1
|
Yadav-Samudrala BJ, Ravula HP, Barmada KM, Dodson H, Poklis JL, Ignatowska-Jankowska BM, Lichtman AH, Reissner KJ, Fitting S. Acute Effects of Monoacylglycerol Lipase Inhibitor ABX1431 on Neuronal Hyperexcitability, Nociception, Locomotion, and the Endocannabinoid System in HIV-1 Tat Male Mice. Cannabis Cannabinoid Res 2024; 9:1500-1513. [PMID: 38394322 PMCID: PMC11685295 DOI: 10.1089/can.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Background: Evidence suggests that monoacylglycerol lipase (MAGL) inhibitors can potentially treat HIV symptoms by increasing the concentration of 2-arachidonoylglycerol (2-AG). We examined a selective MAGL inhibitor ABX1431 in the context of neuroHIV. Methods: To assess the effects of ABX1431, we conducted in vitro and in vivo studies. In vitro calcium imaging on frontal cortex neuronal cultures was performed to evaluate the role of ABX1431 (10, 30, 100 nM) on transactivator of transcription (Tat)-induced neuronal hyperexcitability. Following in vitro experiments, in vivo experiments were performed using Tat transgenic male mice. Mice were treated with 4 mg/kg ABX1431 and assessed for antinociception using tail-flick and hot plate assays followed by locomotor activity. After the behavioral experiments, their brains were harvested to quantify endocannabinoids (eCB) and related lipids through mass spectrometry, and cannabinoid type-1 and -2 receptors (CB1R and CB2R) were quantified through western blot. Results: In vitro studies revealed that adding Tat directly to the neuronal cultures significantly increased intracellular calcium concentration, which ABX1431 completely reversed at all concentrations. Preincubating the cultures with CB1R and CB2R antagonists showed that ABX1431 exhibited its effects partially through CB1R. In vivo studies demonstrated that acute ABX1431 increased overall total distance traveled and speed of mice regardless of their genotype. Mass spectrometry and western blot analyses revealed differential effects on the eCB system based on Tat expression. The 2-AG levels were significantly upregulated following ABX1431 treatment in the striatum and spinal cord. Arachidonic acid (AA) was also upregulated in the striatum of vehicle-treated Tat(+) mice. No changes were noted in CB1R expression levels; however, CB2R levels were increased in ABX1431-treated Tat(-) mice only. Conclusion: Findings indicate that ABX1431 has potential neuroprotective effects in vitro partially mediated through CB1R. Acute treatment of ABX1431 in vivo shows antinociceptive effects, and seems to alter locomotor activity, with upregulating 2-AG levels in the striatum and spinal cord.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kathryn J. Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Carey SD, Conant K, Maguire-Zeiss KA. Short-term exposure to HIV Tat induces glial activation and changes in perineuronal nets. Eur J Neurosci 2024; 60:4303-4316. [PMID: 38844747 DOI: 10.1111/ejn.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 08/07/2024]
Abstract
Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.
Collapse
Affiliation(s)
- Sean D Carey
- Department of Biology, Georgetown University, Washington DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington DC, United States
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University School of Medicine, Washington DC, United States
| |
Collapse
|
3
|
Yadav-Samudrala BJ, Dodson H, Ramineni S, Kim E, Poklis JL, Lu D, Ignatowska-Jankowska BM, Lichtman AH, Fitting S. Cannabinoid receptor 1 positive allosteric modulator ZCZ011 shows differential effects on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. PLoS One 2024; 19:e0305868. [PMID: 38913661 PMCID: PMC11195999 DOI: 10.1371/journal.pone.0305868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shreya Ramineni
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dai Lu
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, United States of America
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Schenck JK, Karl MT, Clarkson-Paredes C, Bastin A, Pushkarsky T, Brichacek B, Miller RH, Bukrinsky MI. Extracellular vesicles produced by HIV-1 Nef-expressing cells induce myelin impairment and oligodendrocyte damage in the mouse central nervous system. J Neuroinflammation 2024; 21:127. [PMID: 38741181 PMCID: PMC11090814 DOI: 10.1186/s12974-024-03124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive impairments that continue to affect approximately half of all HIV-positive individuals despite effective viral suppression through antiretroviral therapy (ART). White matter pathologies have persisted in the ART era, and the degree of white matter damage correlates with the degree of neurocognitive impairment in patients with HAND. The HIV protein Nef has been implicated in HAND pathogenesis, but its effect on white matter damage has not been well characterized. Here, utilizing in vivo, ex vivo, and in vitro methods, we demonstrate that Nef-containing extracellular vesicles (Nef EVs) disrupt myelin sheaths and inflict damage upon oligodendrocytes within the murine central nervous system. Intracranial injection of Nef EVs leads to reduced myelin basic protein (MBP) staining and a decreased number of CC1 + oligodendrocytes in the corpus callosum. Moreover, cerebellar slice cultures treated with Nef EVs exhibit diminished MBP expression and increased presence of unmyelinated axons. Primary mixed brain cultures and enriched oligodendrocyte precursor cell cultures exposed to Nef EVs display a decreased number of O4 + cells, indicative of oligodendrocyte impairment. These findings underscore the potential contribution of Nef EV-mediated damage to oligodendrocytes and myelin maintenance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Molly T Karl
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Ashley Bastin
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Beda Brichacek
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA.
| |
Collapse
|
5
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Ayoub S, Kenton JA, Milienne-Petiot M, Deben DS, Achim C, Geyer MA, Perry W, Grant IE, Young JW, Minassian A. iTat transgenic mice exhibit hyper-locomotion in the behavioral pattern monitor after chronic exposure to methamphetamine but are unaffected by Tat expression. Pharmacol Biochem Behav 2023; 222:173499. [PMID: 36462584 PMCID: PMC10014034 DOI: 10.1016/j.pbb.2022.173499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although antiretroviral therapy (ART) has increased the quality of life and lifespan in people living with HIV (PWH), millions continue to suffer from the neurobehavioral effects of the virus. Additionally, the abuse of illicit drugs (methamphetamine in particular) is significantly higher in PWH compared to the general population, which may further impact their neurological functions. The HIV regulatory protein, Tat, has been implicated in the neurobehavioral impacts of HIV and is purported to inhibit dopamine transporter (DAT) function in a way similar to methamphetamine. Thus, we hypothesized that a combination of Tat expression and methamphetamine would exert synergistic deleterious effects on behavior and DAT expression. We examined the impact of chronic methamphetamine exposure on exploration in transgenic mice expressing human Tat (iTat) vs. their wildtype littermates using the behavioral pattern monitor (BPM). During baseline, mice exhibited sex-dependent differences in BPM behavior, which persisted through methamphetamine exposure, and Tat activation with doxycycline. We observed a main effect of methamphetamine, wherein exposure, irrespective of genotype, increased locomotor activity and decreased specific exploration. After doxycycline treatment, mice continued to exhibit drug-dependent alterations in locomotion, with no effect of Tat, or methamphetamine interactions. DAT levels were higher in wildtype, saline-exposed males compared to all other groups. These data support stimulant-induced changes of locomotor activity and exploration, and suggest that viral Tat and methamphetamine do not synergistically interact to alter these behaviors in mice. These findings are important for future studies attempting to disentangle the effect of substances that impact DAT on HAND-relevant behaviors using such transgenic animals.
Collapse
Affiliation(s)
- Samantha Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Debbie S Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States of America
| |
Collapse
|
9
|
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci 2022; 12:117. [PMID: 35897082 PMCID: PMC9327238 DOI: 10.1186/s13578-022-00856-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological feature of a variety of chronic inflammatory diseases that can affect almost all organs, which can cause severe consequences and even lead to death. Fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) due to disruption of the balance between ECM production and degradation. Although overabundance of ECM proteins has long been the focus of studies on fibrosis, another facet of the problem-impaired degradation of the ECM-is gaining increasing attention. Matrix metalloproteinase (MMP) and the tissue inhibitor of metalloproteinase (TIMP) system is the main molecular system contributing to ECM degradation, and macrophages are the major regulators of ECM. However, the relationship among macrophages, the MMP/TIMP system and the ECM is not fully understood in the context of fibrosis. Here, we discuss in detail the role played by the ECM in the development of fibrosis and highlight the macrophage-MMP-ECM interaction that is involved in fibrogenesis and may be a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Qrareya AN, Mahdi F, Kaufman MJ, Ashpole NM, Paris JJ. Age-related neuroendocrine, cognitive, and behavioral co-morbidities are promoted by HIV-1 Tat expression in male mice. Aging (Albany NY) 2022; 14:5345-5365. [PMID: 35830469 PMCID: PMC9320553 DOI: 10.18632/aging.204166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
In the U.S. about half of the HIV-infected individuals are aged 50 and older. In men living with HIV, secondary hypogonadism is common and occurs earlier than in seronegative men, and its prevalence increases with age. While the mechanisms(s) are unknown, the HIV-1 trans-activator of transcription (Tat) protein disrupts neuroendocrine function in mice partly by dysregulating mitochondria and neurosteroidogenesis. We hypothesized that conditional Tat expression in middle-aged male transgenic mice [Tat(+)] would promote age-related comorbidities compared to age-matched controls [Tat(−)]. We expected Tat to alter steroid hormone milieu consistent with behavioral deficits. Middle-aged Tat(+) mice had lower circulating testosterone and progesterone than age-matched controls and greater circulating corticosterone and central allopregnanolone than other groups. Young Tat(+) mice had greater circulating progesterone and estradiol-to-testosterone ratios. Older age or Tat exposure increased anxiety-like behavior (open field; elevated plus-maze), increased cognitive errors (radial arm water maze), and reduced grip strength. Young Tat(+), or middle-aged Tat(−), males had higher mechanical nociceptive thresholds than age-matched counterparts. Steroid levels correlated with behaviors. Thus, Tat may contribute to HIV-accelerated aging.
Collapse
Affiliation(s)
- Alaa N Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
12
|
Salahuddin MF, Qrareya AN, Mahdi F, Moss E, Akins NS, Li J, Le HV, Paris JJ. Allopregnanolone and neuroHIV: Potential benefits of neuroendocrine modulation in the era of antiretroviral therapy. J Neuroendocrinol 2022; 34:e13047. [PMID: 34651359 PMCID: PMC8866218 DOI: 10.1111/jne.13047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.
Collapse
Affiliation(s)
- Mohammed F. Salahuddin
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Alaa N. Qrareya
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Emaya Moss
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Nicholas S. Akins
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jing Li
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Hoang V. Le
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jason J. Paris
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| |
Collapse
|
13
|
Hong N, Park JS, Kim HJ. Synapto-protective effect of lithium on HIV-1 Tat-induced synapse loss in rat hippocampal cultures. Anim Cells Syst (Seoul) 2021; 26:1-9. [PMID: 35308128 PMCID: PMC8928815 DOI: 10.1080/19768354.2021.2018044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus type I (HIV-1) infection of the CNS produces synapse loss which correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). Lithium is mood stabilizer of unknown mechanism used to treat bipolar disorder and is known to exhibit neuroprotective properties. Here, we studied the effects of lithium on HIV-1 Tat-induced synapses between rat hippocampal neurons. The number of synapses was quantified to detect clusters of the scaffold protein postsynaptic density 95 (PSD95) which is clustered at glutamatergic synapses on cultured rat hippocampal neurons in vitro. Lithium protected synapses from HIV-1 Tat-induced synapse loss and subsequent neuronal death. This synaptic protection was prevented by both the activation of NMDA receptor leading to intracellular signaling and the regulatory pathway of lithium including inositol depletion and glycogen synthase kinase-3β (GSK-3β). These results suggest that mood stabilizers might be effective drugs to treat neurodegenerative disorders including HAND.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Ryou MG, Chen X, Cai M, Wang H, Jung ME, Metzger DB, Mallet RT, Shi X. Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study. Front Aging Neurosci 2021; 13:674688. [PMID: 34276338 PMCID: PMC8282412 DOI: 10.3389/fnagi.2021.674688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aβ accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aβ40 and Aβ42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (-1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aβ42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aβ40 or Aβ42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aβ accumulation in 3xTg-AD mice.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Medical Laboratory Science and Public Health, Tarleton State University, Texas A&M University System, Stephenville, TX, United States
| | - Xiaoan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Sports Science, Jishou University, Jishou, China
| | - Ming Cai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hong Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Marianna E. Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Daniel B. Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|