1
|
Naefgen C, Gaschler R. Variable, sometimes absent, but never negative: Applying multilevel models of variability to the backward crosstalk effect to find theoretical constraints. Acta Psychol (Amst) 2024; 245:104221. [PMID: 38531267 DOI: 10.1016/j.actpsy.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
When performing two tasks at the same time, the congruency of the second task's features influences performance in the first task. This is called the backward crosstalk effect (BCE), a phenomenon that influences both theories of binding and of dual-task capacity limitations. The question of whether the BCE is found in all participants at all times is relevant for understanding the basis of the effect. For example, if the BCE is based on strategic choices, it can be variable, but if it is automatic and involuntary, it should never vary in whether it is present or not. Variability in observed BCE sizes was already documented and discussed when the group average effect was first reported (Hommel, 1998). Yet the theories discussed at the time did not motivate a more direct analysis of this variability, nor did the readily available statistical tools permit it. Some statistical approaches recently applied in cognitive psychology allow such a variability-focused analysis and some more recent theoretical debates would benefit from this as well. We assessed the variability of the BCE as well as a BCE-like free-choice congruency effect by applying a Bayesian multilevel modeling approach to the data from a dual-tasking experiment. Trials consisted of a two- and a four-response task. We manipulated which task was presented first and whether the response to the four-choice task was free or forced choice. RT data were best predicted by a model in which the BCE is zero in part of the population and drawn from a normal distribution truncated at zero (and thus always positive) in the rest of the population. Choice congruency bias data were best predicted by a model assuming this effect to be drawn from a normal distribution truncated at zero (but, in contrast to the RT data, without the subset of the population where it is zero). The BCE is not an inflexible and universal phenomenon that is directly linked to an inherent structural trait of human cognition. We discuss theoretical constraints implied by these results with a focus on what we can infer about the traits of the factors that influence BCE size. We suggest that future research might add further major constraints by using multi-session experiments to distinguish between-person and within-person variability. Our results show that the BCE is variable. The next step is understanding along which axes it is variable and why it varies.
Collapse
Affiliation(s)
- Christoph Naefgen
- Allgemeine Psychologie: Lernen, Motivation, Emotion, FernUniversität in Hagen, Germany.
| | - Robert Gaschler
- Allgemeine Psychologie: Lernen, Motivation, Emotion, FernUniversität in Hagen, Germany.
| |
Collapse
|
2
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1651-1666. [PMID: 37378887 PMCID: PMC10349733 DOI: 10.1007/s00213-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.
Collapse
Affiliation(s)
- L Klem
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using noradrenaline receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1629-1650. [PMID: 37329343 PMCID: PMC10349758 DOI: 10.1007/s00213-023-06385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023]
Abstract
RATIONALE Noradrenergic dysfunction is associated with disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) quantifies changes in attention and impulsivity. OBJECTIVE To use NA receptor antagonists to examine the roles of NA on attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval (vITI) schedules. METHODS Two cohorts of 36 female C57BL/6JRj mice were examined separately in the rCPT vSD and vITI schedules. Both cohorts received antagonists of the following adrenoceptors: α1 (doxazosin, DOX: 1.0, 3.0, 10.0 mg/kg), α2 (yohimbine, YOH: 0.1, 0.3, 1.0 mg/kg), and β1/2 (propranolol, PRO: 1.0, 3.0, 10.0 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS DOX showed similar effects in both schedules, improving discriminability and accuracy, and reducing responding and impulsivity, and DOX also reduced locomotor activity. YOH showed prominent effects in the vSD schedule to increase responding and impulsivity, while impairing discriminability and accuracy. YOH did not affect locomotor activity. PRO increased responding and impulsivity, decreased accuracy, but did not affect discriminability or locomotor activity. CONCLUSION Antagonism of α2 or β1/2 adrenoceptors caused similar increases in responding and impulsivity and worsened attentional performance, while α1 adrenoceptor antagonism showed the opposite effects. Our results suggest that endogenous NA exerts bidirectional control of most behaviours in the rCPT. The parallel vSD and vITI studies showed a substantial overlap in effects, but also some differences that indicate differing sensitivity towards noradrenergic manipulations.
Collapse
Affiliation(s)
- L Klem
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Dept. of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
On the Role of Stimulus-Response Context in Inhibitory Control in Alcohol Use Disorder. J Clin Med 2022; 11:jcm11216557. [DOI: 10.3390/jcm11216557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The behavioral and neural dynamics of response inhibition deficits in alcohol use disorder (AUD) are still largely unclear, despite them possibly being key to the mechanistic understanding of the disorder. Our study investigated the effect of automatic vs. controlled processing during response inhibition in participants with mild-to-moderate AUD and matched healthy controls. For this, a Simon Nogo task was combined with EEG signal decomposition, multivariate pattern analysis (MVPA), and source localization methods. The final sample comprised n = 59 (32♂) AUD participants and n = 64 (28♂) control participants. Compared with the control group, AUD participants showed overall better response inhibition performance. Furthermore, the AUD group was less influenced by the modulatory effect of automatic vs. controlled processes during response inhibition (i.e., had a smaller Simon Nogo effect). The neurophysiological data revealed that the reduced Simon Nogo effect in the AUD group was associated with reduced activation differences between congruent and incongruent Nogo trials in the inferior and middle frontal gyrus. Notably, the drinking frequency (but not the number of AUD criteria we had used to distinguish groups) predicted the extent of the Simon Nogo effect. We suggest that the counterintuitive advantage of participants with mild-to-moderate AUD over those in the control group could be explained by the allostatic model of drinking effects.
Collapse
|
5
|
Zhang C, Beste C, Prochazkova L, Wang K, Speer SPH, Smidts A, Boksem MAS, Hommel B. Resting-state BOLD signal variability is associated with individual differences in metacontrol. Sci Rep 2022; 12:18425. [PMID: 36319653 PMCID: PMC9626555 DOI: 10.1038/s41598-022-21703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous studies demonstrate that moment-to-moment neural variability is behaviorally relevant and beneficial for tasks and behaviors requiring cognitive flexibility. However, it remains unclear whether the positive effect of neural variability also holds for cognitive persistence. Moreover, different brain variability measures have been used in previous studies, yet comparisons between them are lacking. In the current study, we examined the association between resting-state BOLD signal variability and two metacontrol policies (i.e., persistence vs. flexibility). Brain variability was estimated from resting-state fMRI (rsfMRI) data using two different approaches (i.e., Standard Deviation (SD), and Mean Square Successive Difference (MSSD)) and metacontrol biases were assessed by three metacontrol-sensitive tasks. Results showed that brain variability measured by SD and MSSD was highly positively related. Critically, higher variability measured by MSSD in the attention network, parietal and frontal network, frontal and ACC network, parietal and motor network, and higher variability measured by SD in the parietal and motor network, parietal and frontal network were associated with reduced persistence (or greater flexibility) of metacontrol (i.e., larger Stroop effect or worse RAT performance). These results show that the beneficial effect of brain signal variability on cognitive control depends on the metacontrol states involved. Our study highlights the importance of temporal variability of rsfMRI activity in understanding the neural underpinnings of cognitive control.
Collapse
Affiliation(s)
- Chenyan Zhang
- grid.5132.50000 0001 2312 1970Cognitive Psychology Unit, Leiden Institute for Brain and Cognition, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Christian Beste
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany ,grid.4488.00000 0001 2111 7257University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany ,grid.410585.d0000 0001 0495 1805School of Psychology, Shandong Normal University, Jinan, China
| | - Luisa Prochazkova
- grid.5132.50000 0001 2312 1970Cognitive Psychology Unit, Leiden Institute for Brain and Cognition, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Kangcheng Wang
- grid.410585.d0000 0001 0495 1805School of Psychology, Shandong Normal University, Jinan, China
| | - Sebastian P. H. Speer
- grid.419918.c0000 0001 2171 8263Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands ,grid.16750.350000 0001 2097 5006Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ale Smidts
- grid.6906.90000000092621349Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maarten A. S. Boksem
- grid.6906.90000000092621349Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Bernhard Hommel
- grid.5132.50000 0001 2312 1970Cognitive Psychology Unit, Leiden Institute for Brain and Cognition, Institute of Psychology, Leiden University, Leiden, The Netherlands ,grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany ,grid.410585.d0000 0001 0495 1805School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Eggert E, Prochnow A, Roessner V, Frings C, Münchau A, Mückschel M, Beste C. Cognitive science theory-driven pharmacology elucidates the neurobiological basis of perception-motor integration. Commun Biol 2022; 5:919. [PMID: 36068298 PMCID: PMC9448745 DOI: 10.1038/s42003-022-03864-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
An efficient integration of sensory and motor processes is crucial to goal-directed behavior. Despite this high relevance, and although cognitive theories provide clear conceptual frameworks, the neurobiological basis of these processes remains insufficiently understood. In a double-blind, randomized placebo-controlled pharmacological study, we examine the relevance of catecholamines for perception-motor integration processes. Using EEG data, we perform an in-depth analysis of the underlying neurophysiological mechanisms, focusing on sensorimotor integration processes during response inhibition. We show that the catecholaminergic system affects sensorimotor integration during response inhibition by modulating the stability of the representational content. Importantly, catecholamine levels do not affect the stability of all aspects of information processing during sensorimotor integration, but rather-as suggested by cognitive theory-of specific codes in the neurophysiological signal. Particularly fronto-parietal cortical regions are associated with the identified mechanisms. The study shows how cognitive science theory-driven pharmacology can shed light on the neurobiological basis of perception-motor integration and how catecholamines affect specific information codes relevant to cognitive control.
Collapse
Affiliation(s)
- Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci Biobehav Rev 2022; 139:104752. [PMID: 35760387 DOI: 10.1016/j.neubiorev.2022.104752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) has been associated with atypical patterns of neural activity measured by electroencephalography (EEG). However, the identification of EEG diagnostic biomarkers has been complicated by the disorder's heterogeneity. The objective of this review was to synthesize the literature investigating EEG variation in patients diagnosed with ADHD, addressing the following questions: 1) Are the diagnostic ADHD subtypes associated with different EEG characteristics? 2) Are EEG measures correlated with ADHD traits and/or symptom severity? and 3) Do classification techniques using EEG measures reveal different clinical presentations of ADHD? Outcomes highlight the potential for electrophysiological measures to provide meaningful insights into the heterogeneity of ADHD, although direct translation of EEG biomarkers for diagnostic purposes is not yet supported. Key measures that show promise for the discrimination of existing ADHD subtypes and symptomatology include: resting state and task-related modulation of alpha, beta and theta power, and the event-related N2 and P3 components. Prescriptions are discussed for future studies that may help to bridge the gap between research and clinical application.
Collapse
|
8
|
Ceyhun HA, Gürbüzer N. New Hematological Parameters as Inflammatory Biomarkers: Systemic Immune Inflammation Index, Platerethritis, and Platelet Distribution Width in Patients with Adult Attention Deficit Hyperactivity Disorder. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:211-223. [PMID: 35573104 PMCID: PMC9091147 DOI: 10.1007/s41252-022-00258-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The potential role of neuroinflammation in adult attention deficit hyperactivity disorder (ADHD) patients has been investigated with peripheral hemogram-related inflammatory markers. Systemic immune inflammation index (SII) is defined as a new index that has been developed for the balance of inflammatory and immune status. METHODS Our study was based on a prospective routine complete blood count(CBC) analysis of 74 Adult ADHD patients and 70 healthy participants. The DSM-5-Clinician version and Barratt impulsivity scale-11 were used to evaluate the participants. RESULTS There was no statistical difference in the comparison of the SII ratios, platelet distribution width (PDW), and plateretritis (PCT) (p>0.05 for each) in a group of a young adults with ADHD and in a comparison control group. These inflammatory indicators were found to be similar between patients newly diagnosed with ADHD (n=40) and patients using methylphenidate (n=34) (p>0.05 for each). The relationship between ADHD clinical symptoms and severity and inflammation was evaluated. A significant negative correlation was observed between attention deficit scores and PCT (r=-0.301, p=0.009). A positive significant correlation was found between hyperactivity scores and SII (r=0.247, p=0.034). A significant positive correlation was found between Barrat motor scores and PDW(r=241, p=0.038). In the regression analysis, the PCT variable changed the attention deficit variable (β=.33, t(70)= -2.703, p=.009, pr 2= .094) predicted negatively and significantly. CONCLUSIONS We demonstrated the association of SII, which is independently associated with adverse outcomes in many diseases, and the severity of hyperactivity symptoms in adult ADHD. The fact that PCT predicts attention deficit negatively and decisively shows the importance of inflammatory assessments specific to clinical presentations. The critical importance of platelets in inflammatory processes in ADHD has been demonstrated once again with inflammatory markers such as SII, PLT, and PDW, which can be accessed by an easily applicable complete blood count method.
Collapse
Affiliation(s)
- Hacer Akgül Ceyhun
- Department of Psychiatry, Ataturk University School of Medicine, Atatürk University, 25 240 Erzurum, Turkey
| | - Nilifer Gürbüzer
- Department of Psychiatry, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| |
Collapse
|
9
|
Feedback-Based Learning of Timing in Attention-Deficit/Hyperactivity Disorder and Neurofibromatosis Type 1. J Int Neuropsychol Soc 2022; 28:12-21. [PMID: 33573707 DOI: 10.1017/s1355617721000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with Neurofibromatosis Type 1 (NF1) frequently display symptoms resembling those of Attention Deficit/Hyperactivity Disorder (ADHD). Importantly, these disorders are characterised by distinct changes in the dopaminergic system, which plays an important role in timing performance and feedback-based adjustments in timing performance. In a transdiagnostic approach, we examine how far NF1 and ADHD show distinct or comparable profiles of timing performance and feedback-based adjustments in timing. METHOD We examined time estimation and learning processes in healthy control children (HC), children with ADHD with predominantly inattentive symptoms and those with NF1 using a feedback-based time estimation paradigm. RESULTS Healthy controls consistently responded closer to the correct time window than both patient groups, were less variable in their reaction times and displayed intact learning-based adjustments across time. The patient groups did not differ from each other regarding the number of in-time responses. In ADHD patients, the performance was rather unstable across time. No performance changes could be observed in patients with NF1 across the entire task. CONCLUSIONS Children with ADHD and NF1 differ in feedback learning-based adjustments of time estimation processes. ADHD is characterised by behavioural fluctuations during the learning process. These are likely to be associated with inefficiencies in the dopaminergic system. NF1 is characterised by impairments of feedback learning which could be due to various neurotransmitter alterations occurring in addition to deficits in dopamine synthesis. Results show that despite the strong overlap in clinical phenotype and neuropsychological deficits between NF1 and ADHD, the underlying cognitive mechanisms are different.
Collapse
|
10
|
Prochnow A, Bluschke A, Weissbach A, Münchau A, Roessner V, Mückschel M, Beste C. Neural dynamics of stimulus-response representations during inhibitory control. J Neurophysiol 2021; 126:680-692. [PMID: 34232752 DOI: 10.1152/jn.00163.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The investigation of action control processes is one major field in cognitive neuroscience and several theoretical frameworks have been proposed. One established framework is the "Theory of Event Coding" (TEC). However, only rarely, this framework has been used in the context of response inhibition and how stimulus-response association or binding processes modulate response inhibition performance. Particularly the neural dynamics of stimulus-response representations during inhibitory control are elusive. To address this, we examined n = 40 healthy controls and combined temporal EEG signal decomposition with source localization and temporal generalization multivariate pattern analysis (MVPA). We show that overlaps in features of stimuli used to trigger either response execution or inhibition compromised task performance. According to TEC, this indicates that binding processes in event file representations impact response inhibition through partial repetition costs. In the EEG data, reconfiguration of event files modulated processes in time windows well-known to reflect distinct response inhibition mechanisms. Crucially, event file coding processes were only evident in a specific fraction of neurophysiological activity associated with the inferior parietal cortex (BA40). Within that specific fraction of neurophysiological activity, the decoding of the dynamics of event file representations using temporal generalization MVPA suggested that event file representations are stable across several hundred milliseconds, and that event file coding during inhibitory control is reflected by a sustained activation pattern of neural dynamics.NEW & NOTEWORTHY The "mental representation" of how stimulus input translate into the appropriate response is central for goal-directed behavior. However, little is known about the dynamics of such representations on the neurophysiological level when it comes to the inhibition of motor processes. This dynamic is shown in the current study.
Collapse
Affiliation(s)
- Astrid Prochnow
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Annet Bluschke
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lubeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lubeck, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Moritz Mückschel
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Adelhöfer N, Stock AK, Beste C. Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices. Brain Struct Funct 2021; 226:1335-1351. [PMID: 33656578 PMCID: PMC8036188 DOI: 10.1007/s00429-021-02245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Conflict monitoring processes are central for cognitive control. Neurophysiological correlates of conflict monitoring (i.e. the N2 ERP) likely represent a mixture of different cognitive processes. Based on theoretical considerations, we hypothesized that effects of anodal tDCS (atDCS) in superior frontal areas affect specific subprocesses in neurophysiological activity during conflict monitoring. To investigate this, young healthy adults performed a Simon task while EEG was recorded. atDCS and sham tDCS were applied in a single-blind, cross-over study design. Using temporal signal decomposition in combination with source localization analyses, we demonstrated that atDCS effects on cognitive control are very specific: the detrimental effect of atDCS on response speed was largest in case of response conflicts. This however only showed in aspects of the decomposed N2 component, reflecting stimulus-response translation processes. In contrast to this, stimulus-related aspects of the N2 as well as purely response-related processes were not modulated by atDCS. EEG source localization analyses revealed that the effect was likely driven by activity modulations in the superior frontal areas, including the supplementary motor cortex (BA6), as well as middle frontal (BA9) and medial frontal areas (BA32). atDCS did not modulate effects of proprioceptive information on hand position, even though this aspect is known to be processed within the same brain areas. Physiological effects of atDCS likely modulate specific aspects of information processing during cognitive control.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Prochnow A, Mückschel M, Beste C. Pushing to the Limits: What Processes during Cognitive Control are Enhanced by Reaction-Time Feedback? Cereb Cortex Commun 2021; 2:tgab027. [PMID: 34296172 PMCID: PMC8153012 DOI: 10.1093/texcom/tgab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
To respond as quickly as possible in a given task is a widely used instruction in cognitive neuroscience; however, the neural processes modulated by this common experimental procedure remain largely elusive. We investigated the underlying neurophysiological processes combining electroencephalography (EEG) signal decomposition (residue iteration decomposition, RIDE) and source localization. We show that trial-based response speed instructions enhance behavioral performance in conflicting trials, but slightly impair performance in nonconflicting trials. The modulation seen in conflicting trials was found at several coding levels in EEG data using RIDE. In the S-cluster N2 time window, this modulation was associated with modulated activation in the posterior cingulate cortex and the superior frontal gyrus. Furthermore, in the C-cluster P3 time window, this modulation was associated with modulated activation in the middle frontal gyrus. Interestingly, in the R-cluster P3 time window, this modulation was strongest according to statistical effect sizes, associated with modulated activity in the primary motor cortex. Reaction-time feedback mainly modulates response motor execution processes, whereas attentional and response selection processes are less affected. The study underlines the importance of being aware of how experimental instructions influence the behavior and neurophysiological processes.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, D-01309 Dresden, Germany
| |
Collapse
|
13
|
Petruo VA, Beste C. Task Switching and the Role of Motor Reprogramming in Parietal Structures. Neuroscience 2021; 461:23-35. [PMID: 33675917 DOI: 10.1016/j.neuroscience.2021.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Human behaviour amazes with extraordinary flexibility and the underlying neural mechanisms have often been studied using task switching. Despite extensive research, the relative importance of "cognitive" and "motor" aspects during switching is unclear. In the current study we examine this question combining EEG analysis techniques and source localization to examine whether the selection of the response, or processes during the execution of the response, contribute most to switching effects. A clear dissociation was observed in the signal decomposition, since codes relating to motor aspects play a significant role in task switching and the scope of the switching costs. This was not the case for signals that denote reaction selection or decision processes that respond to selection or basic stimulus processing codes. On a functional neuroanatomical level, these modulations in motor processes showed a clear temporal sequence in that motor codes are processed primarily in superior parietal regions (Brodman area 7) and only then in premotor regions (Brodman area 6). The observed modulations may reflect motor reprogramming processes. The study shows how EEG signal analysis in combination with brain mapping methods can inform debates on theories of human cognitive flexibility.
Collapse
Affiliation(s)
- Vanessa A Petruo
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3620A McClintock Avenue Bldg. #292, Los Angeles, CA 90089 United States
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
14
|
Bluschke A, Zink N, Mückschel M, Roessner V, Beste C. A novel approach to intra-individual performance variability in ADHD. Eur Child Adolesc Psychiatry 2021; 30:733-745. [PMID: 32410131 PMCID: PMC8060200 DOI: 10.1007/s00787-020-01555-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Patients with attention deficit/(hyperactivity) disorder (AD(H)D) show increased intra-individual variability (IIV) in behavioral performance. This likely reflects dopaminergic deficiencies. However, the precise performance profile across time and the pattern of fluctuations within it have not yet been considered, partly due to insufficient methods. Yet, such an analysis may yield important theory-based implications for clinical practice. Thus, in a case-control cross-sectional study, we introduce a new method to investigate performance fluctuations in patients with ADD (n = 76) and ADHD (n = 67) compared to healthy controls (n = 45) in a time estimation task. In addition, we also evaluate the effects of methylphenidate (MPH) treatment on this performance pattern in 29 patients with AD(H)D. Trial-by-trial differences in performance between healthy controls and patients with AD(H)D do not persist continuously over longer time periods. Periods during which no differences in performance between healthy controls and patients occur alternate with periods in which such differences are present. AD(H)D subtype and surprisingly also medication status does not affect this pattern. The presented findings likely reflect (phasic) deficiencies of the dopaminergic system in patients with AD(H)D which are not sufficiently ameliorated by first-line pharmacological treatment. The presented findings carry important clinical and scientific implications.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
15
|
Zink N, Mückschel M, Beste C. Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands. Neuroscience 2020; 453:43-56. [PMID: 33276088 DOI: 10.1016/j.neuroscience.2020.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Functional connectivity in EEG resting-state is not stable but fluctuates considerably. The aim of this study was to investigate how efficient information flows through a network, i.e. how resting-state EEG networks are organized and whether this organization it also subject to fluctuations. Differences of the network organization (small-worldness), degree of clustered connectivity, and path length as an indicator of how information is integrated into the network across time was compared between theta, alpha and beta bands. We show robust differences in network organization (small-worldness) between frequency bands. Fluctuations in network organization were larger in the theta, compared to the alpha and beta frequency. Variation in network organization and not the frequency of fluctuations differs between frequency bands. Furthermore, the degree of clustered connectivity and its modulation across time is the same across frequency bands, but the path length revealed the same modulatory pattern as the small-world metric. It is therefore the interplay of local processing efficiency and global information processing efficiency in the brain that fluctuates in a frequency-specific way. Properties of how information can be integrated is subject to fluctuations in a frequency-specific way in the resting-state. The possible relevance of these resting-state EEG properties is discussed including its clinical relevance.
Collapse
Affiliation(s)
- Nicolas Zink
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| |
Collapse
|
16
|
Friedrich J, Verrel J, Kleimaker M, Münchau A, Beste C, Bäumer T. Neurophysiological correlates of perception-action binding in the somatosensory system. Sci Rep 2020; 10:14794. [PMID: 32908197 PMCID: PMC7481208 DOI: 10.1038/s41598-020-71779-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/18/2020] [Indexed: 01/11/2023] Open
Abstract
Action control requires precisely and flexibly linking sensory input and motor output. This is true for both, visuo-motor and somatosensory-motor integration. However, while perception–action integration has been extensively investigated for the visual modality, data on how somatosensory and action-related information is associated are scarce. We use the Theory of Event Coding (TEC) as a framework to investigate perception–action integration in the somatosensory-motor domain. Based on studies examining the neural mechanisms underlying stimulus–response binding in the visuo-motor domain, the current study investigates binding mechanisms in the somatosensory-motor domain using EEG signal decomposition and source localization analyses. The present study clearly demonstrates binding between somatosensory stimulus and response features. Importantly, repetition benefits but no repetition costs are evident in the somatosensory modality, which differs from findings in the visual domain. EEG signal decomposition indicates that response selection mechanisms, rather than stimulus-related processes, account for the behavioral binding effects. This modulation is associated with activation differences in the left superior parietal cortex (BA 7), an important relay of sensorimotor integration.
Collapse
Affiliation(s)
- Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Maximilian Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Schreiter ML, Beste C. Inflexible adjustment of expectations affects cognitive-emotional conflict control in adolescents with autism spectrum disorder. Cortex 2020; 130:231-245. [DOI: 10.1016/j.cortex.2020.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
|
18
|
Kopp B, Steinke A, Visalli A. Cognitive flexibility and N2/P3 event-related brain potentials. Sci Rep 2020; 10:9859. [PMID: 32555267 PMCID: PMC7299939 DOI: 10.1038/s41598-020-66781-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/04/2022] Open
Abstract
Task switching is often considered for evaluating limitations of cognitive flexibility. Switch costs are behavioural indices of limited cognitive flexibility, and switch costs may be decomposable into stimulus- and response-related fractions, as conjectured by the domain hypothesis of cognitive flexibility. According to the domain hypothesis, there exist separable stimulus- and response-related neural networks for cognitive flexibility, which should be discernible as distinct event-related potentials (ERPs). The present card-matching study allowed isolating stimulus- and response-related switch costs, while measuring ERPs evoked by task cues and target stimuli with a focus on the target-locked N2/P3 complex. Behavioural data revealed that both stimulus-task and response-task bindings contribute to switch costs. Cue-locked ERPs yielded larger anterior negativity/posterior positivity in response to switch cues compared to repeat cues. Target-locked ERPs revealed separable ERP correlates of stimulus- and response-related switch costs. P3 waveforms with fronto-central scalp distributions emerged as a corollary of stimulus-related switch costs. Fronto-centrally distributed N2 waveforms occurred when stimulus-task and response-task bindings contributed jointly to switch costs. The reported N2/P3 ERP data are commensurate with the domain hypothesis according to which there exist separable stimulus- and response-related neural networks for cognitive flexibility.
Collapse
Affiliation(s)
- Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Antonino Visalli
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
19
|
Bluschke A, Schreiter ML, Friedrich J, Adelhöfer N, Roessner V, Beste C. Neurofeedback trains a superordinate system relevant for seemingly opposing behavioral control deficits depending on ADHD subtype. Dev Sci 2020; 23:e12956. [PMID: 32107844 DOI: 10.1111/desc.12956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/30/2019] [Accepted: 02/19/2020] [Indexed: 11/29/2022]
Abstract
ADHD is one of the most prevalent neuropsychiatric disorders of childhood, but symptoms vary considerably between individuals. Therefore, different ADHD subtypes can be distinguished. Yet, it is widely elusive whether the specific subtype is critical to consider when examining treatment effects. Based on theoretical considerations, this could be the case for EEG theta/beta neurofeedback. We examine the effects of such an intervention on rapid response execution and inhibition processes using a Go/Nogo task in the inattentive (ADD) and the combined (ADHD-C) subtype. We show that a single neurofeedback protocol affects opposing deficits depending on the ADHD subtype - namely the execution (in ADD) and inhibition of action (in ADHD-C). No changes occurred in the healthy controls. These findings are discussed in relation to overarching principles of neural oscillations, particularly in the beta frequency band. The data suggest that theta/beta neurofeedback trains a superordinate system strongly related to the function of neural beta frequency oscillations to tune neural networks important for the sampling of sensory information used for behavioral control.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Marie L Schreiter
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| |
Collapse
|
20
|
Adelhöfer N, Beste C. EEG Signal Decomposition Evidence for a Role of Perceptual Processes during Conflict-related Behavioral Adjustments in Middle Frontal Regions. J Cogn Neurosci 2020; 32:1381-1393. [PMID: 32163322 DOI: 10.1162/jocn_a_01558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conflict monitoring processes are central to cope with fluctuating environmental demands. However, the efficacy of these processes depends on previous trial history/experience, which is reflected in the "congruency sequence effect" (CSE). Several theoretical accounts have been put forward to explain this effect. Some accounts stress the role of perceptual processes in the emergence of the CSE. As yet, it is elusive how these perceptual processes are implemented on a neural level. We examined this question using a newly developed moving dots flanker task. We combine decomposition methods of EEG data and source localization. We show that perceptual processes modulate the CSE and can be isolated in neurophysiological signals, especially in the N2 ERP time window. However, mechanisms relating perception to action are also coded and modulated in this time window. We show that middle frontal regions (BA 6) are associated with processes dealing with purely perceptual processes. Inferior frontal regions (BA 45) are associated with processes dealing with stimulus-response transition processes. Likely, the neurophysiological modulations reflect unbinding processes at the perceptual level, and stimulus-response translation level needed to respond correctly on the presented (changed) stimulus-response relationships. The data establish a direct relationship between psychological concepts focusing on perceptual processes during conflict monitoring and neurophysiological processes using signal decomposition.
Collapse
|
21
|
Low and high stimulation frequencies differentially affect automated response selection in the superior parietal cortex - implications for somatosensory area processes. Sci Rep 2020; 10:3954. [PMID: 32127632 PMCID: PMC7054528 DOI: 10.1038/s41598-020-61025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023] Open
Abstract
Response inhibition as a central facet of executive functioning is no homogeneous construct. Interference inhibition constitutes a subcomponent of response inhibition and refers to inhibitory control over responses that are automatically triggered by irrelevant stimulus dimensions as measured by the Simon task. While there is evidence that the area-specific modulation of tactile information affects the act of action withholding, effects in the context of interference inhibition remain elusive. We conducted a tactile version of the Simon task with stimuli designed to be predominantly processed in the primary (40 Hz) or secondary (150 Hz) somatosensory cortex. On the basis of EEG recordings, we performed signal decomposition and source localization. Behavioral results reveal that response execution is more efficient when sensory information is mainly processed via SII, compared to SI sensory areas during non-conflicting trials. When accounting for intermingled coding levels by temporally decomposing EEG data, the results show that experimental variations depending on sensory area-specific processing differences specifically affect motor and not sensory processes. Modulations of motor-related processes are linked to activation differences in the superior parietal cortex (BA7). It is concluded that the SII cortical area supporting cognitive preprocessing of tactile input fosters automatic tactile information processing by facilitating stimulus-response mapping in posterior parietal regions.
Collapse
|
22
|
Intact Stimulus-Response Conflict Processing in ADHD-Multilevel Evidence and Theoretical Implications. J Clin Med 2020; 9:jcm9010234. [PMID: 31952353 PMCID: PMC7019707 DOI: 10.3390/jcm9010234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023] Open
Abstract
Attention-deficit-hyperactivity disorder (ADHD) is closely associated with deficits in cognitive control. It seems, however, that the degree of deficits strongly depends on the examined subprocess, with the resolution of stimulus–stimulus conflicts being particularly difficult for patients with ADHD. The picture is far less clear regarding stimulus–response conflicts. The current study provides multi-level behavioural and neurophysiological data on this type of conflict monitoring in children with ADHD compared to healthy controls. To account for the potentially strong effects of intra-individual variability, electroencephalogram (EEG) signal decomposition methods were used to analyze the data. Crucially, none of the analyses (behavioural, event-related potentials, or decomposed EEG data) show any differences between the ADHD group and the control group. Bayes statistical analysis confirmed the high likelihood of the null hypothesis being true in all cases. Thus, the data provide multi-level evidence showing that conflict monitoring processes are indeed partly intact in ADHD, even when eliminating possible biasing factors such as intra-individual variability. While stimulus–stimulus conflict processing has been shown to be consistently dysfunctional in ADHD, the resolution of stimulus–response conflicts is not deficient in this patient group. In comparison to other studies, the results provide novel theoretical insights into the nature of conflict control deficits in childhood ADHD.
Collapse
|
23
|
Friedrich J, Beste C. Passive perceptual learning modulates motor inhibitory control in superior frontal regions. Hum Brain Mapp 2019; 41:726-738. [PMID: 31652018 PMCID: PMC7267975 DOI: 10.1002/hbm.24835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023] Open
Abstract
Response inhibition is of vital importance in the context of controlling inappropriate responses. The role of perceptual processes during inhibitory control has attracted increased interest. Yet, we are far from an understanding of the mechanisms. One candidate mechanism by which perceptual processes may affect response inhibition refers to “gain control” that is closely linked to the signal‐to‐noise ratio of incoming information. A means to modulate the signal‐to‐noise ratio and gain control mechanisms is perceptual learning. In the current study, we examine the impact of perceptual learning (i.e., passive repetitive sensory stimulation) on response inhibition combining EEG signal decomposition with source localization analyses. A tactile GO/NOGO paradigm was conducted to measure action restraint as one subcomponent of response inhibition. We show that passive perceptual learning modulates response inhibition processes. In particular, perceptual learning attenuates the detrimental effect of response automation during inhibitory control. Temporally decomposed EEG data show that stimulus‐related and not response selection processes during conflict monitoring are linked to these effects. The superior and middle frontal gyrus (BA6), as well as the motor cortex (BA4), are associated with the effects of perceptual learning on response inhibition. Reliable neurophysiological effects were not evident on the basis of standard ERPs, which has important methodological implications for perceptual learning research. The results detail how lower level sensory plasticity protocols affect higher‐order cognitive control functions in frontal cortical structures.
Collapse
Affiliation(s)
- Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
Adelhöfer N, Gohil K, Passow S, Beste C, Li SC. Lateral prefrontal anodal transcranial direct current stimulation augments resolution of auditory perceptual-attentional conflicts. Neuroimage 2019; 199:217-227. [DOI: 10.1016/j.neuroimage.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/24/2023] Open
|
25
|
Petruo V, Bodmer B, Brandt VC, Baumung L, Roessner V, Münchau A, Beste C. Altered perception-action binding modulates inhibitory control in Gilles de la Tourette syndrome. J Child Psychol Psychiatry 2019; 60:953-962. [PMID: 29924402 DOI: 10.1111/jcpp.12938] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gilles de la Tourette Syndrome (GTS) is a multifaceted neuropsychiatric developmental disorder with onset in childhood or adolescence and frequent remissions in early adulthood. A rather new emerging concept of this syndrome suggests that it is a disorder of purposeful actions, in which sensory processes and their relation to motor responses (actions) play a particularly important role. Thus, this syndrome might be conceived as a condition of altered 'perception-action binding'. In the current study, we test this novel concept in the context of inhibitory control. METHODS We examined N = 35 adolescent GTS patients and N = 39 healthy controls in a Go/Nogo-task manipulating the complexity of sensory information triggering identical actions; i.e. to inhibit a motor response. This was combined with event-related potential recordings, EEG data decomposition and source localization. RESULTS GTS patients showed worse performance compared to controls and larger performance differences when inhibitory control had to be exerted using unimodal visual compared to bimodal auditory-visual stimuli. This suggests increased binding between bimodal stimuli and responses leading to increased costs of switching between responses instructed by bimodal and those instructed by unimodal stimuli. The neurophysiological data showed that this was related to mechanisms mediating between stimulus evaluation and response selection; i.e. perception-action binding processes in the right inferior parietal cortex (BA40). CONCLUSIONS Stimulus-action inhibition binding is stronger in GTS patients than healthy controls and affects inhibitory control corroborating the concept suggesting that GTS might be a condition of altered perception-action integration (binding); i.e. a disorder of purposeful actions.
Collapse
Affiliation(s)
- Vanessa Petruo
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Valerie C Brandt
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Leoni Baumung
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Adelhöfer N, Chmielewski WX, Beste C. How perceptual ambiguity affects response inhibition processes. J Neurophysiol 2019; 122:500-511. [PMID: 31166823 DOI: 10.1152/jn.00298.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to inhibit responses is a central requirement for goal-directed behavior but has been dominated by a top-down or cognitive control view. Only recently, the role of bottom-up perceptual factors were focused in research. However, studies usually use clearly distinguishable stimulus categories to trigger response execution or inhibition. In the current study, we present a novel Gabor patch Go/No-go task to induce perceptual ambiguity during response inhibition. To examine the neurophysiological processes in detail, we use EEG recordings and combined temporal EEG signal decomposition methods with source localization analyses. We show that perceptual similarity between Go and No-go trials compromises response inhibition performance. Interestingly, the EEG data show that this is due to a modulation of stimulus-response transition or decision processes, and not purely stimulus-related processes. This was possible by applying a temporal EEG decomposition method. We provide evidence that a prefrontal P2 (pP2) likely reflects decision processes on action execution using stimulus information. These processes were associated with superior and middle prefrontal regions (BA8). When these processes fail, occasions to execute a response become misinterpreted as occasions to inhibit a response. Successful and unsuccessful decisions to inhibit a response under high perceptual ambiguity seem to further depend on how well "what-decisions," supported by neural mechanisms in BA19, can be processed. However, these what-decisions seem to be closely linked to the specification of the required action. Stimulus processing is closely linked to response programming so that response control is already informed when uncertainty with regard to stimulus identity is detected.NEW & NOTEWORTHY This study introduces a novel Go/No-go paradigm and shows what neurophysiological subprocesses and functional neuroanatomical are involved during inhibitory control when ambiguous stimulus input is provided. The results show that bottom-up perceptual processes are important to consider during top-down controlled response inhibition. Stimulus processing is closely linked to response programming so that response control is already informed when uncertainty with regard to stimulus identity is detected.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Witold X Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
27
|
Wolff N, Chmielewski W, Buse J, Roessner V, Beste C. Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes. NEUROIMAGE-CLINICAL 2019; 23:101893. [PMID: 31220759 PMCID: PMC6584599 DOI: 10.1016/j.nicl.2019.101893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
Response inhibition deficits have often been described in obsessive compulsive disorder (OCD). Yet, research on response inhibition in OCD focusses on “top-down” controlled mechanisms, and it has been neglected that response inhibition performance depends on the interplay of controlled and automatic processes during response selection. Based on pathophysiological considerations we test the counterintuitive hypothesis that OCD patients show superior inhibitory control when automatic mechanisms govern processes involved in response inhibition. We examined a group of adolescent OCD patients (n = 27) and healthy controls (n = 27) using a combined Simon-Go/NoGo task. This task is able to examine conjoint effects of automatic and controlled processes during response inhibition. EEG and source localization analyses were applied to examine the underlying neural mechanisms. OCD patients committed fewer false alarms than healthy controls (HC) in the congruent Simon-NoGo condition, which is dominated by automatic response selection mechanisms. On a neurophysiological (EEG) level, these effects were reflected by intensified correlates of ‘braking’ processes associated with modulation of right inferior prefrontal regions. There is no general response inhibition deficit in adolescent OCD. When considering conjoint effects of automatic and controlled processes during the inhibition of responses paradoxical response inhibition advantages can emerge in OCD. This is likely a result of otherwise pathological fronto-striatal hyperactivity and loss of a situation-specific modulation of response selection mechanisms in OCD. Effects of automatic/controlled processes on response inhibition (RI) are studied. OCD patients show better performance in automatic vs. controlled RI. Underlying neurophysiological (EEG) processes are delineated. Activation differences in the rIFG are associated with this effect. Effects are discussed in neurobiological frameworks of OCD.
Collapse
Affiliation(s)
- Nicole Wolff
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| | - Witold Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Judith Buse
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| |
Collapse
|
28
|
Wass SV, Daubney K, Golan J, Logan F, Kushnerenko E. Elevated physiological arousal is associated with larger but more variable neural responses to small acoustic change in children during a passive auditory attention task. Dev Cogn Neurosci 2019; 37:100612. [PMID: 30595398 PMCID: PMC6969298 DOI: 10.1016/j.dcn.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Little is known of how autonomic arousal relates to neural responsiveness during auditory attention. We presented N = 21 5-7-year-old children with an oddball auditory mismatch paradigm, whilst concurrently measuring heart rate fluctuations. Children with higher mean autonomic arousal, as indexed by higher heart rate (HR) and decreased high-frequency (0.15-0.8 Hz) variability in HR, showed smaller amplitude N250 responses to frequently presented (70%), 500 Hz standard tones. Follow-up analyses showed that the modal evoked response was in fact similar, but accompanied by more large and small amplitude responses and greater variability in peak latency in the high HR group, causing lower averaged responses. Similar patterns were also observed when examining heart rate fluctuations within a testing session, in an analysis that controlled for between-participant differences in mean HR. In addition, we observed larger P150/P3a amplitudes in response to small acoustic contrasts (750 Hz tones) in the high HR group. Responses to large acoustic contrasts (bursts of white noise), however, evoked strong early P3a phase in all children and did not differ by high/low HR. Our findings suggest that elevated physiological arousal may be associated with high variability in auditory ERP responses in young children, along with increased responsiveness to small acoustic changes.
Collapse
Affiliation(s)
- S V Wass
- University of East London, Water Lane, London, E15 4LZ, UK.
| | - K Daubney
- University of East London, Water Lane, London, E15 4LZ, UK
| | - J Golan
- University of East London, Water Lane, London, E15 4LZ, UK
| | - F Logan
- University of East London, Water Lane, London, E15 4LZ, UK
| | - E Kushnerenko
- University of East London, Water Lane, London, E15 4LZ, UK.
| |
Collapse
|
29
|
Friedrich J, Beste C. The impact of stimulus modality on the processing of conflicting sensory information during response inhibition. Neuroscience 2019; 410:191-201. [PMID: 31100340 DOI: 10.1016/j.neuroscience.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Response inhibition is a central aspect of cognitive control. Usually, response inhibition is examined using information from a single sensory modality. Yet, evidence suggests that conflicts between information from different modalities affect response inhibition. It is, however, crucial to consider that there are modality differences in the efficiency to trigger response inhibition that may also modulate the impact of conflicts between different sensory modalities. In the current study, we compared an auditory-tactile to an auditory-visual Go/NO-GO task. We recorded EEG data and performed signal decomposition and source localization. On the behavioral level, we show stronger interference effects in the visual than the tactile modality. Despite sensory processes were experimentally varied, temporally decomposed EEG data show that response selection mechanisms are associated with these effects and not the sensory processing stage. These modulations of response selection processes occur in the temporo-parietal junction (TPJ, BA40) and inferior frontal structures (IFG, BA47). The smaller activity in the TPJ during auditory-tactile, compared to auditory-visual conflicts suggests that task representations are less affected by interfering auditory information when the tactile modality informs response inhibition processes. This also explains why less intense braking processes (reflected by IFG activity) are still able to maintain a reasonable response inhibition performance level. It can be concluded that the tactile and visual domains do not only differ in regard to their efficiency to trigger response inhibition processes but also in their susceptibility to interference while informing inhibitory control. Clinical implications are discussed.
Collapse
Affiliation(s)
- Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden
| |
Collapse
|
30
|
Validity expectancies shape the interplay of cueing and task demands during inhibitory control associated with right inferior frontal regions. Brain Struct Funct 2019; 224:1911-1924. [DOI: 10.1007/s00429-019-01884-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
31
|
Pertermann M, Bluschke A, Roessner V, Beste C. The Modulation of Neural Noise Underlies the Effectiveness of Methylphenidate Treatment in Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:743-750. [PMID: 31103546 DOI: 10.1016/j.bpsc.2019.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Various lines of research suggest that the stability of neural processes is low in attention-deficit/hyperactivity disorder (ADHD). Considering overarching neural principles, this lack of stability relates to increased levels of neural noise. However, no study has directly examined neural noise in ADHD. Likewise, it is unknown whether the modulation of neural noise reflects a mechanistic link as to why methylphenidate (MPH) is effective in treating impulsivity in ADHD. METHODS We compared neural noise between 29 juvenile patients with ADHD and 32 healthy control subjects and examined the effects of MPH. We examined 1/f neural noise of electroencephalogram data collected while participants performed a response inhibition (Go/NoGo) task. RESULTS Specific during NoGo trials, children with ADHD showed more neural noise than healthy control subjects. This was especially the case with regard to the theta frequency band, which is very closely related to cognitive control. MPH treatment reduced neural noise in ADHD to the level of healthy control subjects. Correlational analyses showed a direct relationship between decreases in neural noise and increases in behavioral performance. Mechanistically, this can be explained by the MPH-induced increase in dopaminergic neurotransmission that enhances the signal-to-noise ratio in neural networks and thus reduces neural noise. CONCLUSIONS This study is the first to demonstrate increased (pink) neural noise in patients with ADHD and its reduction through MPH treatment. The study reveals an important mechanistic link as to why MPH is effective in treating impulsivity in ADHD.
Collapse
Affiliation(s)
- Maik Pertermann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
32
|
Chmielewski W, Bluschke A, Bodmer B, Wolff N, Roessner V, Beste C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev Cogn Neurosci 2019; 36:100623. [PMID: 30738306 PMCID: PMC6969218 DOI: 10.1016/j.dcn.2019.100623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibitory control deficits are a hallmark in ADHD. Yet, inhibitory control includes a multitude of entities (e.g. ‘inhibition of interferences’ and ‘action inhibition’). Examining the interplay between these kinds of inhibitory control provides insights into the architecture of inhibitory control in ADHD. Combining a Simon task and a Go/Nogo task, we assessed the interplay of ‘inhibition of interferences’ and ‘action inhibition’. This was combined with EEG recordings, EEG data decomposition and source localization. Simon interference effects in Go trials were larger in ADHD. At the neurophysiological level, this insufficient inhibition of interferences in ADHD related to the superior parietal cortex. Simon interference effects were absent in action inhibition (Nogo) trials in ADHD, compared to controls. This was supported by bayesian statistics. The power of effects was higher than 95%. The differential effects between the groups were associated with modulations of neurophysiological response selection processes in the superior frontal gyrus. ADHD is not only associated with deficits in inhibitory control. Rather, the organization and architecture of the inhibitory control system is different in ADHD. Distinguishable inhibitory control processes operate on a hierarchical ‘first come, first serve’ basis and are not integrated in ADHD. This is a new facet of ADHD.
Collapse
Affiliation(s)
- Witold Chmielewski
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
33
|
Bluschke A, Friedrich J, Schreiter ML, Roessner V, Beste C. A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. NEUROIMAGE-CLINICAL 2018; 20:1191-1203. [PMID: 30390574 PMCID: PMC6214870 DOI: 10.1016/j.nicl.2018.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
In Attention Deficit Hyperactivity Disorder (AD(H)D), treatments using methylphenidate (MPH) and behavioral interventions like neurofeedback (NF) reflect major therapeutic options. These treatments also ameliorate executive dysfunctions in AD(H)D. However, the mechanisms underlying effects of MPH and NF on executive functions in AD(H)D (e.g. the ability to inhibit prepotent responses) are far from understood. It is particularly unclear whether these interventions affect similar or dissociable neural mechanisms and associated functional neuroanatomical structures. This, however, is important when aiming to further improve these treatments. We compared the neurophysiological mechanisms of MPH and theta/beta NF treatments on inhibitory control on the basis of EEG recordings and source localization analyses. The data show that MPH and theta/beta NF both increase the ability to inhibit pre-potent responses to a similar extent. However, the data suggest that MPH and NF target different neurophysiological mechanisms, especially when it comes to functional neuroanatomical structures associated with these effects. Both treatments seem to affect neurophysiological correlates of a ‘braking function’ in medial frontal areas. However, in case of the NF intervention, inferior parietal areas are also involved. This likely reflects the updating and stabilisation of efficient internal representations in order to initiate appropriate actions. No effects were seen in correlates of perceptual and attentional selection processes. Notably, reliable effects were only obtained after accounting for intra-individual variability in the neurophysiological data, which may also explain the diversity of findings in studies on treatment effects in AD(H)D, especially concerning neurofeedback. Neurophysiological mechanisms of methylphenidate (MPH) and neurofeedback (NF) in ADHD are compared. Both treatments improve inhibition, but have different underlying neurophysiological mechanisms. Both treatments affect the neurophysiological correlates of a ‘breaking function’ in medial frontal areas. NF also affects inferior parietal areas and likely the updating of internal representations. Distinctive effects are only seen when accounting for intra-individual variability.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Marie Luise Schreiter
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
34
|
Adelhöfer N, Gohil K, Passow S, Teufert B, Roessner V, Li SC, Beste C. The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing. Hum Brain Mapp 2018; 39:5050-5061. [PMID: 30133058 DOI: 10.1002/hbm.24344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
The ability to selectively perceive and flexibly attend to relevant sensory signals in the environment is essential for action control. Whereas neuromodulation of sensory or attentional processing is often investigated, neuromodulation of interactive effects between perception and attention, that is, high attentional control demand when the relevant sensory information is perceptually less salient than the irrelevant one, is not well understood. To fill this gap, this pharmacological-electroencephalogram (EEG) study applied an intensity-modulated, focused-attention dichotic listening paradigm together with temporal EEG signal decomposition and source localization analyses. We used a double-blind MPH/placebo crossover design to delineate the effects of methylphenidate (MPH)-a dopamine/norepinephrine transporter blocker-on the resolution of perceptual-attentional conflicts, when perceptual saliency and attentional focus favor opposing ears, in healthy young adults. We show that MPH increased behavioral performance specifically in the condition with the most pronounced conflict between perceptual saliency and attentional focus. On the neurophysiological level, MPH effects in line with the behavioral data were observed after accounting for intraindividual variability in the signal. More specifically, MPH did not show an effect on stimulus-related processes but modulated the onset latency of processes between stimulus evaluation and responding. These modulations were further shown to be associated with activation differences in the temporoparietal junction (BA40) and the superior parietal cortex (BA7) and may reflect neuronal gain modulation principles. The findings provide mechanistic insights into the role of modulated dopamine/norepinephrine transmitter systems for the interactions between perception and attention.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Krutika Gohil
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Susanne Passow
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| |
Collapse
|
35
|
Petruo VA, Mückschel M, Beste C. On the role of the prefrontal cortex in fatigue effects on cognitive flexibility - a system neurophysiological approach. Sci Rep 2018; 8:6395. [PMID: 29686384 PMCID: PMC5913330 DOI: 10.1038/s41598-018-24834-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Demanding tasks like cognitive flexibility show time-related deterioration of performance (i.e. fatigability effects). Fatigability has been associated with structural and functional properties of the prefrontal cortex. However, the electrophysiological underpinnings of these processes are not well understood. We examined n = 34 healthy participants with a task switching paradigm in which switches were either signaled by cues or needed to be maintained by working memory processes. We analyzed event-related potentials (ERPs) and performed residue iteration decomposition (RIDE) to account for effects of fatigue on intra-individual variability of neurophysiological data. This was combined with source localization methods. We show that task switching is affected by time on task (TOT) effects mostly when working memory processes are needed. On a neurophysiological level, this effect could not be observed in standard ERPs, but only after accounting for intra-individual variability using RIDE. The RIDE data suggests that during task switching, fatigability specifically affects response recoding processes that are associated with functions of the middle frontal gyrus (MFG; BA10). The results underline propositions of the ‘opportunity cost model’, which states that fatigability effects of executive functions depend on the degree to which tasks engage similar prefrontal regions - in this case working memory and task switching mechanisms.
Collapse
Affiliation(s)
- Vanessa A Petruo
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.
| |
Collapse
|
36
|
Bluschke A, Gohil K, Petzold M, Roessner V, Beste C. Neural mechanisms underlying successful and deficient multi-component behavior in early adolescent ADHD. NEUROIMAGE-CLINICAL 2018; 18:533-542. [PMID: 29560310 PMCID: PMC5857919 DOI: 10.1016/j.nicl.2018.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 01/15/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a disorder affecting cognitive control. These functions are important to achieve goals when different actions need to be executed in close succession. This type of multi-component behavior, which often further requires the processing of information from different modalities, is important for everyday activities. Yet, possible changes in neurophysiological mechanisms have not been investigated in adolescent ADHD. We examined N = 31 adolescent ADHD patients and N = 35 healthy controls (HC) in two Stop-Change experiments using either uni-modal or bi-modal stimuli to trigger stop and change processes. These stimuli were either presented together (SCD0) or in close succession of 300 milliseconds (SCD300). Using event-related potentials (ERP), EEG data decomposition and source localization we analyzed neural processes and functional neuroanatomical correlates of multicomponent behavior. Compared to HCs, ADHD patients had longer reaction times and higher error rates when Stop and Change stimuli were presented in close succession (SCD300), but not when presented together (SCD0). This effect was evident in the uni-modal and bi-modal experiment and is reflected by neurophysiological processes reflecting response selection mechanisms in the inferior parietal cortex (BA40). These processes were only detectable after accounting for intra-individual variability in neurophysiological data; i.e. there were no effects in standard ERPs. Multi-component behavior is not always deficient in ADHD. Rather, modulations in multi-component behavior depend on a critical temporal integration window during response selection which is associated with functioning of the inferior parietal cortex. This window is smaller than in HCs and independent of the complexity of sensory input. Multi-component behavior in ADHD is examined in a neurophysiological approach. Multi-component behavior is not per se deficient in ADHD. Deficits depend on a critical temporal integration window in ADHD. Mechanisms in the inferior parietal cortex relate to these modulations.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Krutika Gohil
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Maxi Petzold
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
37
|
Bluschke A, Schuster J, Roessner V, Beste C. Neurophysiological mechanisms of interval timing dissociate inattentive and combined ADHD subtypes. Sci Rep 2018; 8:2033. [PMID: 29391481 PMCID: PMC5794858 DOI: 10.1038/s41598-018-20484-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/19/2018] [Indexed: 01/26/2023] Open
Abstract
It is far from conclusive what distinguishes the inattentive (ADD) and the combined (ADHD-C) subtype of ADHD on the neuronal level. Theoretical considerations suggest that especially interval timing processes may dissociate these subtypes from each other. Combining high-density EEG recordings with source localization analyses, we examine whether there are ADHD-subtype specific modulations of neurophysiological processes subserving interval timing in matched groups of ADD (n = 16), ADHD-C (n = 16) and controls (n = 16). Patients with ADD and ADHD-C show deficits in interval timing, which was correlated with the degree of inattention in ADD patients. Compared to healthy controls, patients with ADHD-C display a somewhat weaker, yet consistent response preparation process (contingent negative variation, CNV). In patients with ADD, the early CNV is interrupted, indicating an oscillatory disruption of the interval timing process. This is associated with activations in the supplemental motor areas and the middle frontal gyrus. Patients with ADD display adequate feedback learning mechanisms (feedback-related negativity, FRN), which is not the case in patients with ADHD-C. The results suggest that altered pacemaker-accumulation processes in medial frontal structures distinguish the ADD from the ADHD-C subtype. Particularly in patients with ADD phasic interruptions of preparatory neurophysiological processes are evident, making this a possible diagnostic feature.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.
| | - Jacqueline Schuster
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
38
|
Chmielewski WX, Mückschel M, Beste C. Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition. Hum Brain Mapp 2018; 39:1839-1849. [PMID: 29334155 DOI: 10.1002/hbm.23974] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
The inhibition of prepotent responses is a requirement for goal-directed behavior and several factors determine corresponding successful response inhibition processes. One factor relates to the degree of automaticity of pre-potent response tendencies and another factor relates to the degree of cognitive control that is exerted during response inhibition. However, both factors can conjointly modulate inhibitory control. Cognitive theoretical concepts suggest that codings of stimulus-response translations may underlie such conjoint effects. Yet, it is unclear in how far such specific codes, as assumed in cognitive psychological concepts, are evident in neurophysiological processes and whether there are specific functional neuroanatomical structures associated with the processing of such codes. Applying a temporal decomposition method of EEG data in combination with source localization methods we show that there are different, intermingled codes (i.e., "stimulus codes" and "response selection codes") at the neurophysiological level during conjoint effects of "automatic" and "controlled" processes in response inhibition. Importantly, only "response selection codes" predict behavioral performance, and are subject to conjoint modulations by "automatic" and "controlled" processes. These modulations are associated with inferior and superior parietal areas (BA40/BA7), possibly reflecting an updating of internal representations when information is complex and probably difficult to categorize, but essential for behavioral control. Codes proposed by cognitive, psychological concepts seem to have a neurophysiological analogue that fits into current views on functions of inferior and superior parietal regions.
Collapse
Affiliation(s)
- Witold X Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,MS Centre Dresden, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|