Ren
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xinli Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhongyun Xie
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Jianxin Han
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | | | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenGuangdong518055China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Faculty of Life and Health SciencesShenzhen University of Advanced Technology (SUAT)ShenzhenGuangdong518107China
| |
Collapse
|
13
|
Shwab EK, Man Z, Gingerich DC, Gamache J, Garrett ME, Serrano GE, Beach TG, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Comparative mapping of single-cell transcriptomic landscapes in neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628436. [PMID: 39764045 PMCID: PMC11702568 DOI: 10.1101/2024.12.13.628436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We used computational analyses to identify common and distinct differentially expressed genes (DEGs), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-to-cell interactions. RESULTS The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed the greatest transcriptomic divergence between AD and PD, while DLB exhibited an intermediate transcriptomic signature. DISCUSSION These results help explain the clinicopathological spectrum of this group of NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying the pathogenesis of NDDs.
Collapse
Affiliation(s)
- E. Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C. Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| |
Collapse
|
14
|
Garcia Moreno SI, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. Exp Neurol 2024; 382:114959. [PMID: 39288832 DOI: 10.1016/j.expneurol.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how and if it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any dopaminergic neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Sofia Ines Garcia Moreno
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Iina Ludwig
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Catherine Gilbert
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Hueske E, Stine C, Yoshida T, Crittenden JR, Gupta A, Johnson JC, Achanta AS, Bhagavatula S, Loftus J, Mahar A, Hu D, Azocar J, Gray RJ, Bruchas MR, Graybiel AM. Developmental and Adult Striatal Patterning of Nociceptin Ligand Marks Striosomal Population With Direct Dopamine Projections. J Comp Neurol 2024; 532:e70003. [PMID: 39656141 PMCID: PMC11629859 DOI: 10.1002/cne.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting the early developmental expression of Pnoc. In the ventral striatum, Pnoc expression in the nucleus accumbens core was grouped in clusters akin to the distribution found in striosomes. We found that PnoctdTomato reporter cells largely comprise a population of dopamine receptor D1 (Drd1) expressing medium spiny projection neurons localized in dorsal striosomes, known to be unique among striatal projection neurons for their direct innervation of midbrain dopamine neurons. These findings provide a new understanding of the intersection of the N/OFQ system among basal ganglia circuits with particular implications for developmental regulation or wiring of striato-nigral circuits.
Collapse
Affiliation(s)
- Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carrie Stine
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
- Molecular and Cellular BiologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Akshay Gupta
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joseph C. Johnson
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ananya S. Achanta
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Smitha Bhagavatula
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Johnny Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jesus Azocar
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan J. Gray
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Michael R. Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
16
|
Nolbrant S, Wallace JL, Ding J, Zhu T, Sevetson JL, Kajtez J, Baldacci IA, Corrigan EK, Hoglin K, McMullen R, Schmitz MT, Breevoort A, Swope D, Wu F, Pavlovic BJ, Salama SR, Kirkeby A, Huang H, Schaefer NK, Pollen AA. INTERSPECIES ORGANOIDS REVEAL HUMAN-SPECIFIC MOLECULAR FEATURES OF DOPAMINERGIC NEURON DEVELOPMENT AND VULNERABILITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623592. [PMID: 39605599 PMCID: PMC11601475 DOI: 10.1101/2024.11.14.623592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate cis- and trans-regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
Collapse
Affiliation(s)
- Sara Nolbrant
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jenelle L. Wallace
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jingwen Ding
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess L. Sevetson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella A. Baldacci
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emily K. Corrigan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kaylynn Hoglin
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Reed McMullen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dani Swope
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Fengxia Wu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong Province, China
| | - Bryan J. Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan K. Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
17
|
Lipari N, Galfano A, Venkatesh S, Grezenko H, Sandoval IM, Manfredsson FP, Bishop C. The effects of chemogenetic targeting of serotonin-projecting pathways on L-DOPA-induced dyskinesia and psychosis in a bilateral rat model of Parkinson's disease. Front Neural Circuits 2024; 18:1463941. [PMID: 39634948 PMCID: PMC11615880 DOI: 10.3389/fncir.2024.1463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP. One source of these fluctuations could be the serotonergic raphe nuclei and their projections. Serotonin (5-HT) neurons possess the machinery necessary to convert and release DA from exogenous LD. In DA-depleted brain regions these 5-HT projections can act as surrogates to the DA system initially compensating but chronically leading to aberrant neuroplasticity which has been linked to LID and may also contribute to non-motor fluctuations. In support, recent work from our lab established a positive relationship between LID and PDAP in parkinsonian rats. Therefore, it was hypothesized that normalizing 5-HT forebrain input would reduce the co-expression of LID and PDAP. Methods To do so, we expressed 5-HT projection specific inhibitory designer receptor exclusively activated by designer drugs (DREADDs) using Cre-dependent AAV9-hM4di in tryptophan hydroxylase 2 (TPH2)-Cre bilaterally 6-OHDA-lesioned rats. Thereafter we used the designer drug Compound 21 to selectively inhibit 5-HT raphe projections during LD treatment to modulate the expression of PDAP, assayed by prepulse inhibition (PPI) and LID, quantified by the abnormal involuntary movements (AIMs) test. Results Our results suggest that chemogenetic inhibition of 5-HT raphe-projecting cells significantly reduces LID without affecting stepping ability or established sensorimotor gating deficits. Discussion Overall, this study provides further evidence for the complex influence of 5-HT raphe-projecting neurons on LD's neurobehavioral effects.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Ashley Galfano
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Shruti Venkatesh
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Han Grezenko
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
18
|
Chen B, Zhou H, Liu X, Yang W, Luo Y, Zhu S, Zheng J, Wei X, Chan LL, Tan EK, Wang Q. Correlations of gray matter volume with peripheral cytokines in Parkinson's disease. Neurobiol Dis 2024; 201:106693. [PMID: 39368669 DOI: 10.1016/j.nbd.2024.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024] Open
Abstract
INTRODUCTION Peripheral cytokine levels may affect specific brain volumes. Few studies have examined this possible relationship. OBJECTIVE In a case-control study, we used magnetic resonance imaging (MRI) voxel-based morphological analysis techniques to examine the relationship between gray matter volume changes and cognitive, motor and emotional dysfunction as well as between gray matter volume changes and peripheral blood cytokine levels. METHOD A total of 134 subjects, comprising 66 PD patients and 68 healthy controls, were recruited. Peripheral venous blood was collected to measure the concentrations of 12 cytokines, including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, IFN-α, IFN-γ, and TNF-α. All the subjects also underwent MRI, where 3D-T1-weighted MR images were used for the analysis. In addition, the Montreal Cognitive Assessment (MoCA), Mini-Mental Status Examination (MMSE), Unified Parkinson's disease Rating Scale (UPDRS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD) scores were assessed in PD patients. Statistical parameter mapping 12 software was used for the statistical analysis of the images. RESULT Compared with control patients, PD patients presented decreased gray matter volume (GMV) in the bilateral frontal lobe, temporal lobe, parietal lobe, occipital lobe, insula, and right cerebellar lobule VIII. Regional GMV in the temporal lobe, parietal lobe, and cerebellum was correlated with MoCA, MMSE, UPDRS, HAMA, and HAMD scores in PDs. In addition, the regional GMV in PDs was correlated with the concentrations of cytokines, including IL-4, IL-6, IFN-γ, and TNF-α. The IL-6 concentration was negatively correlated with the UPDRS-IV score. CONCLUSION PD patients exhibit gray matter atrophy in a wide range of brain regions, which are symmetrically distributed and mainly concentrated in the frontal and temporal lobes, and these changes may be linked to motor disorders and neuropsychiatric manifestations. Cytokine concentrations in peripheral blood are correlated with regional gray matter volume in PDs, and the IL-6 level affects gray matter volume in the left precentral gyrus and the manifestation of motor complications.
Collapse
Affiliation(s)
- BaoLing Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - XinZi Liu
- Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
19
|
Laguna A, Peñuelas N, Gonzalez-Sepulveda M, Nicolau A, Arthaud S, Guillard-Sirieix C, Lorente-Picón M, Compte J, Miquel-Rio L, Xicoy H, Liu J, Parent A, Cuadros T, Romero-Giménez J, Pujol G, Giménez-Llort L, Fort P, Bortolozzi A, Carballo-Carbajal I, Vila M. Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits. Nat Commun 2024; 15:8819. [PMID: 39394193 PMCID: PMC11470033 DOI: 10.1038/s41467-024-53168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal models because common laboratory species, such as rodents, do not produce neuromelanin. Here we generate a tissue-specific transgenic mouse, termed tgNM, that mimics the human age-dependent brain-wide distribution of neuromelanin within catecholaminergic regions, based on the constitutive catecholamine-specific expression of human melanin-producing enzyme tyrosinase. We show that, in parallel to progressive human-like neuromelanin pigmentation, these animals display age-related neuronal dysfunction and degeneration affecting numerous brain circuits and body tissues, linked to motor and non-motor deficits, reminiscent of early neurodegenerative stages. This model could help explore new research avenues in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sébastien Arthaud
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lluís Miquel-Rio
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jiong Liu
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Gemma Pujol
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
- Department of Psychiatry and Forensic Medicine-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Patrice Fort
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Analia Bortolozzi
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
20
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Ueda J, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. Mol Neurodegener 2024; 19:69. [PMID: 39379975 PMCID: PMC11462807 DOI: 10.1186/s13024-024-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Jun Ueda
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Nasiri
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Constantin A Grotmann
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US.
| |
Collapse
|
21
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Pauwels A, Phan ALG, Ding C, Phan TG, Kempster PA. Rate of motor progression in Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2024; 15:1452741. [PMID: 39391167 PMCID: PMC11464440 DOI: 10.3389/fneur.2024.1452741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background The search for neuroprotective treatments for Parkinson's disease (PD) still relies largely on motor disability scales. A limitation of these tools is the strong influence of symptomatic dopaminergic treatment effects. Drawing on a wealth of published information, we conducted a systematic review and meta-analysis of motor progression in PD and its relationships with dopaminergic therapy. Methods We searched Medline, Embase, and Central to identify 84 publications with adequate serial motor scores to calculate progression, expressed as an increase in the percentage of maximum disability. Results A random-effects model showed motor progression at 2.0% p.a. (95% CI 1.7-2.4%). There were no significant differences by baseline age, sample size, or observation period. However, untreated patients, in 8 publications, progressed at 4.5% p.a. compared to 1.6% p.a. in 76 studies containing individuals on dopaminergic drugs (p = 0.0004, q = 0.003). This was supported by research on phenoconversion in prodromal PD, where motor progression exceeded 5% p.a. in the 2 years before diagnosis. Starting levodopa improved pre-treatment disability by 40.3 ± 15.2%. Practically defined off state measurements increase faster than on scores by a modest degree (p = 0.05). Conclusion This survey suggests that accurate long-term measurements of motor progression to assess disease-modifying therapies can be conducted despite the sequential commencement of dopaminergic drugs and sample attrition over time. While study designs involving prodromal or untreated PD avoid confounding effects of symptomatic treatment, different assumptions about motor progression may be needed. A defined off state with the levodopa test dose method maximizes information about the medication cycle once dopaminergic therapy has begun.
Collapse
Affiliation(s)
- Ayla Pauwels
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- NEUR Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Albert L. G. Phan
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Catherine Ding
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Thanh G. Phan
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Peter A. Kempster
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
24
|
Kim B, Yang M, Lee J, Kim JS, Hyun SH, Moon C. Upregulation of γ-synuclein in the prefrontal cortex and hippocampus following dopamine depletion: A study using the striatal 6-hydroxydopamine hemiparkinsonian rat model. Neurosci Lett 2024; 839:137936. [PMID: 39151573 DOI: 10.1016/j.neulet.2024.137936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Synucleins, including α-synuclein (α-syn), β-syn, and γ-syn, have been implicated in various synucleinopathies, notably Parkinson's disease (PD), which has generated increased interest in understanding their roles. Although α-syn and β-syn have contrasting neuropathological consequences, the precise role of γ-syn remains unclear. This study validated non-motor symptoms, specifically anxiety-like behavior, along with the degradation of dopaminergic (DAergic) neurons in the nigrostriatal system and DAergic neurites in the prefrontal cortex and hippocampus of rats infused with striatal 6-hydroxydopamine (6-OHDA). Our study further investigated the alterations in γ-syn expression levels in the prefrontal cortices and hippocampi of these 6-OHDA-treated rats, aiming to establish foundational insights into the neuropathophysiology of DA depletion, a central feature of PD. Our findings revealed a significant increase in the expression of γ-syn mRNA and protein in these brain regions, in contrast to unaltered α- and β-syn expression levels. This suggests a distinct role of γ-syn within the neurobiological milieu under conditions of DA deficiency. Overall, our data shed light on the neurobiological changes observed in the hemiparkinsonian rat model induced with 6-OHDA, underscoring the potential significance of γ-syn in PD pathology.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Miyoung Yang
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
25
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
26
|
Jiang M, Deng X, Qiu Z, Li J, Song Z, Chen X, Chen R, Huang X, Cui X, Fu Y. Bibliometric analysis of global research trends in magnetic resonance imaging studies of substantia nigra in Parkinson's disease (2001-2024). Front Aging Neurosci 2024; 16:1455562. [PMID: 39291277 PMCID: PMC11405190 DOI: 10.3389/fnagi.2024.1455562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Parkinson's disease (PD) is a globally prevalent neurodegenerative disorder, primarily characterized by muscle rigidity, resting tremor, and bradykinesia. The incidence of PD is rapidly escalating worldwide. Numerous studies have been conducted on the application of magnetic resonance imaging (MRI) in investigating the substantia nigra (SN) in PD patients. However, to date, no bibliometric analysis has been performed on this specific research area. Therefore, this study aimed to provide a comprehensive analysis of the current status in MRI research on the SN in PD patients. Materials and methods MRI study records related to the SN in PD patients from 2001 to 2024 were searched by using the Web of Science Core Collection (WOSCC) database and then the CiteSpace and VOSviewer were used to conduct bibliometric analysis. Results Our analysis found that the number of published articles related studies on MRI of the SN in PD showed an overall upward trend over the past decade, in which Lehericy, Stephane, Du, Guangwei, and Huang, Xuemei are the top three authors with the most articles. Additionally, United States, China and Germany are the main contributors to MRI studies of SN in PD. And Shanghai Jiao Tong University, University of Florida and Seoul National University are the leading institutions in the field. Finally, the keyword analysis showed that the hotspots and trends of research in this field are mainly concentrated in quantitative susceptibility mapping, neuroimaging, and neuromelanin-sensitive MRI. Conclusion These analysis identified the most influential authors, institutions, countries and research hotspots in the field of SN-MRI research in PD, which has reference significance for the research interest in this field and provides a new idea for PD prevention.
Collapse
Affiliation(s)
- Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zifan Song
- School of Sports Health, Guangdong Vocational Institute of Sport, Guangzhou, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Ruiqi Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xianzhi Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| |
Collapse
|
27
|
Del Rey NLG, Hernández-Pinedo N, Carrillo M, Del Cerro M, Esteban-García N, Trigo-Damas I, Monje MHG, Lanciego JL, Cavada C, Obeso JA, Blesa J. Calbindin and Girk2/Aldh1a1 define resilient vs vulnerable dopaminergic neurons in a primate Parkinson's disease model. NPJ Parkinsons Dis 2024; 10:165. [PMID: 39223183 PMCID: PMC11369234 DOI: 10.1038/s41531-024-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (nigrosome), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the substantia nigra pars reticulata emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nagore Hernández-Pinedo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Megan Carrillo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - María Del Cerro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - Mariana H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - José L Lanciego
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Cavada
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autónoma de Madrid University, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|
28
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
29
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Balzano T, Del Rey NLG, Esteban-García N, Reinares-Sebastián A, Pineda-Pardo JA, Trigo-Damas I, Obeso JA, Blesa J. Neurovascular and immune factors of vulnerability of substantia nigra dopaminergic neurons in non-human primates. NPJ Parkinsons Dis 2024; 10:118. [PMID: 38886348 PMCID: PMC11183116 DOI: 10.1038/s41531-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Dopaminergic neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease (PD), while those in the dorsal tier and ventral tegmental area are relatively spared. The factors determining why these neurons are more vulnerable than others are still unrevealed. Neuroinflammation and immune cell infiltration have been demonstrated to be a key feature of neurodegeneration in PD. However, the link between selective dopaminergic neuron vulnerability, glial and immune cell response, and vascularization and their interactions has not been deciphered. We aimed to investigate the contribution of glial cell activation and immune cell infiltration in the selective vulnerability of ventral dopaminergic neurons within the midbrain in a non-human primate model of PD. Structural characteristics of the vasculature within specific regions of the midbrain were also evaluated. Parkinsonian monkeys exhibited significant microglial and astroglial activation in the whole midbrain, but no major sub-regional differences were observed. Remarkably, the ventral substantia nigra was found to be typically more vascularized compared to other regions. This feature might play some role in making this region more susceptible to immune cell infiltration under pathological conditions, as greater infiltration of both T- and B- lymphocytes was observed in parkinsonian monkeys. Higher vascular density within the ventral region of the SNc may be a relevant factor for differential vulnerability of dopaminergic neurons in the midbrain. The increased infiltration of T- and B- cells in this region, alongside other molecules or toxins, may also contribute to the susceptibility of dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Alejandro Reinares-Sebastián
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|
31
|
Giraldo-Berrio D, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD). Neurotox Res 2024; 42:28. [PMID: 38842585 PMCID: PMC11156752 DOI: 10.1007/s12640-024-00705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A β ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 μ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A β (iA β ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA β , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| |
Collapse
|
32
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
33
|
Rombaut A, Jovancevic D, Wong RCB, Nicol A, Brautaset R, Finkelstein DI, Nguyen CTO, Tribble JR, Williams PA. Intravitreal MPTP drives retinal ganglion cell loss with oral nicotinamide treatment providing robust neuroprotection. Acta Neuropathol Commun 2024; 12:79. [PMID: 38773545 PMCID: PMC11107037 DOI: 10.1186/s40478-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.
Collapse
Affiliation(s)
- Anne Rombaut
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Danica Jovancevic
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alan Nicol
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Hueske E, Stine C, Yoshida T, Crittenden JR, Gupta A, Johnson JC, Achanta AS, Loftus J, Mahar A, Hul D, Azocar J, Gray RJ, Bruchas MR, Graybiel AM. Developmental and adult striatal patterning of nociceptin ligand marks striosomal population with direct dopamine projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594426. [PMID: 38798373 PMCID: PMC11118414 DOI: 10.1101/2024.05.15.594426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting early developmental expression of Pnoc . In the ventral striatum, Pnoc expression was was clustered across the nucleus accumbens core and medial shell, including in adult striatum. We found that Pnoc tdTomato reporter cells largely comprise a population of dopamine receptor D1 ( Drd1 ) expressing medium spiny projection neurons localized in dorsal striosomes, known to be unique among striatal projections neurons for their direct innervation of midbrain dopamine neurons. These findings provide new understanding of the intersection of the N/OFQ system among basal ganglia circuits with particular implications for developmental regulation or wiring of striatal-nigral circuits.
Collapse
|
35
|
Mihajlović K, Ceddia G, Malod-Dognin N, Novak G, Kyriakis D, Skupin A, Pržulj N. Multi-omics integration of scRNA-seq time series data predicts new intervention points for Parkinson's disease. Sci Rep 2024; 14:10983. [PMID: 38744869 PMCID: PMC11094121 DOI: 10.1038/s41598-024-61844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.
Collapse
Affiliation(s)
| | - Gaia Ceddia
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | | | - Gabriela Novak
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain.
- Department of Computer Science, University College London, WC1E 6BT, London, UK.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
36
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Moreno SIG, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592188. [PMID: 38746104 PMCID: PMC11092628 DOI: 10.1101/2024.05.03.592188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any DA neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute DA neurodegeneration.
Collapse
|
38
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
39
|
Hembach S, Schmidt S, Orschmann T, Burtscher I, Lickert H, Giesert F, Weisenhorn DV, Wurst W. Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation. Neurobiol Dis 2024; 194:106474. [PMID: 38518837 DOI: 10.1016/j.nbd.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Sina Hembach
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Neurobiological Engineering, Munich Institute of Biomedical Engineering, TUM School of Natural Sciences, Garching, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany
| | - Tanja Orschmann
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technische Universität München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany; Technische Universität München-Weihenstephan, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
40
|
Dautan D, Paslawski W, Montejo SG, Doyon DC, Marangiu R, Kaplitt MG, Chen R, Dawson VL, Zhang X, Dawson TM, Svenningsson P. Gut-Initiated Alpha Synuclein Fibrils Drive Parkinson's Disease Phenotypes: Temporal Mapping of non-Motor Symptoms and REM Sleep Behavior Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590542. [PMID: 38712208 PMCID: PMC11071367 DOI: 10.1101/2024.04.22.590542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Parkinson's disease (PD) is characterized by progressive motor as well as less recognized non-motor symptoms that arise often years before motor manifestation, including sleep and gastrointestinal disturbances. Despite the heavy burden on the patient's quality of life, these non-motor manifestations are poorly understood. To elucidate the temporal dynamics of the disease, we employed a mouse model involving injection of alpha-synuclein (αSyn) pre-formed fibrils (PFF) in the duodenum and antrum as a gut-brain model of Parkinsonism. Using anatomical mapping of αSyn-PFF propagation and behavioral and physiological characterizations, we unveil a correlation between post-injection time the temporal dynamics of αSyn propagation and non-motor/motor manifestations of the disease. We highlight the concurrent presence of αSyn aggregates in key brain regions, expressing acetylcholine or dopamine, involved in sleep duration, wakefulness, and particularly REM-associated atonia corresponding to REM behavioral disorder-like symptoms. This study presents a novel and in-depth exploration into the multifaceted nature of PD, unraveling the complex connections between α-synucleinopathies, gut-brain connectivity, and the emergence of non-motor phenotypes.
Collapse
Affiliation(s)
- Daniel Dautan
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sergio G. Montejo
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Daniel C. Doyon
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Roberta Marangiu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Michael G. Kaplitt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Rong Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valina L. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoaun Zhang
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ted M. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
41
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
42
|
Centner A, Del Priore I, Chambers N, Cohen SR, Terry ML, Coyle M, Glinski J, Stoll AC, Patterson JR, Kemp CJ, Miller KM, Kubik M, Kuhn N, Luk KC, Sortwell CE, Bishop C. Deficits in basal and evoked striatal dopamine release following alpha-synuclein preformed fibril injection: An in vivo microdialysis study. Eur J Neurosci 2024; 59:1585-1603. [PMID: 38356120 DOI: 10.1111/ejn.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% ➔ 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.
Collapse
Affiliation(s)
- Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | | | - Nicole Chambers
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Sophie R Cohen
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Michelle L Terry
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Michael Coyle
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Kathryn M Miller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
43
|
Chen RYT, Evans RC. Comparing tonic and phasic dendritic calcium in cholinergic pedunculopontine neurons and dopaminergic substantia nigra neurons. Eur J Neurosci 2024; 59:1638-1656. [PMID: 38383047 PMCID: PMC10987283 DOI: 10.1111/ejn.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Several brainstem nuclei degenerate in Parkinson's disease (PD). In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. One leading hypothesis of selective vulnerability is that pacemaking activity and the activation of low-threshold L-type calcium current are major contributors to tonic calcium load and cellular stress in SNc dopaminergic neurons. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in tonic and phasic dendritic calcium signals in PPN and SNc neurons. In addition, we investigated N- and P/Q-type calcium channel regulation of firing properties and dendritic calcium in PPN neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the tonic calcium load in PPN neurons did not depend on L-, N- or P/Q-type channels. However, we found that blocking either L-type (with nifedipine) or N- and P/Q-type (with omega-conotoxin MVIIC) channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.
Collapse
Affiliation(s)
- Rita Yu-Tzu Chen
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| | - Rebekah C. Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| |
Collapse
|
44
|
Goralski TM, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse DJ, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat Commun 2024; 15:2642. [PMID: 38531900 PMCID: PMC10966039 DOI: 10.1038/s41467-024-47027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas M Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lisa Turner
- Van Andel Institute Pathology Core, Grand Rapids, MI, 49503, USA
| | - Katelyn Becker
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
45
|
Geertsma HM, Fisk ZA, Sauline L, Prigent A, Kurgat K, Callaghan SM, Henderson MX, Rousseaux MWC. A topographical atlas of α-synuclein dosage and cell type-specific expression in adult mouse brain and peripheral organs. NPJ Parkinsons Dis 2024; 10:65. [PMID: 38504090 PMCID: PMC10951202 DOI: 10.1038/s41531-024-00672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and presents pathologically with Lewy pathology and dopaminergic neurodegeneration. Lewy pathology contains aggregated α-synuclein (αSyn), a protein encoded by the SNCA gene which is also mutated or duplicated in a subset of familial PD cases. Due to its predominant presynaptic localization, immunostaining for the protein results in a diffuse reactivity pattern, providing little insight into the types of cells expressing αSyn. As a result, insight into αSyn expression-driven cellular vulnerability has been difficult to ascertain. Using a combination of knock-in mice that target αSyn to the nucleus (SncaNLS) and in situ hybridization of Snca in wild-type mice, we systematically mapped the topography and cell types expressing αSyn in the mouse brain, spinal cord, retina, and gut. We find a high degree of correlation between αSyn protein and RNA levels and further identify cell types with low and high αSyn content. We also find high αSyn expression in neurons, particularly those involved in PD, and to a lower extent in non-neuronal cell types, notably those of oligodendrocyte lineage, which are relevant to multiple system atrophy pathogenesis. Surprisingly, we also found that αSyn is relatively absent from select neuron types, e.g., ChAT-positive motor neurons, whereas enteric neurons universally express some degree of αSyn. Together, this integrated atlas provides insight into the cellular topography of αSyn, and provides a quantitative map to test hypotheses about the role of αSyn in network vulnerability, and thus serves investigations into PD pathogenesis and other α-synucleinopathies.
Collapse
Affiliation(s)
- Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zoe A Fisk
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lillian Sauline
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Alice Prigent
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Kevin Kurgat
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H8M5, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Michael X Henderson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, K1H8M5, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
46
|
Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem Int 2024; 174:105691. [PMID: 38311217 DOI: 10.1016/j.neuint.2024.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.
Collapse
Affiliation(s)
- Sonali Valvaikar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
47
|
Chen X, Zhang Y. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease. Neural Regen Res 2024; 19:324-330. [PMID: 37488885 PMCID: PMC10503617 DOI: 10.4103/1673-5374.379042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
The dichotomized brain system is a concept that was generalized from the 'dual syndrome hypothesis' to explain the heterogeneity of cognitive impairment, in which anterior and posterior brain systems are independent but partially overlap. The dopaminergic system acts on the anterior brain and is responsible for executive function, working memory, and planning. In contrast, the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function. Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson's disease. Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections. However, whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated. Furthermore, the precise role of the cerebellum in patients with Parkinson's disease and cognitive impairment remains unclear. Therefore, in this review, we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition, as reported by previous studies, and investigated the role of the cerebellum in patients with Parkinson's disease and cognitive impairment, as determined by functional neuroimaging. Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
48
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
49
|
Chmiel J, Rybakowski F, Leszek J. Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson's Disease-A Narrative Review. J Clin Med 2024; 13:699. [PMID: 38337395 PMCID: PMC10856764 DOI: 10.3390/jcm13030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Depression is the most prevalent comorbid neuropsychiatric condition in individuals with Parkinson's disease (PD), and its underlying mechanisms are not yet fully understood. Current treatment methods are characterised by moderate effectiveness and possible side effects, prompting the search for new non-invasive and safe treatment methods. METHODS This narrative review explores the use of transcranial direct current stimulation (tDCS) in the treatment of depression in PD, based on neuropsychological measures. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Nine relevant studies were identified, where depression scores served as either primary or secondary outcomes. Stimulation protocols displayed heterogeneity, especially concerning choice of stimulation site. Patient samples were also heterogeneous. The majority of the studies incorporated anodal stimulation targeting the left dorsolateral prefrontal cortex (DLPFC). The results revealed a reduction in depression scores among PD patients following tDCS. Potential mechanisms through which tDCS may alleviate depression in PD were discussed and recommendations for future research were made. CONCLUSIONS Preliminary evidence suggests that tDCS applied anodally to the left DLPFC reduces depression scores in people with PD; however, due to the heterogeneity of the studies analysed, the use of tDCS in this field should be approached with caution and warrants further validation and confirmation.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
50
|
Yuzawa S, Nakashio M, Ichimura S, Shimoda M, Nakashima A, Marukawa-Hashimoto Y, Kawano Y, Suzuki K, Yoshitomi K, Kawahara M, Tanaka KI. Ergothioneine Prevents Neuronal Cell Death Caused by the Neurotoxin 6-Hydroxydopamine. Cells 2024; 13:230. [PMID: 38334622 PMCID: PMC10854700 DOI: 10.3390/cells13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
Collapse
Affiliation(s)
- Saho Yuzawa
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Motonari Nakashio
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Suzuna Ichimura
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ayaka Nakashima
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yuka Marukawa-Hashimoto
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yusuke Kawano
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kengo Suzuki
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kenichi Yoshitomi
- Sakichi, Co., Ltd., 5-531 Kuromaru-Machi, Omura, Nagasaki 856-0808, Japan;
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ken-ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| |
Collapse
|