1
|
Eissman JM, Archer DB, Mukherjee S, Lee ML, Choi S, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Cruchaga C, Pericak‐Vance MA, Farrer LA, Wang L, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Hohman TJ, Dumitrescu L. Sex-specific genetic architecture of late-life memory performance. Alzheimers Dement 2024; 20:1250-1267. [PMID: 37984853 PMCID: PMC10917043 DOI: 10.1002/alz.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS We conducted the largest sex-aware genetic study on late-life memory to date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.
Collapse
|
2
|
Motion or sociality? The cueing effect and temporal course of autistic traits on gaze-triggered attention. Atten Percept Psychophys 2022; 84:1167-1177. [PMID: 35437701 DOI: 10.3758/s13414-022-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/08/2022]
Abstract
Gaze-triggered attention changes have been found in individuals with high autistic traits in the nonclinical population. However, gaze cues used in previous studies imply not only sociality of gaze but also the motion of gaze. To exclude the influence of motion, we manipulated the cue sociality by setting dot cues with similar motion characteristics as gaze cues to explore the underlying reasons of gaze-triggered attention changes in individuals with high autistic traits. We used a cueing paradigm within a visual matching task and recorded individuals' eye movements. Both the RT and eye movement of probe interface showed the benefit from gaze of the low autistic trait group was larger than that from dot and was larger than that of the high autistic trait group. While the high autistic trait group show similar benefit between gaze and dot. Eye movement results showed the dynamic changes of validity effect in two groups. The interaction between autistic traits and cue sociality was not significant within the 500 ms of cue presentation, marginally significant within 500-1,000 ms after cue presentation, but significant after 1,000 ms of cue presentation. The results demonstrated that the changes of gaze-triggered attention in individuals with high autistic traits was mainly caused by the sociality of gaze in the relative late stage.
Collapse
|
3
|
Iwanicki T, Balcerzyk A, Kazek B, Emich-Widera E, Likus W, Iwanicka J, Kapinos-Gorczyca A, Kapinos M, Jarosz A, Grzeszczak W, Górczyńska-Kosiorz S, Niemiec P. Family-Based Cohort Association Study of PRKCB1, CBLN1 and KCNMB4 Gene Polymorphisms and Autism in Polish Population. J Autism Dev Disord 2021; 52:4213-4218. [PMID: 34562210 PMCID: PMC9508047 DOI: 10.1007/s10803-021-05291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
The aim of the study was to perform family-based association analysis of PRKCB1, CBLN1 and KCNMB4 gene polymorphisms and autism disorder. We comprised 206 Caucasian children with autistic spectrum disorder (ASD) and their biological parents. In transmission/disequilibrium test we observed that T-allele of the rs198198 polymorphism of the PRKCB1 gene was more often transmitted to affected children in the male subgroup (p = 0.010). Additionally, the T carrier state was significantly associated with hypotonia (p = 0.048). In the female subgroup, the T-allele carriers more often showed more mobile/vital behavior (p = 0.046). In conclusion, our study showed that the rs198198 of the PRKCB1 gene may be associated with ASD in men and with some features characteristic for the disorder.
Collapse
Affiliation(s)
- Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Anna Balcerzyk
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland.
| | - Beata Kazek
- Child Development Support Center, Kępowa Street 56, 40- 583, Katowice, Poland
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia in Katowice, Medykow Street 16, 40-752, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | | | - Maciej Kapinos
- CZP Feniks, Daily Ward for Children and Adolescents, Młyńska Street 8, 44-100, Gliwice, Poland
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Władysław Grzeszczak
- Department of Internal Medicine, Diabetology, and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3-go Maja Street 13-15, 41-800, Zabrze, Poland
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology, and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3-go Maja Street 13-15, 41-800, Zabrze, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| |
Collapse
|
4
|
Larsen K. The porcine cerebellin gene family. Gene 2021; 799:145852. [PMID: 34274480 DOI: 10.1016/j.gene.2021.145852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Cerebellins (CBLN1-4), together with C1qTNF proteins, belong to the CBLN subfamily of C1q proteins. Cerebellin-1 (CBLN1) is active in synapse formation and functions at the parallel fiber-Purkinje cell synapses. Cerebellins form tripartite complexes with neurexins and the glutamate-receptor-related proteins GluD1 and GluD2, playing a role as trans-synaptic cell-adhesion molecules that critically contribute to both synapse formation and functioning and brain development. In this study, I present a molecular characterization of the four porcine CBLN genes. Experimental data and in silico analyses collectively describes the gene structure, chromosomal localization, and expression of CBLN1-4. Two cDNAs encoding the cerebellins CBLN1 and CBLN3 were RT-PCR cloned and sequenced. The nucleotide sequence of the CBLN1 clone contains an open reading frame of 582 nucleotides and encodes a protein of 193 amino acids. The deduced amino acid of the porcine CBLN1 protein was 99% identical to both mouse CBLN1 and to human CBLN1. The deduced CBLN1 protein contains a putative signal sequence of 21 residues, two conserved cysteine residues, and C1q domain. The nucleotide sequence of the CBLN3 cDNA clone comprises an open reading frame of 618 nucleotides and encodes a protein of 205 amino acids. The deduced amino acid sequence of the porcine CBLN3 protein was 88% identical to mouse CBLN3 and 94% identical to human CBLN3. The amino terminal ends of both the CBLN1 and CBLN3 proteins contain three possible N-linked glycosylation sites. The genomic organization of both porcine CBLN1 and CBLN3 is very similar to those of their human counterparts. The expression analyses demonstrated that CBLN1 and CBLN3 transcripts are predominantly expressed in the cerebellum. The sequences of the porcine precerebellin genes and cDNAs were submitted to DDBJ/EMBL/GenBank under the following accession numbers: CBLN1 gene (GenBank ID: FJ621565), CBLN1 cDNA (GenBank ID: EF577504), CBLN3 gene (GenBank ID: FJ621566), CBLN3 cDNA (GenBank ID: EF577505) and CBLN4 cDNA (GenBank ID: FJ196070).
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Andrews PC, Dravid SM. An emerging map of glutamate delta 1 receptors in the forebrain. Neuropharmacology 2021; 192:108587. [PMID: 33992669 DOI: 10.1016/j.neuropharm.2021.108587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022]
Abstract
Glutamate delta 1 (GluD1) and glutamate delta 2 (GluD2) form the delta family of ionotropic glutamate receptors; these proteins plays widespread roles in synaptic architecture, motor behavior, and cognitive function. Though the role of GluD2 at cerebellar parallel fiber-Purkinje cell synapses is well established, attention now turns to the function of GluD receptors in the forebrain. GluD1 regulates synaptic assembly and modulation in multiple higher brain regions, acting as a postsynaptic cell adhesion molecule with effects on both excitatory and inhibitory transmission. Furthermore, variations and mutations in the GRID1 gene, which codes for GluD1, and in genes which code for proteins functionally linked to GluD1, are associated with mental disorders including autism, schizophrenia, bipolar disorder, and major depression. Cerebellin (Cbln) family proteins, the primary binding partners of delta receptors, are secreted C1q-like proteins which also bind presynaptic neurexins (NRXNs), forming a tripartite synaptic bridge. Published research explores this bridge's function in regions including the striatum, hippocampus, cortex, and cerebellum. In this review, we summarize region- and circuit-specific functions and expression patterns for GluD1 and its related proteins, and their implications for behavior and disease.
Collapse
Affiliation(s)
- Patrick C Andrews
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
6
|
Development of a novel prognostic signature for predicting the overall survival of bladder cancer patients. Biosci Rep 2021; 40:224923. [PMID: 32441304 PMCID: PMC7286875 DOI: 10.1042/bsr20194432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Bladder cancer is one of the most common malignancies. So far, no effective biomarker for bladder cancer prognosis has been identified. Aberrant DNA methylation is frequently observed in the bladder cancer and holds considerable promise as a biomarker for predicting the overall survival (OS) of patients. Materials and methods: We downloaded the DNA methylation and transcriptome data for bladder cancer from The Cancer Genome Atlas (TCGA), a public database, screened hypo-methylated and up-regulated genes, similarly, hyper-methylation with low expression genes, then retrieved the relevant methylation sites. Cox regression analysis was used to identify a nine-methylation site signature of a training group. Predictive ability was validated in a test group by receiver operating characteristic (ROC) analysis. Results: We identified nine bladder cancer-specific methylation sites as potential prognostic biomarkers and established a risk score system based on the methylation site signature to evaluate the OS. The performance of the signature was accurate, with area under curve was 0.73 in the training group and 0.71 in the test group. Taking clinical features into consideration, we constructed a nomogram consisting of the nine-methylation site signature and patients’ clinical variables, and found that the signature was an independent risk factor. Conclusions: Overall, the significant nine methylation sites could be novel prediction biomarkers, which could aid in treatment and also predict the overall survival likelihoods of bladder cancer patients.
Collapse
|
7
|
Burada AP, Vinnakota R, Bharti P, Dutta P, Dubey N, Kumar J. Emerging insights into the structure and function of ionotropic glutamate delta receptors. Br J Pharmacol 2020; 179:3612-3627. [DOI: 10.1111/bph.15313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Pratibha Bharti
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Priyanka Dutta
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Neelima Dubey
- Molecular Neuroscience Research Lab Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Tathawade Pune 411033 India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
9
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
10
|
Schaffler MD, Middleton LJ, Abdus-Saboor I. Mechanisms of Tactile Sensory Phenotypes in Autism: Current Understanding and Future Directions for Research. Curr Psychiatry Rep 2019; 21:134. [PMID: 31807945 PMCID: PMC6900204 DOI: 10.1007/s11920-019-1122-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current body of behavioral, physiological, and molecular knowledge concerning tactile sensitivity in autism spectrum disorder (ASD), with a focus on recent studies utilizing rodent models. RECENT FINDINGS Mice with mutations in the ASD-related genes, Shank3, Fmr1, UBE3A, and Mecp2, display tactile abnormalities. Some of these abnormalities appear to be caused by mutation-related changes in the PNS, as opposed to changes in the processing of touch stimuli in the CNS, as previously thought. There is also growing evidence suggesting that peripheral mechanisms may contribute to some of the core symptoms and common comorbidities of ASD. Researchers are therefore beginning to assess the therapeutic potential of targeting the PNS in treating some of the core symptoms of ASD. Sensory abnormalities are common in rodent models of ASD. There is growing evidence that sensory hypersensitivity, especially tactile sensitivity, may contribute to social deficits and other autism-related behaviors.
Collapse
Affiliation(s)
- Melanie D Schaffler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leah J Middleton
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Nisar S, Hashem S, Bhat AA, Syed N, Yadav S, Azeem MW, Uddin S, Bagga P, Reddy R, Haris M. Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Najeeb Syed
- Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Muhammad Waqar Azeem
- Department of Psychiatry, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Haris
- Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Rauschert S, Melton PE, Burdge G, Craig JM, Godfrey KM, Holbrook JD, Lillycrop K, Mori TA, Beilin LJ, Oddy WH, Pennell C, Huang RC. Maternal Smoking During Pregnancy Induces Persistent Epigenetic Changes Into Adolescence, Independent of Postnatal Smoke Exposure and Is Associated With Cardiometabolic Risk. Front Genet 2019; 10:770. [PMID: 31616461 PMCID: PMC6764289 DOI: 10.3389/fgene.2019.00770] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Several studies have shown effects of current and maternal smoking during pregnancy on DNA methylation of CpG sites in newborns and later in life. Here, we hypothesized that there are long-term and persistent epigenetic effects following maternal smoking during pregnancy on adolescent offspring DNA methylation, independent of paternal and postnatal smoke exposure. Furthermore, we explored the association between DNA methylation and cardiometabolic risk factors at 17 years of age. Materials and Methods: DNA methylation was measured using the Illumina HumanMethylation450K BeadChip in whole blood from 995 participants attending the 17-year follow-up of the Raine Study. Linear mixed effects models were used to identify differential methylated CpGs, adjusting for parental smoking during pregnancy, and paternal, passive, and adolescent smoke exposure. Additional models examined the association between DNA methylation and paternal, adolescent, and passive smoking over the life course. Offspring CpGs identified were analyzed against cardiometabolic risk factors (blood pressure, triacylglycerols (TG), high-density lipoproteins cholesterol (HDL-C), and body mass index). Results: We identified 23 CpGs (genome-wide p level: 1.06 × 10-7) that were associated with maternal smoking during pregnancy, including associated genes AHRR (cancer development), FTO (obesity), CNTNAP2 (developmental processes), CYP1A1 (detoxification), MYO1G (cell signalling), and FRMD4A (nicotine dependence). A sensitivity analysis showed a dose-dependent relationship between maternal smoking and offspring methylation. These results changed little following adjustment for paternal, passive, or offspring smoking, and there were no CpGs identified that associated with these variables. Two of the 23 identified CpGs [cg00253568 (FTO) and cg00213123 (CYP1A1)] were associated with either TG (male and female), diastolic blood pressure (female only), or HDL-C (male only), after Bonferroni correction. Discussion: This study demonstrates a critical timing of cigarette smoke exposure over the life course for establishing persistent changes in DNA methylation into adolescence in a dose-dependent manner. There were significant associations between offspring CpG methylation and adolescent cardiovascular risk factors, namely, TG, HDL-C, and diastolic blood pressure. Future studies on current smoking habits and DNA methylation should consider the importance of maternal smoking during pregnancy and explore how the persistent DNA methylation effects of in utero smoke exposure increase cardiometabolic risk.
Collapse
Affiliation(s)
- Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Phillip E. Melton
- Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, WA, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Graham Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jeffrey M. Craig
- Early Life Epigenetics Group, MCRI, Royal Children’s Hospital, Flemington Road, Parkville, VIC, Australia
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Keith M. Godfrey
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joanna D. Holbrook
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Trevor A. Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Lawrence J. Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Wendy H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Alonso-Gonzalez A, Calaza M, Rodriguez-Fontenla C, Carracedo A. Novel Gene-Based Analysis of ASD GWAS: Insight Into the Biological Role of Associated Genes. Front Genet 2019; 10:733. [PMID: 31447886 PMCID: PMC6696953 DOI: 10.3389/fgene.2019.00733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by its significant social impact and high heritability. The latest meta-analysis of ASD GWAS (genome-wide association studies) has revealed the association of several SNPs that were replicated in additional sets of independent samples. However, summary statistics from GWAS can be used to perform a gene-based analysis (GBA). GBA allows to combine all genetic information across the gene to create a single statistic (p-value for each gene). Thus, PASCAL (Pathway scoring algorithm), a novel GBA tool, has been applied to the summary statistics from the latest meta-analysis of ASD. GBA approach (testing the gene as a unit) provides an advantage to perform an accurate insight into the biological ASD mechanisms. Therefore, a gene-network analysis and an enrichment analysis for KEGG and GO terms were carried out. GENE2FUNC was used to create gene expression heatmaps and to carry out differential expression analysis (DEA) across GTEx v7 tissues and Brainspan data. dbMDEGA was employed to perform a DEG analysis between ASD and brain control samples for the associated genes and interactors. Results: PASCAL has identified the following loci associated with ASD: XRN2, NKX2-4, PLK1S1, KCNN2, NKX2-2, CRHR1-IT1, C8orf74 and LOC644172. While some of these genes were previously reported by MAGMA (XRN2, PLK1S1, and KCNN2), PASCAL has been useful to highlight additional genes. The biological characterization of the ASD-associated genes and their interactors have demonstrated the association of several GO and KEGG terms. Moreover, DEA analysis has revealed several up- and down-regulated clusters. In addition, many of the ASD-associated genes and their interactors have shown association with ASD expression datasets. Conclusions: This study identifies several associations at a gene level in ASD. Most of them were previously reported by MAGMA. This fact proves that PASCAL is an efficient GBA tool to extract additional information from previous GWAS. In addition, this study has characterized for the first time the biological role of the ASD-associated genes across brain regions, neurodevelopmental stages, and ASD gene-expression datasets.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Calaza
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Rodriguez-Fontenla
- Grupo de Medicina Genómica, CIBERER, CIMUS (Centre for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Genómica, CIBERER, CIMUS (Centre for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Stein MB, Choi KW, Jain S, Campbell-Sills L, Chen CY, Gelernter J, He F, Heeringa SG, Maihofer AX, Nievergelt C, Nock MK, Ripke S, Sun X, Kessler RC, Smoller JW, Ursano RJ. Genome-wide analyses of psychological resilience in U.S. Army soldiers. Am J Med Genet B Neuropsychiatr Genet 2019; 180:310-319. [PMID: 31081985 PMCID: PMC6551278 DOI: 10.1002/ajmg.b.32730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
Though a growing body of preclinical and translational research is illuminating a biological basis for resilience to stress, little is known about the genetic basis of psychological resilience in humans. We conducted genome-wide association studies (GWASs) of self-assessed (by questionnaire) and outcome-based (incident mental disorders from predeployment to postdeployment) resilience among European (EUR) ancestry soldiers in the Army study to assess risk and resilience in servicemembers. Self-assessed resilience (N = 11,492) was found to have significant common-variant heritability (h2 = 0.162, se = 0.050, p = 5.37 × 10-4 ), and to be significantly negatively genetically correlated with neuroticism (rg = -0.388, p = .0092). GWAS results from the EUR soldiers revealed a genome-wide significant locus on an intergenic region on Chr 4 upstream from doublecortin-like kinase 2 (DCLK2) (four single nucleotide polymorphisms (SNPs) in LD; top SNP: rs4260523 [p = 5.65 × 10-9 ] is an eQTL in frontal cortex), a member of the doublecortin family of kinases that promote survival and regeneration of injured neurons. A second gene, kelch-like family member 36 (KLHL36) was detected at gene-wise genome-wide significance [p = 1.89 × 10-6 ]. A polygenic risk score derived from the self-assessed resilience GWAS was not significantly associated with outcome-based resilience. In very preliminary results, genome-wide significant association with outcome-based resilience was found for one locus (top SNP: rs12580015 [p = 2.37 × 10-8 ]) on Chr 12 downstream from solute carrier family 15 member 5 (SLC15A5) in subjects (N = 581) exposed to the highest level of deployment stress. The further study of genetic determinants of resilience has the potential to illuminate the molecular bases of stress-related psychopathology and point to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California,Psychiatry Service, VA San Diego Healthcare System, San Diego, California
| | - Karmel W. Choi
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Laura Campbell-Sills
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, Connecticut,VA Connecticut Healthcare System, West Haven, Connecticut,Departments of Genetics and Neurobiology, Yale University, New Haven, Connecticut
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Steven G. Heeringa
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Caroline Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Matthew K. Nock
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA 02114, USA,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin 10117, Germany
| | - Xiaoying Sun
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Robert J. Ursano
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
15
|
Bralten J, van Hulzen KJ, Martens MB, Galesloot TE, Arias Vasquez A, Kiemeney LA, Buitelaar JK, Muntjewerff JW, Franke B, Poelmans G. Autism spectrum disorders and autistic traits share genetics and biology. Mol Psychiatry 2018; 23:1205-1212. [PMID: 28507316 PMCID: PMC5984081 DOI: 10.1038/mp.2017.98] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) and autistic traits in the general population may share genetic susceptibility factors. In this study, we investigated such potential overlap based on common genetic variants. We developed and validated a self-report questionnaire of autistic traits in adults. We then conducted genome-wide association studies (GWASs) of six trait scores derived from the questionnaire through exploratory factor analysis in 1981 adults from the general population. Using the results from the Psychiatric Genomics Consortium GWAS of ASDs, we observed genetic sharing between ASDs and the autistic traits 'childhood behavior', 'rigidity' and 'attention to detail'. Gene-set analysis subsequently identified 'rigidity' to be significantly associated with a network of ASD gene-encoded proteins that regulates neurite outgrowth. Gene-wide association with the well-established ASD gene MET reached significance. Taken together, our findings provide evidence for an overlapping genetic and biological etiology underlying ASDs and autistic population traits, which suggests that genetic studies in the general population may yield novel ASD genes.
Collapse
Affiliation(s)
- J Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - K J van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - T E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Arias Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - J W Muntjewerff
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Yuzaki M. The C1q complement family of synaptic organizers: not just complementary. Curr Opin Neurobiol 2017; 45:9-15. [DOI: 10.1016/j.conb.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 11/26/2022]
|
17
|
Roles of Cbln1 in Non-Motor Functions of Mice. J Neurosci 2017; 36:11801-11816. [PMID: 27852787 DOI: 10.1523/jneurosci.0322-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 01/16/2023] Open
Abstract
The cerebellum is thought to be involved in cognitive functions in addition to its well established role in motor coordination and motor learning in humans. Cerebellin 1 (Cbln1) is predominantly expressed in cerebellar granule cells and plays a crucial role in the formation and function of parallel fiber-Purkinje cell synapses. Although genes encoding Cbln1 and its postsynaptic receptor, the delta2 glutamate receptor (GluD2), are suggested to be associated with autistic-like traits and many psychiatric disorders, whether such cognitive impairments are caused by cerebellar dysfunction remains unclear. In the present study, we investigated whether and how Cbln1 signaling is involved in non-motor functions in adult mice. We show that acquisition and retention/retrieval of cued and contextual fear memory were impaired in Cbln1-null mice. In situ hybridization and immunohistochemical analyses revealed that Cbln1 is expressed in various extracerebellar regions, including the retrosplenial granular cortex and the hippocampus. In the hippocampus, Cbln1 immunoreactivity was present at the molecular layer of the dentate gyrus and the stratum lacunosum-moleculare without overt mRNA expression, suggesting that Cbln1 is provided by perforant path fibers. Retention/retrieval, but not acquisition, of cued and contextual fear memory was impaired in forebrain-predominant Cbln1-null mice. Spatial learning in the radial arm water maze was also abrogated. In contrast, acquisition of fear memory was affected in cerebellum-predominant Cbln1-null mice. These results indicate that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially and that Cbln1 signaling likely regulates motor and non-motor functions in multiple brain regions. SIGNIFICANCE STATEMENT Despites its well known role in motor coordination and motor learning, whether and how the cerebellum is involved in cognitive functions remains less clear. Cerebellin 1 (Cbln1) is highly expressed in the cerebellum and serves as an essential synaptic organizer. Although genes encoding Cbln1 and its receptor are associated with many psychiatric disorders, it remains unknown whether such cognitive impairments are caused by cerebellar dysfunction. Here, we show that Cbln1 is also expressed in the forebrain, including the hippocampus and retrosplenial granular cortex. Using forebrain- and cerebellum-predominant conditional Cbln1-null mice, we show that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially, indicating that Cbln1 signaling regulates both motor and non-motor functions in multiple brain regions.
Collapse
|
18
|
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism 2017; 8:21. [PMID: 28540026 PMCID: PMC5441062 DOI: 10.1186/s13229-017-0137-9] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15). METHODS We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). RESULTS We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23. CONCLUSIONS This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
Collapse
|
19
|
Abstract
There is now substantial evidence that autistic-like traits in the general population lie on a continuum, with clinical autism spectrum disorders (ASD) representing the extreme end of this distribution. In this study, we sought to evaluate five independently identified genetic associations with ASD with autistic-like traits in the general population. In the study cohort, clinical phenotype and genomewide association genotype data were obtained from the Western Australian Pregnancy Cohort (Raine) Study. The outcome measure used was the Autism Spectrum Quotient (AQ), a quantitative measure of autistic-like traits of individuals in the cohort. Total AQ scores were calculated for each individual, as well as scores for three subscales. Five candidate single nucleotide polymorphism (SNP) associations with ASD, reported in previously published genomewide association studies, were selected using a nominal cutoff value of P less than 1.0×10. We tested whether these five SNPs were associated with total AQ and the subscales, after adjustment for possible confounders. SNP rs4141463 located in the macro domain containing 2 (MACROD2) gene was significantly associated with the Communication/Mindreading subscale. No other SNP was significantly associated with total AQ or the subscales. The MACROD2 gene is a strong positional candidate risk factor for autistic-like traits in the general population.
Collapse
|
20
|
Kästner A, Begemann M, Michel TM, Everts S, Stepniak B, Bach C, Poustka L, Becker J, Banaschewski T, Dose M, Ehrenreich H. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia. BMC Psychiatry 2015; 15:115. [PMID: 25968177 PMCID: PMC4436160 DOI: 10.1186/s12888-015-0494-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. METHODS Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. RESULTS PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. CONCLUSIONS This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.
Collapse
Affiliation(s)
- Anne Kästner
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Sarah Everts
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Beata Stepniak
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Christiane Bach
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Luise Poustka
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Joachim Becker
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Matthias Dose
- kbo-Isar-Amper-Klinikum Taufkirchen, Taufkirchen (Vils), Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
21
|
Association study between autistic-like traits and polymorphisms in the autism candidate regions RELN, CNTNAP2, SHANK3, and CDH9/10. Mol Autism 2014; 5:55. [PMID: 25540679 PMCID: PMC4276093 DOI: 10.1186/2040-2392-5-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/20/2014] [Indexed: 01/14/2023] Open
Abstract
Background Autistic-like traits (ALTs) are continuously distributed in the general population, with the autism spectrum disorder (ASD) at the upper extreme end. A genetic overlap has been shown between ALTs and ASD, indicating that common variation in ASD candidate genes may also influence ALTs. In our study, we have investigated the SNP rs4307059 that has been associated with both ALTs and ASD. In addition, we genotyped polymorphisms in a selection of genes involved in synaptic functioning, that is, SHANK3, RELN, and CNTNAP2, which repeatedly have been associated with ASD. The possible associations of these polymorphisms with ALTs, as well as genetic factors for neurodevelopmental problems (NDPs), were investigated in a large cohort from the general population: The Child and Adolescent Twin Study in Sweden. For analyses of ALTs and NDPs, 12,319 subjects (including 2,268 monozygotic (MZ) and 3,805 dizygotic (DZ) twin pairs) and 8,671 subjects (including 2,243 MZ and 2,044 DZ twin pairs), respectively, were included in the analyses. Findings We could not replicate the previous association between rs4307059 and social communication impairment. Moreover, common variations in CNTNAP2 (rs7794745 and rs2710102), RELN (rs362691), and SHANK3 (rs9616915) were not significantly associated with ALTs in our study. Conclusions Our results do not suggest that the investigated genes, which previously has been found associated with ASD diagnosis, have any major influence on ALTs in children from the general population. Electronic supplementary material The online version of this article (doi:10.1186/2040-2392-5-55) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Eapen V, Clarke RA. Autism spectrum disorders: from genotypes to phenotypes. Front Hum Neurosci 2014; 8:914. [PMID: 25429265 PMCID: PMC4228832 DOI: 10.3389/fnhum.2014.00914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valsamma Eapen
- School of Psychiatry, University of New South Wales and Academic Unit of Child Psychiatry, Ingham Institute, South West Sydney (AUCS), Liverpool Hospital , Sydney, NSW , Australia
| | - Raymond A Clarke
- Ingham Institute, School of Medicine, University of Western Sydney , Sydney, NSW , Australia
| |
Collapse
|
23
|
Clarke RA, Eapen V. Balance within the Neurexin Trans-Synaptic Connexus Stabilizes Behavioral Control. Front Hum Neurosci 2014; 8:52. [PMID: 24578685 PMCID: PMC3936185 DOI: 10.3389/fnhum.2014.00052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/23/2014] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a broad spectrum of behavioral deficits of unknown etiology. ASD associated mutations implicate numerous neurological pathways including a common association with the neurexin trans-synaptic connexus (NTSC) which regulates neuronal cell-adhesion, neuronal circuitry, and neurotransmission. Comparable DNA lesions affecting the NTSC, however, associate with a diversity of behavioral deficits within and without the autism spectrum including a very strong association with Tourette syndrome. The NTSC is comprised of numerous post-synaptic ligands competing for trans-synaptic connection with one of the many different neurexin receptors yet no apparent association exists between specific NTSC molecules/complexes and specific behavioral deficits. Together these findings indicate a fundamental role for NTSC-balance in stabilizing pre-behavioral control. Further molecular and clinical characterization and stratification of ASD and TS on the basis of NTSC status will help elucidate the molecular basis of behavior – and define how the NTSC functions in combination with other molecular determinates to strengthen behavioral control and specify behavioral deficits.
Collapse
Affiliation(s)
- Raymond A Clarke
- Ingham Institute, School of Medicine, University of Western Sydney , Sydney, NSW , Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales & Academic Unit of Child Psychiatry, South West Sydney (AUCS), Liverpool Hospital , Sydney, NSW , Australia
| |
Collapse
|
24
|
Abstract
Chemical synapses allow neurons to perform complex computations and regulate other systems of the body. At a chemical synapse, pre- and postsynaptic sites are separated by a small space (the synaptic cleft) and surrounded by astrocytes. The basement membrane (BM), a sheetlike, specialized extracellular matrix (ECM), is found ubiquitously in the PNS. It has become clear that the ECMs not only play a structural role but also serve as barriers and filters in the PNS and CNS. Moreover, proteoglycans and tenascin family proteins in the ECM regulate synapse formation and synaptic plasticity. Although CNS synapses lack the BMs, recent results indicate that the BM-associated collagens are also present in the CNS synaptic cleft and affect synaptogenesis in both the CNS and the PNS. The C1q domain-containing family proteins are important components of the CNS synaptic cleft in regulating synapse formation, maintenance, and the pruning process. The ECM is regarded as a crucial component of the tetrapartite synapse, consisting of pre- and postsynaptic neurons, astrocyte, and ECM.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|