1
|
Akdeniz G. Delta and Theta Band Power Alterations During Face and Face Pareidolia Perception in Children with Autism Spectrum Disorder: An Electroencephalographic Analysis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:754. [PMID: 40283045 PMCID: PMC12028621 DOI: 10.3390/medicina61040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Autism Spectrum Disorder (ASD) is characterized by a range of deficits across cognitive, sensory, motor, emotional, language, and social domains, which can significantly hinder daily functioning and social interactions. This study explores the differences in brain activity between children with ASD and typically developing peers, focusing on their responses to face and face pareidolia stimuli. Materials and Methods: A group comprising ten typically developing children (four males, six females), aged between 6 and 16 years, alongside eleven children diagnosed with ASD (three males, eight females), whose ages ranged from 6 to 15 years, were engaged in the pilot study. We recorded brain electrical activity using electroencephalography (EEG) while participants viewed images of face and face pareidolia images. Following face and pareidolia stimulus presentation, delta and theta powers in the 0.5-4 Hz and 4-6 Hz frequency ranges and within the 140-190 ms time window were analyzed for both typically developing children and children with ASD. Results: The research result reveals that children with ASD show lower amplitude and delayed latency in their EEG responses, particularly in the theta and delta frequency bands, when processing images that evoke face pareidolia. Conclusions: The findings suggest that while children with ASD face challenges in recognizing faces, they may still possess some perceptual abilities that could be harnessed for therapeutic interventions. Moreover, this research highlights the potential of the face pareidolia paradigm to provide insights that could inform future strategies aimed at enhancing social attention and interaction skills in children with ASD. Despite the limitations of the current sample size, this study provides a valuable foundation for future investigations. Expanding the participant pool will be crucial for confirming and generalizing these findings.
Collapse
Affiliation(s)
- Gülsüm Akdeniz
- Department of Biophysics, Faculty of Medicine, Ankara Yıldırım Beyazit University, Ankara 06800, Türkiye;
- Department of Neuroscience, Institute of Health Science, Ankara Yıldırım Beyazit University, Ankara 06800, Türkiye
| |
Collapse
|
2
|
Olivares EI, Bosch-Bayard JF, Urraca AS, Jiménez-Bascuñán A, Biscay RJ, Iglesias J. Brain connectivity for constructing new face representations in typical adults versus a prosopagnosic patient. Neuroimage 2025; 307:121039. [PMID: 39842702 DOI: 10.1016/j.neuroimage.2025.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Will our brains get to know a new face better if we look at its external features first? Here we offer neurophysiological evidence of the relevance of external versus internal facial features for constructing new face representations, by contrasting successful face processing with a prototypical case of face agnosia. A woman with acquired prosopagnosia (E.C.) and 14 age-matched typical participants (7 women) were exposed to a face-feature matching task. External (E), internal (I) features, and whole target faces of unknown individuals (from an IdentiKit gallery) were displayed according to two different sequences: E →I→whole faces, or I→E→whole faces. Then, we studied the induced EEG activity using 'isolated effective coherence' to analyse the intracortical causal information flow among face-sensitive nodes. Initial presentation of external features (E before I), when compared to internal ones, triggered connections encompassing extensively the right-hemisphere face processing pathway [from posterior visual cortices for initial structural analysis, towards both intermediate (occipitotemporal) and high-level (prefrontal) relay stations], in which face-identity is thought to emerge progressively. Also, whereas exposure to internal features as second stimulus seemed to demand some sort of basic visual processing, external features triggered again more widespread and integrative connections. Connections for whole faces closing the E-I sequence resembled those for external features initiating the same sequence. Meanwhile, the predominant connections for whole faces completing the I-E sequence were more restricted to specific brain areas, with relevant prefrontal activity and a few connected nodes in right posterior regions, suggesting high attentional load plus initial and intermediate processing of face identity. Interestingly, the pattern of connections that distinguished typical participants from E.C. in the I-E sequence was the recruitment of left posterior visual regions, presumably underlying analytical subroutines for structural encoding of facial stimuli. These findings support that initial exposure to external features, followed by internal ones, provides the best visual cue to acquire new face configurations. Nevertheless, in case of face agnosia after right posterior damage, relying preferentially on internal features and left hemisphere specialized subroutines might be an alternative for cognitive training.
Collapse
Affiliation(s)
- Ela I Olivares
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain.
| | - Jorge F Bosch-Bayard
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| | - Ana S Urraca
- Centro Universitario Cardenal Cisneros, Alcalá de Henares, Madrid 28006, Spain
| | - Alba Jiménez-Bascuñán
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| | - Rolando J Biscay
- Centro de Investigación en Matemáticas, Guanajuato 36023, Mexico
| | - Jaime Iglesias
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| |
Collapse
|
3
|
Kisker J, Johnsdorf M, Sagehorn M, Hofmann T, Gruber T, Schöne B. Visual information processing of 2D, virtual 3D and real-world objects marked by theta band responses: Visuospatial processing and cognitive load as a function of modality. Eur J Neurosci 2025; 61:e16634. [PMID: 39648815 DOI: 10.1111/ejn.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
While pictures share global similarities with the real-world objects they depict, the latter have unique characteristics going beyond 2D representations. Due to its three-dimensional presentation mode, Virtual Reality (VR) is increasingly used to further approach real-world visual processing, yet it remains unresolved to what extent VR yields process comparable to real-world processes. Consequently, our study examined visuospatial processing by a triangular comparison of 2D objects, virtual 3D objects and real 3D objects. The theta band response (TBR) was analysed as an electrophysiological correlate of visual processing, allowing for the differentiation of predominantly stimulus-driven processes mirrored in the evoked response and internal, complex processing reflected in the induced response. Our results indicate that the differences between conditions driven by sensory features go beyond a binary division into 2D and 3D materials but are based on further sensory features: The evoked posterior TBR differentiated between all conditions but revealed fewer differences between processing of real-world and VR objects. Moreover, the induced midfrontal TBR indicated higher cognitive load for 2D objects compared to VR and real-world objects, while no difference between both latter conditions was revealed. In conclusion, our results demonstrate that the transferability of 2D- and VR-based findings to real-world processes depends to some degree on whether predominantly sensory stimulus features or higher cognitive processes are examined. Yet although VR and real-world processes are not to be equated based on our results, their comparison yielded fewer significant differences relative to the PC condition, advising the use of VR to examine visuospatial processing.
Collapse
Affiliation(s)
- Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Thomas Hofmann
- Industrial Design, Engineering and Computer Science, University of Applied Sciences Osnabrück, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Doval S, Nebreda A, Bruña R. Functional connectivity across the lifespan: a cross-sectional analysis of changes. Cereb Cortex 2024; 34:bhae396. [PMID: 39367726 DOI: 10.1093/cercor/bhae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
In the era of functional brain networks, our understanding of how they evolve across life in a healthy population remains limited. Here, we investigate functional connectivity across the human lifespan using magnetoencephalography in a cohort of 792 healthy individuals, categorized into young (13 to 30 yr), middle (31 to 54 yr), and late adulthood (55 to 80 yr). Employing corrected imaginary phase-locking value, we map the evolving landscapes of connectivity within delta, theta, alpha, beta, and gamma classical frequency bands among brain areas. Our findings reveal significant shifts in functional connectivity patterns across all frequency bands, with certain networks exhibiting increased connectivity and others decreased, dependent on the frequency band and specific age groups, showcasing the dynamic reorganization of neural networks as age increases. This detailed exploration provides, to our knowledge, the first all-encompassing view of how electrophysiological functional connectivity evolves at different life stages, offering new insights into the brain's adaptability and the intricate interplay of cognitive aging and network connectivity. This work not only contributes to the body of knowledge on cognitive aging and neurological health but also emphasizes the need for further research to develop targeted interventions for maintaining cognitive function in the aging population.
Collapse
Affiliation(s)
- Sandra Doval
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, s/n, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, C/ Ministro Ibañez, 4, 28015 Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
5
|
Bossi F, Ricciardelli P, Rivolta D. Stimulus Inversion and Emotional Expressions Independently Affect Face and Body Perception: An ERP Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2914-2927. [PMID: 39102324 DOI: 10.1109/tnsre.2024.3439129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Faces and bodies provide critical cues for social interaction and communication. Their structural encoding depends on configural processing, as suggested by the detrimental effect of stimulus inversion for both faces (i.e., face inversion effect - FIE) and bodies (body inversion effect - BIE). An occipito-temporal negative event-related potential (ERP) component peaking around 170 ms after stimulus onset (N170) is consistently elicited by human faces and bodies and is affected by the inversion of these stimuli. Albeit it is known that emotional expressions can boost structural encoding (resulting in larger N170 components for emotional than for neutral faces), little is known about body emotional expressions. Thus, the current study investigated the effects of different emotional expressions on structural encoding in combination with FIE and BIE. Three ERP components (P1, N170, P2) were recorded using a 128-channel electroencephalogram (EEG) when participants were presented with (upright and inverted) faces and bodies conveying four possible emotions (happiness, sadness, anger, fear) or no emotion (neutral). Results demonstrated that inversion and emotional expressions independently affected the Accuracy and amplitude of all ERP components (P1, N170, P2). In particular, faces showed specific effects of emotional expressions during the structural encoding stage (N170), while P2 amplitude (representing top-down conceptualisation) was modified by emotional body perception. Moreover, the task performed by participants (i.e., implicit vs. explicit processing of emotional information) differently influenced Accuracy and ERP components. These results support integrated theories of visual perception, thus speaking in favour of the functional independence of the two neurocognitive pathways (one for structural encoding and one for emotional expression analysis) involved in social stimuli processing. Results are discussed highlighting the neurocognitive and computational advantages of the independence between the two pathways.
Collapse
|
6
|
Manippa V, Filardi M, Vilella D, Logroscino G, Rivolta D. Gamma (60 Hz) auditory stimulation improves intrusions but not recall and working memory in healthy adults. Behav Brain Res 2024; 456:114703. [PMID: 37806563 DOI: 10.1016/j.bbr.2023.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Gamma-band (> 30 Hz) brain oscillations (γ) play a crucial role in memory and long-term potentiation, and their disruptions have been consistently documented in patients with Alzheimer's Disease (AD). Gamma-band oscillation entrainment through 60 Hz transcranial alternating stimulation (tACS) and 40 Hz tACS/sensory stimulation has been shown to enhance memory performance in healthy adults and patients with AD, respectively. However, the impact of gamma auditory stimulation on healthy adults' memory remains uncertain. In this balanced crossover study, 36 healthy subjects (27 Females) underwent three auditory stimulation conditions: no auditory stimulation (NO_AS), 40 Hz, and 60 Hz. Long-term verbal memory (LTM) and verbal working memory (WM) were assessed using, respectively, the Ray Auditory Verbal Test (RAVLT) and Digit Span Backward test (DS-B). We hypothesized that 60 Hz would improve LTM (as compared to NO_AS), but not WM; no specific effects were hypothesized for 40 Hz. We found that gamma-band auditory stimulation (40 Hz and 60 Hz) did not significantly affect RAVLT recall or WM. However, 60 Hz stimulation reduced RAVLT immediate recall intrusion; this outcome negatively correlated with DS-B performance, suggesting a positive impact of 60 Hz on executive functions. In summary, gamma-band auditory stimulation did not enhance memory in healthy adults, but 60 Hz stimulation potentially benefits executive functions. Further investigation is needed to understand gamma oscillation's role in cognitive processes for both healthy and clinical populations.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy; Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy; Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Zhou X, Liao PC, Xu Q. Reinvestigation of the Psychological Mechanisms of Construction Experience on Hazard Recognition Performance. HUMAN FACTORS 2024; 66:221-233. [PMID: 35225014 DOI: 10.1177/00187208211066666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The study aimed to reinvestigate psychological mechanisms of the influence of construction workers' experience on hazard recognition performance, with signal detection theory (SDT) and electroencephalogram (EEG) readings. BACKGROUND Existing evidence regarding the effect of experience on hazard recognition performance in the construction industry remains inconsistent. Behavior-wise, identification of dominant hazard recognition factors (sensitivity or response bias, or both) would help determine appropriate training strategies to improve hazard recognition. In terms of neuro-responses, induced gamma-band activity was expected to reflect the cognitive functions mediating the psychological effects of experience. METHOD Seventy-seven construction workers participated in a predesigned hazard recognition task, in which participants judged whether a hazard was present from a series of construction scenario pictures. We computed and compared the sensitivity and response bias of SDT and time-frequency representations of recorded EEG signals of the two experience-level groups. RESULTS Novice workers had higher hazard recognition rates. Behavior-wise, novices were more sensitive than more experienced workers. Compared with experienced workers, novices showed stronger gamma-band difference power (hazardous minus safe) in the left frontal and right posterior parietal areas during the hazard recognition process. CONCLUSION Novices performed better at hazard recognition, indicating their sensitivity to the hazards without a clear difference in response bias. Based on the EEG data, novices' sensitivity may be attributed to more efficient working memory and attentional control. APPLICATION There is a need for continuous refreshment of hazard recognition skills for experienced workers for safety interventions.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Construction Management, Tsinghua University, Beijing, China
| | - Pin-Chao Liao
- Department of Construction Management, Tsinghua University, Beijing, China
| | - Qingwen Xu
- Department of Construction Management, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Siddiqui M, Pinti P, Brigadoi S, Lloyd-Fox S, Elwell CE, Johnson MH, Tachtsidis I, Jones EJH. Using multi-modal neuroimaging to characterise social brain specialisation in infants. eLife 2023; 12:e84122. [PMID: 37818944 PMCID: PMC10624424 DOI: 10.7554/elife.84122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The specialised regional functionality of the mature human cortex partly emerges through experience-dependent specialisation during early development. Our existing understanding of functional specialisation in the infant brain is based on evidence from unitary imaging modalities and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemodynamic activation, giving an incomplete picture. We speculate that functional specialisation will be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orchestrated physiological response. To enable researchers to track this process through development, we develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), metabolic rate, and oxygenated blood supply (broadband near-infrared spectroscopy) in the awake infant. In 4- to 7-month-old infants, we use these new tools to show that social processing is accompanied by spatially and temporally specific increases in coupled activation in the temporal-parietal junction, a core hub region of the adult social brain. During non-social processing, coupled activation decreased in the same region, indicating specificity to social processing. Coupling was strongest with high-frequency brain activity (beta and gamma), consistent with the greater energetic requirements and more localised action of high-frequency brain activity. The development of simultaneous multimodal neural measures will enable future researchers to open new vistas in understanding functional specialisation of the brain.
Collapse
Affiliation(s)
- Maheen Siddiqui
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Paola Pinti
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Sabrina Brigadoi
- Department of Development and Social Psychology, University of PadovaPadovaItaly
- Department of Information Engineering, University of PadovaPadovaItaly
| | - Sarah Lloyd-Fox
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Mark H Johnson
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Emily JH Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Wang H, Lian Y, Wang A, Chen E, Liu C. Face motion form at learning influences the time course of face spatial frequency processing during test. Biol Psychol 2023; 183:108691. [PMID: 37748703 DOI: 10.1016/j.biopsycho.2023.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Studies that use static faces suggest that facial processing follows a coarse-to-fine sequence; i.e., holistic precedes featural processing, due to low and high spatial frequencies (LSF, HSF) transmitting holistic/global and featural/local information respectively. Although recent studies have focused on the role of facial movement in holistic facial processing, it is unclear whether moving faces have the same processing mechanism as static ones, especially in the time course of processing. The current study uses the event-related potential technique to investigate this issue by manipulating the facial format at study and face spatial frequency during the test. ERP results showed that the P1 amplitude was increased by LSF faces relative to HSF ones, using both moving and static study faces, with the former larger than the latter. The N170 amplitude was more sensitive to HSF than LSF faces when only static study faces were used, while the P2 amplitude was more sensitive to LSF faces regardless of the facial study format. The above results were not modulated by the race of the faces. These results favor the view that regardless of face race, moving study faces promote holistic processing during the earliest stage of face recognition. Furthermore, holistic processing is observed to be the same for both static and moving study faces at a later stage associated with more in-depth processing. It is evident that facial motion should be factored into further studies of face recognition, given the distinctions between holistic and featural processing for moving and static study faces.
Collapse
Affiliation(s)
- Hailing Wang
- School of Psychology, Shandong Normal University, Jinan 250358, China.
| | - Yujing Lian
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Anqing Wang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Enguang Chen
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Chengdong Liu
- School of Psychology, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
10
|
Kotlewska I, Panek B, Nowicka A, Asanowicz D. Posterior theta activity reveals an early signal of self-face recognition. Sci Rep 2023; 13:13823. [PMID: 37620563 PMCID: PMC10449829 DOI: 10.1038/s41598-023-41071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Self-related visual information, especially one's own face and name, are processed in a specific, prioritized way. However, the spatio-temporal brain dynamics of self-prioritization have remained elusive. Moreover, it has been unclear whether this prioritization is an effect of enhancement and amplification, or rather a facilitating automatization of processing self-referential information. In this EEG study, 25 married women (who changed their surnames after marriage, so that their past and present surnames could be used as stimuli) performed a detection task with faces and names from five categories: self, self from the past, friend, famous, and unknown person. The aim was to determine the temporal and spatial characteristics of early electrophysiological markers of self-referential processing. We report results of event-related component (ERP) and time-frequency analyses. In the ERPs, the earliest self-relevance effect was displayed only 300 ms after stimulus onset in the midfrontal N2, and later in the parietal P3b, independently of the stimulus type. No self-relevance effect was found on the N170 component. However, local theta power at the occipito-temporal (visual) areas and inter-regional theta phase coherence between the visual and midfrontal areas showed that self-relevance differentiation of faces began already about 100-300 ms after stimulus onset. No such early effects were found for names. The results are discussed in terms of the time-course, functional localization, stimulus-specificity, and automatization of self-prioritization.
Collapse
Affiliation(s)
- Ilona Kotlewska
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland.
| | - Bartłomiej Panek
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| | - Anna Nowicka
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Dariusz Asanowicz
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| |
Collapse
|
11
|
Borra D, Bossi F, Rivolta D, Magosso E. Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli. Sci Rep 2023; 13:7365. [PMID: 37147445 PMCID: PMC10162973 DOI: 10.1038/s41598-023-34487-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023] Open
Abstract
Perception of social stimuli (faces and bodies) relies on "holistic" (i.e., global) mechanisms, as supported by picture-plane inversion: perceiving inverted faces/bodies is harder than perceiving their upright counterpart. Albeit neuroimaging evidence suggested involvement of face-specific brain areas in holistic processing, their spatiotemporal dynamics and selectivity for social stimuli is still debated. Here, we investigate the spatiotemporal dynamics of holistic processing for faces, bodies and houses (adopted as control non-social category), by applying deep learning to high-density electroencephalographic signals (EEG) at source-level. Convolutional neural networks were trained to classify cortical EEG responses to stimulus orientation (upright/inverted), separately for each stimulus type (faces, bodies, houses), resulting to perform well above chance for faces and bodies, and close to chance for houses. By explaining network decision, the 150-200 ms time interval and few visual ventral-stream regions were identified as mostly relevant for discriminating face and body orientation (lateral occipital cortex, and for face only, precuneus cortex, fusiform and lingual gyri), together with two additional dorsal-stream areas (superior and inferior parietal cortices). Overall, the proposed approach is sensitive in detecting cortical activity underlying perceptual phenomena, and by maximally exploiting discriminant information contained in data, may reveal spatiotemporal features previously undisclosed, stimulating novel investigations.
Collapse
Affiliation(s)
- Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy
| | - Francesco Bossi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy.
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy.
| |
Collapse
|
12
|
Palmisano A, Chiarantoni G, Bossi F, Conti A, D'Elia V, Tagliente S, Nitsche MA, Rivolta D. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network. Sci Rep 2023; 13:2035. [PMID: 36739325 PMCID: PMC9899232 DOI: 10.1038/s41598-023-29124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pareidolia refers to the perception of ambiguous sensory patterns as carrying a specific meaning. In its most common form, pareidolia involves human-like facial features, where random objects or patterns are illusionary recognized as faces. The current study investigated the neurophysiological correlates of face pareidolia via transcranial alternating current stimulation (tACS). tACS was delivered at gamma (40 Hz) frequency over critical nodes of the "face perception" network (i.e., right lateral occipito-temporal and left prefrontal cortex) of 75 healthy participants while completing four face perception tasks ('Mooney test' for faces, 'Toast test', 'Noise pareidolia test', 'Pareidolia task') and an object perception task ('Mooney test' for objects). In this single-blind, sham-controlled between-subjects study, participants received 35 min of either Sham, Online, (40Hz-tACS_ON), or Offline (40Hz-tACS_PRE) stimulation. Results showed that face pareidolia was causally enhanced by 40Hz-tACS_PRE in the Mooney test for faces in which, as compared to sham, participants more often misperceived scrambled stimuli as faces. In addition, as compared to sham, participants receiving 40Hz-tACS_PRE showed similar reaction times (RTs) when perceiving illusory faces and correctly recognizing noise stimuli in the Toast test, thus not exhibiting hesitancy in identifying faces where there were none. Also, 40Hz-tACS_ON induced slower rejections of face pareidolia responses in the Noise pareidolia test. The current study indicates that 40 Hz tACS can enhance pareidolic illusions in healthy individuals and, thus, that high frequency (i.e., gamma band) oscillations are critical in forming coherent and meaningful visual perception.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Giulio Chiarantoni
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | | | - Alessio Conti
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Vitiana D'Elia
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Serena Tagliente
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors (IfADo), Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.,School of Psychology, University of East London (UEL), London, UK
| |
Collapse
|
13
|
Ventura M, Palmisano A, Innamorato F, Tedesco G, Manippa V, Caffò AO, Rivolta D. Face memory and facial expression recognition are both affected by wearing disposable surgical face masks. Cogn Process 2023; 24:43-57. [PMID: 36242672 PMCID: PMC9568966 DOI: 10.1007/s10339-022-01112-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
Faces are fundamental stimuli for social interactions since they provide significant information about people's identity and emotional states. With the outburst of the COVID-19 pandemic, global use of preventive measures, such as disposable surgical face masks (DSFMs), has been imposed. The massive use of DSFMs covering a large part of the face could interfere with identity and emotion recognition. Thus, the main aim of the current study was (i) to assess how DSFMs affect identity recognition (Experiment 1), (ii) how DSFMs affect emotion recognition (Experiment 2), and (iii) whether individual empathy levels correlate with emotion recognition with DSFMs. The potential relation between identity and emotion recognition with and without DSFMs was also investigated. Two tasks were administered to 101 healthy participants: (i) the Old-new face memory task aimed to assess whether the learning context (i.e., DSFMs on/off) affects recognition performance, whereas (ii) the Facial affect task explored DSFMs' effect on emotion recognition. Results from the former showed that the stimuli's features in the learning stage affect recognition performances; that is, faces wearing DSFMs were better recognized if wearing DSFMs at first exposure and vice versa. Results from the Facial affect task showed that DSFMs lead to reduced disgust, happiness, and sadness recognition. No significant correlation emerged between identity and emotion recognition. The Interpersonal Reactivity Index (IRI) was administered to assess affective and cognitive empathy; however, IRI scores did not correlate with either face memory recognition or facial affect recognition. Overall, our results demonstrate (a) a "context effect" for face memory with and without DSFMs; (b) a disruptive effect of DSFMs depending on the expressed emotion; and (c) no correlation between empathy and emotion recognition with DSFMs.
Collapse
Affiliation(s)
- M. Ventura
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - A. Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - F. Innamorato
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - G. Tedesco
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - V. Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - A. O. Caffò
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Vecchio F, Nucci L, Pappalettera C, Miraglia F, Iacoviello D, Rossini PM. Time-frequency analysis of brain activity in response to directional and non-directional visual stimuli: an event related spectral perturbations (ERSP) study. J Neural Eng 2022; 19. [PMID: 36270505 DOI: 10.1088/1741-2552/ac9c96] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023]
Abstract
Objective.A large part of the cerebral cortex is dedicated to the processing of visual stimuli and there is still much to understand about such processing modalities and hierarchies. The main aim of the present study is to investigate the differences between directional visual stimuli (DS) and non-directional visual stimuli (n-DS) processing by time-frequency analysis of brain electroencephalographic activity during a visuo-motor task. Electroencephalography (EEG) data were divided into four regions of interest (ROIs) (frontal, central, parietal, occipital).Approach.The analysis of the visual stimuli processing was based on the combination of electroencephalographic recordings and time-frequency analysis. Event related spectral perturbations (ERSPs) were computed with spectrum analysis that allow to obtain the average time course of relative changes induced by the stimulus presentation in spontaneous EEG amplitude spectrum.Main results.Visual stimuli processing enhanced the same pattern of spectral modulation in all investigated ROIs with differences in amplitudes and timing. Additionally, statistically significant differences in occipital ROI between the DS and n-DS visual stimuli processing in theta, alpha and beta bands were found.Significance.These evidences suggest that ERSPs could be a useful tool to investigate the encoding of visual information in different brain regions. Because of their simplicity and their capability in the representation of brain activity, the ERSPs might be used as biomarkers of functional recovery for example in the rehabilitation of visual dysfunction and motor impairment following a stroke, as well as diagnostic tool of anomalies in brain functions in neurological diseases tailored to personalized treatments in clinical environment.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Daniela Iacoviello
- Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
15
|
A multilevel Bayesian meta-analysis of the body inversion effect: Evaluating controversies over headless and sexualized bodies. Psychon Bull Rev 2022; 29:1558-1593. [PMID: 35230674 DOI: 10.3758/s13423-022-02067-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Face and body perception rely on specialized processing mechanisms to interpret social information efficiently. The body inversion effect (BIE), refers to an inversion effect for bodies, such that recognition of bodies is impaired by inversion. The BIE, like the face inversion effect (FIE), is particularly important because a disproportionate BIE relative to inversion effects for objects could be interpreted in much the same way as the disproportionate FIE has often been characterized; that is, as evidence of specialized, configural processing. However, research supporting the BIE is marked by methodological heterogeneity and mixed findings. Our multilevel Bayesian meta-analysis addresses inconsistencies in the literature by pooling data from numerous studies to estimate the magnitude of the BIE across various methodological and stimulus properties. We included 180 effect sizes from 41 empirical articles representing data from 2,274 participants. Overall, we found that the BIE was moderate-large in magnitude (Hedges' g = 0.75). Importantly, the inversion effect was larger for bodies than objects (b = 0.42); however, the inversion effect for faces was larger than for bodies (b = 0.34). We tested the role of discrimination dimension, stimulus type, face/head inclusion, stimulus sexualization, and sexualized stimulus sex as moderators of the BIE. We found that the BIE was moderated by discrimination dimension, stimulus type, stimulus sexualization, and sexualized stimulus sex. By synthesizing the existing literature, we provide a better theoretical understanding of how underlying visual processing mechanisms may differ for different types of social information (i.e., bodies vs. faces).
Collapse
|
16
|
Takarae Y, McBeath MK, Krynen RC. Perception of Dynamic Point Light Facial Expression. AMERICAN JOURNAL OF PSYCHOLOGY 2021. [DOI: 10.5406/amerjpsyc.134.4.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This study uses point light displays both to investigate the roles of global and local motion analyses in the perception of dynamic facial expressions and to measure the information threshold for reliable recognition of emotions. We videotaped the faces of actors wearing black makeup with white dots while they dynamically produced each of 6 basic Darwin/Ekman emotional expressions. The number of point lights was varied to systematically manipulate amount of information available. For all but one of the expressions, discriminability (d′) increased approximately linearly with number of point lights, with most remaining largely discriminable with as few as only 6 point lights. This finding supports reliance on global motion patterns produced by facial muscles. However, discriminability for the happy expression was notably higher and largely unaffected by number of point lights and thus appears to rely on characteristic local motion, probably the unique upward curvature of the mouth. The findings indicate that recognition of facial expression is not a unitary process and that different expressions may be conveyed by different perceptual information, but in general, basic facial emotional expressions typically remain largely discriminable with as few as 6 dynamic point lights.
Collapse
Affiliation(s)
| | - Michael K. McBeath
- Arizona State University and Max Planck Institute for Empirical Aesthetics
| | | |
Collapse
|
17
|
An Effortful Approach to Social Affiliation in Schizophrenia: Preliminary Evidence of Increased Theta and Alpha Connectivity during a Live Social Interaction. Brain Sci 2021; 11:brainsci11101346. [PMID: 34679410 PMCID: PMC8534160 DOI: 10.3390/brainsci11101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
People with schizophrenia often experience a profound lack of motivation for social affiliation—a facet of negative symptoms that detrimentally impairs functioning. However, the mechanisms underlying social affiliative deficits remain poorly understood, particularly under realistic social contexts. Here, we investigated subjective reports and electroencephalography (EEG) functional connectivity in schizophrenia during a live social interaction. Individuals with schizophrenia (n = 16) and healthy controls (n = 29) completed a face-to-face interaction with a confederate while having EEG recorded. Participants were randomly assigned to either a Closeness condition designed to elicit feelings of closeness through self-disclosure or a Small-Talk condition with minimal disclosure. Compared to controls, patients reported lower positive emotional experiences and feelings of closeness across conditions, but they showed comparably greater subjective affiliative responses for the Closeness (vs. Small-Talk) condition. Additionally, patients in the Closeness (vs. Small-Talk) condition displayed a global increase in connectivity in theta and alpha frequency bands that was not observed for controls. Importantly, greater theta and alpha connectivity was associated with greater subjective affiliative responding, greater negative symptoms, and lower disorganized symptoms in patients. Collectively, findings indicate that patients, because of pronounced negative symptoms, utilized a less efficient, top-down mediated strategy to process social affiliation.
Collapse
|
18
|
Li W, Li J, Cao D, Luo N, Jiang T. Neural Mechanism of Noise Affecting Face Recognition. Neuroscience 2021; 468:211-219. [PMID: 34147562 DOI: 10.1016/j.neuroscience.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Face recognition is one of the most important cognitive functions for humans in social activities. The ability will be negatively affected when the face images deteriorate. However, the neural process of extracting facial information under challenging conditions is still poorly understood. Therefore, it is necessary to further understand the neurophysiological relevance of this effect. We examined patients with multiple subdural electrodes (ECoG) monitored for clinical purposes. During the experimental task, the patients were presented with face and house images with different noise levels and were asked to recognize the faces. We found a striking increase in high gamma band power (HGP; 60-160 Hz) when face images were shown. We localized the face-specific electrodes to the fusiform gyrus (FG) and surrounding cortices. For each subject, the behavioral performance and magnitudes of the HGP for the face-specific sites significantly both fit a sigmoid function and showed similar changes. Additionally, the curve profile of the average HGP magnitude across the face-specific sites was almost equal to the average behavior curve; the former could precisely track the behavioral performance. In general, these results suggest that the HGP in the FG is closely related to the performance of face image recognition.
Collapse
Affiliation(s)
- Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
19
|
Yin Z, Wang Y, Dong M, Ren S, Hu H, Yin K, Liang J. Special Patterns of Dynamic Brain Networks Discriminate Between Face and Non-face Processing: A Single-Trial EEG Study. Front Neurosci 2021; 15:652920. [PMID: 34177446 PMCID: PMC8221185 DOI: 10.3389/fnins.2021.652920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Face processing is a spatiotemporal dynamic process involving widely distributed and closely connected brain regions. Although previous studies have examined the topological differences in brain networks between face and non-face processing, the time-varying patterns at different processing stages have not been fully characterized. In this study, dynamic brain networks were used to explore the mechanism of face processing in human brain. We constructed a set of brain networks based on consecutive short EEG segments recorded during face and non-face (ketch) processing respectively, and analyzed the topological characteristic of these brain networks by graph theory. We found that the topological differences of the backbone of original brain networks (the minimum spanning tree, MST) between face and ketch processing changed dynamically. Specifically, during face processing, the MST was more line-like over alpha band in 0-100 ms time window after stimuli onset, and more star-like over theta and alpha bands in 100-200 and 200-300 ms time windows. The results indicated that the brain network was more efficient for information transfer and exchange during face processing compared with non-face processing. In the MST, the nodes with significant differences of betweenness centrality and degree were mainly located in the left frontal area and ventral visual pathway, which were involved in the face-related regions. In addition, the special MST patterns can discriminate between face and ketch processing by an accuracy of 93.39%. Our results suggested that special MST structures of dynamic brain networks reflected the potential mechanism of face processing in human brain.
Collapse
Affiliation(s)
- Zhongliang Yin
- School of Electronic Engineering, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yue Wang
- School of Electronic Engineering, Xidian University, Xi'an, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shenghan Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Haihong Hu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, China
| |
Collapse
|