1
|
Antonova VV, Shumov IV, Dolgikh VT, Grebenchikova AA, Gabitov MV, Yakupova EI, Grebenchikov OA. Effect of Breathing a Krypton-Oxygen Mixture on Signaling Cascades in Rat Brain during Simulation of Photoinduced Ischemic Stroke. Bull Exp Biol Med 2025; 178:333-338. [PMID: 39954176 DOI: 10.1007/s10517-025-06332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 02/17/2025]
Abstract
We studied the effect of a krypton-oxygen mixture on the key signaling pathways associated with ischemic tolerance and suppression of secondary damage in a model of photoinduced stroke in male Wistar rats. In animals breathing the krypton-oxygen mixture, the expression of the transcription factor NF-κB (p50) in the brain was suppressed, indicating anti-inflammatory shifts in the brain tissue upon exposure to krypton, in parallel, increased content of phosphorylated forms of glycogen synthase kinase 3β (GSK-3β) and protein kinase B (Akt), components of the preconditioning cascade, was revealed. These results indicate a high potential of krypton in reducing acute cerebral disorders.
Collapse
Affiliation(s)
- V V Antonova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.
| | - I V Shumov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - V T Dolgikh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - A A Grebenchikova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - M V Gabitov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - E I Yakupova
- A. N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - O A Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| |
Collapse
|
2
|
Meng X, Yang H, Chen F, Li B, Wu Y, Wang R. Exercise preconditioning mitigates brain injury after cerebral ischemia-reperfusion injury in rats by restraining TIMP1. Immun Inflamm Dis 2024; 12:e70008. [PMID: 39364701 PMCID: PMC11450454 DOI: 10.1002/iid3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cerebral ischemic disease is a common cerebrovascular disease, especially ischemic stroke. Exercise has protective functions on brain tissues following cerebral ischemia-reperfusion injury (CIRI), but its preventive effects and mechanisms in CIRI remain unclear. We aimed to investigate the effects and mechanisms of exercise preconditioning on CIRI. METHODS The middle cerebral artery occlusion (MCAO) operation was prepared to establish CIRI rats. All rats were randomized into the MCAO, exercise (exercise preconditioning plus MCAO operation), vector (exercise preconditioning, MCAO operation plus intraventricular injection of empty vector), and tissue inhibitor of metalloprotease 1 overexpression (OE-TIMP1, exercise preconditioning, MCAO operation plus intraventricular injection of OE-TIMP1) groups. RESULTS The results indicated that exercise preconditioning suppressed approximately 66.67% of neurological deficit scores and 73.79% of TIMP1 mRNA expression in MCAO rats, which were partially offset by OE-TIMP1. The protective effects of exercise against neuron death status and cerebral infarction size in MCAO rats were reversed by OE-TIMP1. It also confirmed that exercise weakened apoptosis and oxidative stress damage, with notable increases of B-cell lymphoma-2, superoxide dismutase, and glutathione peroxidase production, and evident decreases of BCL2-associated X, caspase 3, and malondialdehyde in MCAO rats, while these effects were partially reversed by OE-TIMP1. Additionally, the inhibitory effects of exercise on the protein levels of TIMP1, hypoxia-inducible factor-alpha, vascular endothelial growth factor receptor 2, vascular endothelial growth factor, and neurogenic locus notch homolog protein 1 in MCAO rats were partially reversed by OE-TIMP1. CONCLUSION Altogether, exercise preconditioning had protective effects on CIRI by restraining TIMP1, which provided new therapeutic strategies for preventing CIRI.
Collapse
Affiliation(s)
- Xiangbo Meng
- Department of Rehabilitation MedicineThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou310000Zhejiang ProvinceChina
| | - Hui Yang
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Feifeng Chen
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Baohua Li
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Yan Wu
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Rong Wang
- Department of RadiologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| |
Collapse
|
3
|
Xu Y, Li X, Guo X, Gao W. Effect of positive psychological intervention on the treatment and prognosis of patients with acute cerebral infarction. Pak J Med Sci 2024; 40:2005-2010. [PMID: 39416608 PMCID: PMC11476134 DOI: 10.12669/pjms.40.9.7731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/01/2024] [Accepted: 06/29/2024] [Indexed: 10/19/2024] Open
Abstract
Objective To analyze the psychological status of patients with acute cerebral infarction (ACI), and to evaluate the effect of positive psychological intervention on the treatment and prognosis of ACI. Methods This was retrospective study. Eighty patients with ACI admitted to Institute of Psychology, Chinese Academy of Sciences from January 2021 to September 2022 were included and randomly divided into observation group (n=40) and control group(n=40). Patients in the control group received conventional treatment and routine care, while those in the observation group received positive psychological intervention based on the control group. Adverse psychological scores, treatment and prognosis, and quality of life as well as nursing satisfaction etc. were analyzed and compared between the two groups. Results Both groups showed a significant decrease in SDS and SAS scores at three months after the intervention compared with the pre-intervention period, with a statistically significant difference(P<0.05). After the intervention, the NIHSS score of both groups decreased, with a statistically significant difference(P<0.05). The FMAS and MBI scores increased in both groups compared with those before the intervention, with a statistically significant difference(P<0.05). The SS-QOL scores of both groups were significantly improved compared with before the intervention, with a statistically significant difference(P<0.05). The hospital satisfaction rate in the observation group was significantly higher than that in the control group, with a statistically significant difference (t=12.325, P=0.000). Conclusion Positive psychological intervention offers a variety of benefits in the treatment of patients with ACI, such as may alleviate anxiety and depression, reduce neurological deficits, improving quality of life and motor function, and ameliorate the prognosis of patients.
Collapse
Affiliation(s)
- Yunhe Xu
- Yunhe Xu, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Li
- Xiaojun Li, Department of Emergency, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Xiaoli Guo
- Xiaoli Guo, Department of Medical, Baoding No.1 Central Hospital, Baoding 071000, Hebei, China
| | - Wenbin Gao
- Wenbin Gao, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ning W, Li L, Wang R, Zhang B, Yang S, Zhang L, Fan X, Shen Y, Zhang Y, Zhao M, Wang Y, Liang P, Wang S. Electroacupuncture pretreatment enhances the calcium efflux activity of Na +/Ca 2+ exchanger to attenuate cerebral injury by PI3K/Akt-mediated NCX1 upregulation after focal cerebral ischaemia. Heliyon 2024; 10:e33265. [PMID: 39022107 PMCID: PMC11253542 DOI: 10.1016/j.heliyon.2024.e33265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.
Collapse
Affiliation(s)
- Wenhua Ning
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Li Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Ruiqi Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Baoyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sha Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaonong Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Laboratory of Dosage-Effect Relationship, State Administration of Traditional Chinese Medicine (Level 3), Tianjin, China
| | - Yan Shen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanan Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengxiong Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peizhe Liang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
- Key Laboratory of Cerebropathy Acupuncture Therapy of State Administration of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Zhang L, Zhou X, Zhao J, Wang X. Research hotspots and frontiers of preconditioning in cerebral ischemia: A bibliometric analysis. Heliyon 2024; 10:e24757. [PMID: 38317957 PMCID: PMC10839892 DOI: 10.1016/j.heliyon.2024.e24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Background Preconditioning is a promising strategy against ischemic brain injury, and numerous studies in vitro and in vivo have demonstrated its neuroprotective effects. However, at present there is no bibliometric analysis of preconditioning in cerebral ischemia. Therefore, a comprehensive overview of the current status, hot spots, and emerging trends in this research field is necessary. Materials and methods Studies on preconditioning in cerebral ischemia from January 1999-December 2022 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace was used for data mining and visual analysis. Results A total of 1738 papers on preconditioning in cerebral ischemia were included in the study. The annual publications showed an upwards and then downwards trend but currently remain high in terms of annual publications. The US was the leading country, followed by China, the most active country in recent years. Capital Medical University published the largest number of articles. Perez-Pinzon, Miguel A contributed the most publications, while KITAGAWA K was the most cited author. The focus of the study covered three areas: (1) relevant diseases and experimental models, (2) types of preconditioning and stimuli, and (3) mechanisms of ischemic tolerance. Remote ischemic preconditioning, preconditioning of mesenchymal stem cells (MSCs), and inflammation are the frontiers of research in this field. Conclusion Our study provides a visual and scientific overview of research on preconditioning in cerebral ischemia, providing valuable information and new directions for researchers.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo ,255026, China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingchen Wang
- Division of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| |
Collapse
|
6
|
Končeková J, Kotorová K, Gottlieb M, Bona M, Bonová P. Changes in excitatory amino acid transporters in response to remote ischaemic preconditioning and glutamate excitotoxicity. Neurochem Int 2024; 173:105658. [PMID: 38135159 DOI: 10.1016/j.neuint.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic.
| |
Collapse
|
7
|
Zhang Y, Ma L, Yan Y, Zhao L, Han S, Wu D, Borlongan CV, Li J, Ji X. cPKCγ-Modulated Autophagy Contributes to Ischemic Preconditioning-Induced Neuroprotection in Mice with Ischemic Stroke via mTOR-ULK1 Pathway. Transl Stroke Res 2023; 14:790-801. [PMID: 36214939 DOI: 10.1007/s12975-022-01094-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Neuron-specific conventional protein kinase C (cPKC)γ mediates cerebral hypoxic preconditioning (HPC). In parallel, autophagy plays a prosurvival role in ischemic preconditioning (IPC) against ischemic stroke. However, the effect of cPKCγ on autophagy in IPC still remains to be addressed. In this study, adult and postnatal 1-day-old C57BL/6 J wild-type (cPKCγ+/+) and knockout (cPKCγ-/-) mice were used to establish in vivo and in vitro IPC models. The results showed that IPC pretreatment alleviated neuronal damage caused by lethal ischemia, which could be suppressed by autophagy inhibitor 3-MA or bafilomycin A1. Meanwhile, cPKCγ knockout blocked IPC-induced neuroprotection, accompanied by significant increase of LC3-I to LC3-II conversion and Beclin 1 protein level, and a significant decrease in p62 protein level. Immunofluorescent staining results showed a decrease of LC3 puncta numbers in IPC-treated cPKCγ+/+ neurons with fatal ischemia, which was reversed in cPKCγ-/- neurons. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2448 and ULK1 at Ser 555, rather than p-Thr-172 AMPK, was detected in IPC-pretreated neurons upon lethal ischemic exposure. The present data demonstrated that cPKCγ-modulated autophagy via the mTOR-ULK1 pathway likely modulated IPC-induced neuroprotection.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Li Zhao
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Xiong J, Lv Y, Ma X, Peng G, Wu C, Hou J, Zhang Y, Wu C, Liu TCY, Yang L. Neuroprotective Effect of Sub-lethal Hyperthermia Preconditioning in a Rat Model of Repeated Closed Head Injury. Neuroscience 2023; 522:57-68. [PMID: 37164305 DOI: 10.1016/j.neuroscience.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Repeated mild traumatic brain injury (rTBI), one of the most common forms of traumatic brain injury, is a worldwide severe public health concern. rTBI induces cumulative neuronal injury, neurological dysfunction, and cognitive deficits. Although there are clinical treatment methods, there is still an urgent need to develop preventive approaches for susceptible populations. Using a repeated closed head injury (rCHI) rat model, we interrogate the effect of sub-lethal hyperthermia preconditioning (SHP) on rCHI-induced neuronal injury and behavioral changes. Our study applied the repeated weight-drop model to induce the rCHI. According to the changes of heat shock protein 70 (HSP 70) in the cortex and hippocampus following a single SHP treatment in normal rats, the SHP was delivered to the rats 18 h before rCHI. We found that HSP significantly alleviated rCHI-induced anxiety-like behaviors and impairments in motor abilities and spatial memory. SHP exerts significant neuroprotection against rCHI-induced neuronal damage, apoptosis, and neuroinflammation. Our findings support the potential use of SHP as a preventative approach for alleviating rCHI-induced brain damage.
Collapse
Affiliation(s)
- Jing Xiong
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China; Guangzhou Cadre Health Management Center, Guangzhou 510530, China
| | - Ying Lv
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Xu Ma
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Guangcong Peng
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Chunyi Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Jun Hou
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Yulan Zhang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Chongyun Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| | - Timon Cheng-Yi Liu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Burda R, Burda J, Morochovič R. Ischemic Tolerance—A Way to Reduce the Extent of Ischemia–Reperfusion Damage. Cells 2023; 12:cells12060884. [PMID: 36980225 PMCID: PMC10047660 DOI: 10.3390/cells12060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Individual tissues have significantly different resistance to ischemia–reperfusion damage. There is still no adequate treatment for the consequences of ischemia–reperfusion damage. By utilizing ischemic tolerance, it is possible to achieve a significant reduction in the extent of the cell damage due to ischemia–reperfusion injury. Since ischemia–reperfusion damage usually occurs unexpectedly, the use of preconditioning is extremely limited. In contrast, postconditioning has wider possibilities for use in practice. In both cases, the activation of ischemic tolerance can also be achieved by the application of sublethal stress on a remote organ. Despite very encouraging and successful results in animal experiments, the clinical results have been disappointing so far. To avoid the factors that prevent the activation of ischemic tolerance, the solution has been to use blood plasma containing tolerance effectors. This plasma is taken from healthy donors in which, after exposure to two sublethal stresses within 48 h, effectors of ischemic tolerance occur in the plasma. Application of this activated plasma to recipient animals after the end of lethal ischemia prevents cell death and significantly reduces the consequences of ischemia–reperfusion damage. Until there is a clear chemical identification of the end products of ischemic tolerance, the simplest way of enhancing ischemic tolerance will be the preparation of activated plasma from young healthy donors with the possibility of its immediate use in recipients during the initial treatment.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
- Correspondence:
| | - Jozef Burda
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Radoslav Morochovič
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
| |
Collapse
|
10
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
11
|
Belmonte KCD, Holmgren EB, Wills TA, Gidday JM. Epigenetic conditioning induces intergenerational resilience to dementia in a mouse model of vascular cognitive impairment. Alzheimers Dement 2022; 18:1711-1720. [PMID: 35170835 PMCID: PMC9790554 DOI: 10.1002/alz.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Epigenetic stimuli induce beneficial or detrimental changes in gene expression, and consequently, phenotype. Some of these phenotypes can manifest across the lifespan-and even in subsequent generations. Here, we used a mouse model of vascular cognitive impairment and dementia (VCID) to determine whether epigenetically induced resilience to specific dementia-related phenotypes is heritable by first-generation progeny. METHODS Our systemic epigenetic therapy consisted of 2 months of repetitive hypoxic "conditioning" (RHC) prior to chronic cerebral hypoperfusion in adult C57BL/6J mice. Resultant changes in object recognition memory and hippocampal long-term potentiation (LTP) were assessed 3 and 4 months later, respectively. RESULTS Hypoperfusion-induced memory/plasticity deficits were abrogated by RHC. Moreover, similarly robust dementia resilience was documented in untreated cerebral hypoperfused animals derived from RHC-treated parents. CONCLUSIONS Our results in experimental VCID underscore the efficacy of epigenetics-based treatments to prevent memory loss, and demonstrate for the first time the heritability of an induced resilience to dementia.
Collapse
Affiliation(s)
- Krystal Courtney D. Belmonte
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Eleanor B. Holmgren
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Tiffany A. Wills
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Jeff M. Gidday
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of Biochemistry and Molecular BiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| |
Collapse
|
12
|
Baranovicova E, Kalenska D, Kovalska M, Lehotsky J. Hippocampal metabolic recovery as a manifestation of the protective effect of ischemic preconditioning in rats. Neurochem Int 2022; 160:105419. [PMID: 36113578 DOI: 10.1016/j.neuint.2022.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
The ever-present risk of brain ischemic events in humans and its full prevention make the detailed studies of an organism's response to ischemia at different levels essential to understanding the mechanism of the injury as well as protection. We used the four-vessel occlusion as an animal model of forebrain ischemia to investigate its impact on the metabolic alterations in both the hippocampus and the blood plasma to see changes on the systemic level. By inducing sublethal ischemic stimuli, we focused on the endogenous phenomena known as ischemic tolerance. NMR spectroscopy was used to analyze relative metabolite levels in tissue extracts from rats' hippocampus and blood plasma in three various ischemic/reperfusion times: 3 h, 24 h, and 72 h. Hippocampal tissues were characterized by postischemically decreased glutamate and GABA (4-aminobutyrate) tissue content balanced with increased glutamine level, with most pronounced changes at 3 h reperfusion time. Glutamate (as well as glutamine) levels recovered towards the control levels on the third day, as if the glutamate re-synthesis would be firstly preferred before GABA. These results are indicating the higher feasibility of re-establishing of glutamatergic transmission three days after an ischemic event, in contrast to GABA-ergic. Tissue levels of N-acetylaspartate (NAA), as well as choline, were decreased without the tendency to recover three days after the ischemic event. Metabolomic analysis of blood plasma revealed that ischemically preconditioned rats, contrary to the non-preconditioned animals, did not show hyperglycemic conditions. Ischemically induced semi-ketotic state, manifested in increased plasma ketone bodies 3-hydroxybutyrate and acetoacetate, seems to be programmed to support the brain tissue revitalization after the ischemic event. These and other metabolites changes found in blood plasma as well as in the hippocampus were observed to a lower extent or recovered faster in preconditioned animals. Some metabolomic changes in hippocampal tissue extract were so strong that even single metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| |
Collapse
|
13
|
Bavishi S, Chaudhary D, Li J, Naik S, Abedi V, Zand R. Long-term mortality in ischemic stroke patients with concomitant chronic obstructive pulmonary disease. J Stroke Cerebrovasc Dis 2022; 31:106701. [PMID: 36070633 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Long-term mortality in ischemic stroke patients with concomitant COPD has been largely unexplored. This study aimed to compare long-term all-cause mortality in ischemic stroke patients with and without COPD. METHODS This was a retrospective cohort study of ischemic stroke patients with and without COPD in the Geisinger Neuroscience Ischemic Stroke database to examine all-cause mortality up to 3 years using Kaplan-Meier estimator and Cox proportional hazards model. RESULTS Of the 6,589 ischemic stroke patients included in this study, 5,525 (83.9%) did not have COPD (group A). Group B (n=1,006) consisted of patients with COPD diagnosis by ICD-9/10-CM codes. COPD patients in Group C (n=233) were diagnosed by spirometry, and in Group D (n=175) by both ICD-9/10-CM codes and spirometry confirmation. The survival probabilities at three years in Group B, C, and D were significantly lower than in Group A. Group B (HR=1.262, 95% CI 1.122-1.42, p<0.001) and group C (HR=1.251, 95% CI 1.01-1.55, p=0.041) had significantly lower hazard of mortality compared to group A. There was no significant difference in survival between COPD subtypes of chronic bronchitis and emphysema. Patients in Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 stage had an increased mortality hazard compared to the GOLD 1 stage. CONCLUSIONS While ischemic stroke patients with preexisting COPD have worse long-term survival than those without COPD, the results largely depended on the definition of COPD used. These results suggest that ischemic stroke patients with COPD need more personalized medical care to decrease long-term mortality.
Collapse
Affiliation(s)
| | - Durgesh Chaudhary
- Neuroscience Institute, Geisinger Health System, 100 North Academy Ave, Danville, PA 17822, USA.
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA 17822, USA.
| | - Sreelatha Naik
- Department of Pulmonology, Critical Care and Sleep Medicine, Geisinger Health System, Wilkes-Barre, PA 18711, USA.
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, 100 North Academy Ave, Danville, PA 17822, USA; Neuroscience Institute, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Ding Y, Jin Y, Peng T, Gao Y, Zang Y, He H, Li F, Zhang Y, Zhang H, Chen L. Fabrication of multifunctional metal-organic frameworks nanoparticles via layer-by-layer self-assembly to efficiently discover PSD95-nNOS uncouplers for stroke treatment. J Nanobiotechnology 2022; 20:379. [PMID: 35964123 PMCID: PMC9375364 DOI: 10.1186/s12951-022-01583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disruption of the postsynaptic density protein-95 (PSD95)—neuronal nitric oxide synthase (nNOS) coupling is an effective way to treat ischemic stroke, however, it still faces some challenges, especially lack of satisfactory PSD95-nNOS uncouplers and the efficient high throughput screening model to discover them. Results Herein, the multifunctional metal–organic framework (MMOF) nanoparticles as a new screening system were innovatively fabricated via layer-by-layer self-assembly in which His-tagged nNOS was selectively immobilized on the surface of magnetic MOF, and then PSD95 with green fluorescent protein (GFP-PSD95) was specifically bound on it. It was found that MMOF nanoparticles not only exhibited the superior performances including the high loading efficiency, reusability, and anti-interference ability, but also possessed the good fluorescent sensitivity to detect the coupled GFP-PSD95. After MMOF nanoparticles interacted with the uncouplers, they would be rapidly separated from uncoupled GFP-PSD95 by magnet, and the fluorescent intensities could be determined to assay the uncoupling efficiency at high throughput level. Conclusions In conclusion, MMOF nanoparticles were successfully fabricated and applied to screen the natural actives as potential PSD95-nNOS uncouplers. Taken together, our newly developed method provided a new material as a platform for efficiently discovering PSD95-nNOS uncouplers for stoke treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01583-7.
Collapse
Affiliation(s)
- Yingying Ding
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Tao Peng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yankun Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Zang
- College of Economics and Management, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
15
|
Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 2022; 47:3647-3658. [PMID: 35790697 DOI: 10.1007/s11064-022-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320-350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75-15.00), EtOH-PC + I/R: 7.00 (4.75-8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.
Collapse
|
16
|
Lee JH, You HJ, Lee TY, Kang HJ. Current Status of Experimental Animal Skin Flap Models: Ischemic Preconditioning and Molecular Factors. Int J Mol Sci 2022; 23:5234. [PMID: 35563624 PMCID: PMC9103896 DOI: 10.3390/ijms23095234] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Skin flaps are necessary in plastic and reconstructive surgery for the removal of skin cancer, wounds, and ulcers. A skin flap is a portion of skin with its own blood supply that is partially separated from its original position and moved from one place to another. The use of skin flaps is often accompanied by cell necrosis or apoptosis due to ischemia-reperfusion (I/R) injury. Proinflammatory cytokines, such as nuclear factor kappa B (NF-κB), inhibitor of kappa B (IκB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and oxygen free radicals are known causative agents of cell necrosis and apoptosis. To prevent I/R injury, many investigators have suggested the inhibition of proinflammatory cytokines, stem-cell therapies, and drug-based therapies. Ischemic preconditioning (IPC) is a strategy used to prevent I/R injury. IPC is an experimental technique that uses short-term repetition of occlusion and reperfusion to adapt the area to the loss of blood supply. IPC can prevent I/R injury by inhibiting proinflammatory cytokine activity. Various stem cell applications have been studied to facilitate flap survival and promote angiogenesis and vascularization in animal models. The possibility of constructing tissue engineered flaps has also been investigated. Although numerous animal studies have been published, clinical data with regard to IPC in flap reconstruction have never been reported. In this study, we present various experimental skin flap methods, IPC methods, and methods utilizing molecular factors associated with IPC.
Collapse
Affiliation(s)
- Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea;
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Tae-Yul Lee
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Hyo Jin Kang
- Biomedical Research Center, Korea University Ansan Hospital, Ansan 15355, Korea
- Core Research and Development Center, Korea University Ansan Hospital, Ansan 15355, Korea
| |
Collapse
|
17
|
Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochim Biophys Acta Gen Subj 2022; 1866:130137. [DOI: 10.1016/j.bbagen.2022.130137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
18
|
Amantea D, La Russa D, Frisina M, Giordano F, Di Santo C, Panno ML, Pignataro G, Bagetta G. Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Front Immunol 2022; 13:825834. [PMID: 35359933 PMCID: PMC8962743 DOI: 10.3389/fimmu.2022.825834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
The development of tolerance triggered by a sublethal ischemic episode (preconditioning, PC) involves a complex crosstalk between neurons, astrocytes and microglia, although the role of the peripheral immune system in this context is largely unexplored. Here, we report that severe cerebral ischemia caused by transient middle cerebral artery occlusion (MCAo) in adult male mice elevates blood counts of inflammatory neutrophils and monocytes, and plasma levels of miRNA-329-5p. These inflammatory responses are prevented by ischemic PC induced by 15 min MCAo, 72h before the severe insult (1h MCAo). As compared with sham-operated animals, mice subjected to either ischemic PC, MCAo or a combination of both (PC+MCAo) display spleen contraction. However, protein levels of Ym1 (a marker of polarization of myeloid cells towards M2/N2 protective phenotypes) are elevated only in spleen from the experimental groups PC and PC+MCAo, but not MCAo. Conversely, Ym1 protein levels only increase in circulating leukocytes from mice subjected to 1h MCAo, but not in preconditioned animals, which is coincident with a dramatic elevation of Ym1 expression in the ipsilateral cortex. By immunofluorescence analysis, we observe that expression of Ym1 occurs in amoeboid-shaped myeloid cells, mainly representing inflammatory monocytes/macrophages and neutrophils. As a result of its immune-regulatory functions, ischemic PC prevents elevation of mRNA levels of the pro-inflammatory cytokine interleukin (IL)-1β in the ipsilateral cortex, while not affecting IL-10 mRNA increase induced by MCAo. Overall, the elevated anti-inflammatory/pro-inflammatory ratio observed in the brain of mice pre-exposed to PC is associated with reduced brain infarct volume and ischemic edema, and with amelioration of functional outcome. These findings reaffirm the crucial and dualistic role of the innate immune system in ischemic stroke pathobiology, extending these concepts to the context of ischemic tolerance and underscoring their relevance for the identification of novel therapeutic targets for effective stroke treatment.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Marialaura Frisina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Chiara Di Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, “Federico II” University, Naples, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
19
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|
20
|
Zeng T, Zhang S, He Y, Liu Z, Cheng Q. MiR-361-5p promotes oxygen-glucose deprivation/re-oxygenation induced neuronal injury by negatively regulating SQSTM1 in vitro. Metab Brain Dis 2021; 36:2359-2368. [PMID: 34581931 DOI: 10.1007/s11011-021-00845-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
It has been reported that microRNAs (miRNAs) play essential roles in cerebral ischemia and reperfusion (I/R) injury. This study aimed to explore the role of miR-361-5p in oxygen-glucose deprivation/re-oxygenation-induced neuronal injury in vitro. Cerebral I/R injury cell model was established by using PC12 cells exposed to oxygen-glucose deprivation/re-oxygenation (OGD/R). The expression of miR-361-5p and SQSTM1 was evaluated by qRT-PCR or western blot. Neuronal apoptosis was detected by flow cytometry, and cell viability was assessed by CCK-8 assay. The effects of miR-361-5p on the release of LDH and the levels of MDA, SOD, and GSH-Px were investigated by respective detection kits. Dual-luciferase reporter assay and RIP assay were performed to determine the interaction between miR-361-5p and SQSTM1. Rescue experiments were performed to evaluate the function of miR-361-5p and SQSTM1. MiR-361-5p was significantly upregulated, and SQSTM1 was significantly downregulated in OGD/R-stimulated PC12 cells. MiR-361-5p could directly interact with SQSTM1 and negatively regulated it. Inhibition of miR-361-5p efficiently inhibited OGD/R-induced apoptosis and attenuated OGD/R-induced growth defect in PC12 cells. In addition, SQSTM1 overexpression partially attenuates the apoptosis and promoted the viability of OGD/R-treated PC12 cells, which were aggravated by miR-361-5p mimics. Our study demonstrated that miR-361-5p promotes OGD/R-induced neuronal injury via regulating SQSTM1 in PC12 cells.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Sai Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Yan He
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Zhenxing Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Qiusheng Cheng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Burda J, Burda R. Ischemic tolerance - blessing or curse. Physiol Res 2021; 70:661-670. [PMID: 34505532 DOI: 10.33549/physiolres.934644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Application of knowledge about ischemic tolerance to clinic requires the solid understanding of mechanism of creation of this phenomenon. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's body and its transfer to the patient in the form of activated blood plasma. Such plasma could be administered as soon as the patient is transported to the hospital and would take effect immediately after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat oncologic patients. We expect that this method could increase effectiveness of cancer treatment. Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated plasma can significantly help with a wide range of pathological events.
Collapse
Affiliation(s)
- J Burda
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic. Faculty of Medicine, Clinic of Trauma Surgery, P. J. Šafárik University, Košice, Slovak Republic.
| | | |
Collapse
|
22
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
23
|
Baranovicova E, Kalenska D, Grendar M, Lehotsky J. Metabolomic Recovery as a Result of Ischemic Preconditioning Was More Pronounced in Hippocampus than in Cortex That Appeared More Sensitive to Metabolomic Blood Components. Metabolites 2021; 11:metabo11080516. [PMID: 34436457 PMCID: PMC8398863 DOI: 10.3390/metabo11080516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
The study of an organism's response to ischemia at different levels is essential to understand the mechanism of the injury as well as protection. We used the occlusion of four vessels as an animal model of global cerebral ischemia to investigate metabolic alterations in cerebral cortex, hippocampus, blood plasma, as well as in a remote organ, the heart, in rats undergoing 24 h postischemic reperfusion. By inducing sublethal ischemic stimuli, we focused on endogenous phenomena known as ischemic tolerance that is currently the best known and most effective way of protecting against ischemic injury. NMR spectroscopy was used to analyze relative metabolite levels in homogenates from rats' cerebral cortex, hippocampus, and heart together with deproteinized blood plasma. In individual animals subjected to global cerebral ischemia, relative concentrations of the essential amino acids isoleucine, valine, phenylalanine, and tyrosine in cerebral cortex correlated with those in blood plasma (p < 0.05, or boundary significant p < 0.09). This did not apply for the hippocampus, suggesting a closer relation between ischemic cortex and metabolomic blood components. Hippocampal non-participation on correlation with blood components may emphasize the observed partial or full normalization the post-ischemically altered levels of a number of metabolites in the preconditioned animals. Remarkably, that was observed for cortex to a lesser extent. As a response to the global cerebral ischemia in heart tissue, we observed decreased glutamate and increased 3-hydroxybutyrate. Ischemically induced semi-ketotic state and other changes found in blood plasma partially normalized when ischemic preconditioning was introduced. Some metabolomic changes were so strong that even individual metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Marian Grendar
- Biomedical Center BioMed, Bioinformatical Unit, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-442
| |
Collapse
|
24
|
Cetinkaya-Fisgin A, Zhu J, Luan X, Kim JS, Oh B, Brayton C, Alt J, Rais R, Slusher B, Höke A. Development of EQ-6, a Novel Analogue of Ethoxyquin to Prevent Chemotherapy-Induced Peripheral Neuropathy. Neurotherapeutics 2021; 18:2061-2072. [PMID: 34291431 PMCID: PMC8608988 DOI: 10.1007/s13311-021-01093-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and often dose-limiting side effect of many cancer drugs. Because the onset of neuronal injury is known, it is an ideal clinical target to develop neuroprotective strategies. Several years ago, we had identified ethoxyquin as a potent neuroprotective drug against CIPN through a phenotypic drug screening and demonstrated a novel mechanism of action, inhibition of chaperone domain of heat shock protein 90. To improve its drug-like properties we synthesized a novel analogue of ethoxyquin and named it EQ-6 (6-(5-amino)-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline hydrochloride). Here we show that EQ-6 prevents axon degeneration in primary dorsal root ganglion neurons in vitro, and this axon protection is associated with preserved levels of nicotinamide adenine dinucleotide, a key metabolite in programmed axon degeneration pathway. We also found that EQ-6 prevents loss of epidermal nerve fibers in a mouse model of CIPN induced by paclitaxel and that doses of EQ-6 that provide neuroprotection are associated with reduced tissue levels of SF3B2, a potential biomarker of target engagement. Furthermore, we show that EQ-6 is safe in vitro and in mice with daily administration for a month. We found that oral bioavailability is about 10%, partly due to rapid metabolism in liver, but EQ-6 appears to be concentrated in neural tissues. Given these findings, we propose EQ-6 as a first-in-class drug to prevent CIPN.
Collapse
Affiliation(s)
- Aysel Cetinkaya-Fisgin
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Jing Zhu
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinghua Luan
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Current address: Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun-Soon Kim
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Current address: Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Byoungchol Oh
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Cory Brayton
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Jesse Alt
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Rana Rais
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Barbara Slusher
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Ahmet Höke
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Huang L, Xu DQ, Chen YY, Yue SJ, Tang YP. Leonurine, a potential drug for the treatment of cardiovascular system and central nervous system diseases. Brain Behav 2021; 11:e01995. [PMID: 33300684 PMCID: PMC7882174 DOI: 10.1002/brb3.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Leonurus japonicus Houtt., a traditional Chinese herbal medicine, is often used as a gynecological medicine with the effect of promoting blood circulation, regulating menstruation, clearing heat, and detoxificating. As the most important alkaloid in L. japonicus, leonurine has a wide range of biological activities, such as antioxidation, anti-inflammation, and anti-apoptosis. Cardiovascular system and central nervous system diseases are arrogant killers that threaten human lives and health around the world, but many drugs for treating them have certain side effects. This paper reviews the potential therapeutic effects of leonurine on cardiovascular system and central nervous system diseases, summarizes the previous research progress, and focuses on its therapeutic effect in various diseases. Although leonurine plays a prominent role in the treatment of cardiovascular system and central nervous system diseases, there are still some shortages, such as low bioavailability, weak transmembrane ability, and poor fat solubility. Therefore, the structure modification of leonurine may solve these problems and provide reference value for the development of new drugs. At present, leonurine is in clinical trial, and it is hoped that our summary will help to provide guidance for its future research on the basic science and clinical application.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
26
|
Haunschild J, VON Aspern K, Misfeld M, Davierwala P, Borger MA, Etz CD. Spinal cord protection in thoracoabdominal aortic aneurysm surgery: a multimodal approach. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:316-325. [PMID: 33496426 DOI: 10.23736/s0021-9509.21.11783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is one major complication of open and endovascular thoracic and thoracoabdominal aortic aneurysm repair. Despite numerous neuroprotective adjuncts, the incidence of SCI remains high. This review article discusses established and novel adjuncts for spinal cord protection, including priming and preconditioning of the paraspinal collateral network, intraoperative systemic hypothermia, distal aortic perfusion, motor- and somatosensory evoked potentials and noninvasive cnNIRS monitoring as well as peri- and postoperative drainage of cerebrospinal fluid. Regardless of the positive influence of many of these strategies on neurologic outcome, to date no strategy assures definitive preservation of spinal cord integrity during and after aortic aneurysm repair.
Collapse
Affiliation(s)
| | | | - Martin Misfeld
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany.,Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Sydney, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, Australia.,Institute of Academic Surgery, RPAH, Sydney, Australia.,The Baird Institute of Applied Heart and Lung Surgical Research, Sydney, Australia
| | - Piroze Davierwala
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Christian D Etz
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany -
| |
Collapse
|
27
|
Wang Y, Liu F, Liu P. 23-Hydroxytormentic acid reduces cerebral ischemia/reperfusion damage in rats through anti-apoptotic, antioxidant, and anti-inflammatory mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1045-1054. [PMID: 33394135 DOI: 10.1007/s00210-020-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
23-Hydroxytormentic acid (23-HTA) is an important herbal medicine purified from immature fruits of African Rubus aceae (Rosaceae). This study was carried out to examine the protection properties and potential mechanisms of 23-HTA against cerebral ischemia/reperfusion (I/R) damage. Rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R) 2/24 h. All animals were euthanized 24 h after reperfusion. Rats were injected with various concentrations of 23-HTA intraperitoneally. Evaluations of infarct volumes, neurological deficit, and brain water contents were carried out to assess the outcome of 23-HTA treatment. The results showed that 23-HTA reduced infarct volumes, brain water content, and neurological deficit in a dosage-dependent manner. 23-HTA can also significantly reduce the numbers of TUNEL-positive cells, the expression levels of Bax, caspase-3, lipid peroxidation, Sod 1, Sod 2, catalase, and pro-inflammatory cytokines TNF and IL-1β and increase the expression levels of Bcl-2 and p-Akt. 23-HTA has a neuroprotective effect due to its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Fengrong Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Peng Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China.
| |
Collapse
|