1
|
Buenrostro-Jáuregui MH, Muñóz-Sánchez S, Rojas-Hernández J, Alonso-Orozco AI, Vega-Flores G, Tapia-de-Jesús A, Leal-Galicia P. A Comprehensive Overview of Stress, Resilience, and Neuroplasticity Mechanisms. Int J Mol Sci 2025; 26:3028. [PMID: 40243691 PMCID: PMC11988468 DOI: 10.3390/ijms26073028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Stress is a core concept in the mental health field that expands upon the seminal definition of stress as an acute response to the disruption of homeostasis. Stress is a complex process that involves both environmental challenges and the triggering of internal responses and impacts physiological, psychological, and behavioral systems. The capacity of the human brain to cope with stress is particularly crucial in early life, when neurodevelopment is highly plastic. Early-life stress (ELS), defined as exposure to severe chronic stress during sensitive periods of development, has been shown to cause lasting changes in brain structure and function. However, not all individuals exposed to ELS develop pathological outcomes, suggesting the presence of resilience mechanisms: adaptive processes that allow an individual to cope with adverse situations while maintaining psychological and neurobiological health. The aim of this review was to synthesize recent advances in the understanding of the neuroplasticity mechanisms underlying resilience to ELS. We discussed the neurobiological pathways implicated in stress response and adaptation, including the roles of neurogenesis, synaptic plasticity, and neural circuit remodeling. By focusing on the interplay between stress-induced neuroplastic changes and resilience mechanisms, we aimed to provide insights into potential therapeutic targets for stress-related psychopathology.
Collapse
Affiliation(s)
- Mario Humberto Buenrostro-Jáuregui
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (S.M.-S.); (J.R.-H.); (A.I.A.-O.); (P.L.-G.)
| | - Sinuhé Muñóz-Sánchez
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (S.M.-S.); (J.R.-H.); (A.I.A.-O.); (P.L.-G.)
| | - Jorge Rojas-Hernández
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (S.M.-S.); (J.R.-H.); (A.I.A.-O.); (P.L.-G.)
| | - Adriana Ixel Alonso-Orozco
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (S.M.-S.); (J.R.-H.); (A.I.A.-O.); (P.L.-G.)
- Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - German Vega-Flores
- Ciencias de la Salud, Universidad Internacional de Valencia, 46002 Valencia, Spain;
- Educación, Universidad Internacional de La Rioja, 26006 Logroño, Spain
| | - Alejandro Tapia-de-Jesús
- Departamento de Salud, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico;
| | - Perla Leal-Galicia
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (S.M.-S.); (J.R.-H.); (A.I.A.-O.); (P.L.-G.)
| |
Collapse
|
2
|
Tsujimura K, Ortug A, Alatorre Warren JL, Shiohama T, McDougle CJ, Marcus RE, Tseng CEJ, Zürcher NR, Mercaldo ND, Faja S, Maunakea A, Hooker J, Takahashi E. Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf041. [PMID: 40055911 DOI: 10.1093/cercor/bhaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
Autism spectrum disorder is a neurodevelopmental condition characterized by reduced social communication and repetitive behaviors. Altered neurogenesis, including disturbed neuronal migration, has been implicated in autism spectrum disorder. Using diffusion MRI, we previously identified neuronal migration pathways in the human fetal brain and hypothesized that similar pathways persist into adulthood, with differences in volume and microstructural characteristics between individuals with autism spectrum disorder and controls. We analyzed diffusion MRI-based tractography of subventricular zone-related pathways in 15 young adult men with autism spectrum disorder and 18 controls at Massachusetts General Hospital, with validation through the Autism Imaging Data Exchange II dataset. Participants with autism spectrum disorder had reduced subventricular zone pathway volumes and fractional anisotropy compared to controls. Furthermore, subventricular zone pathway volume was positively correlated (r: 0.68; 95% CI: 0.25 to 0.88) with symptom severity, suggesting that individuals with more severe symptoms tended to have larger subventricular zone pathway volumes, normalized by brain size. Analysis of the Autism Imaging Data Exchange cohort confirmed these findings of reduced subventricular zone pathway volumes in autism spectrum disorder. While some of these pathways may potentially include inaccurately disconnected pathways that go through the subventricular zone, our results suggest that diffusion MRI-based tractography pathways anatomically linked to the periventricular region are associated with certain symptom types in adult males with autism spectrum disorder.
Collapse
Affiliation(s)
- Keita Tsujimura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - José Luis Alatorre Warren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo 0317, Norway
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Nathaniel D Mercaldo
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Susan Faja
- Division of Developmental Medicine, Department of Pediatrics, Harvard School of Medicine, Boston, MA 02215, United States
| | - Alika Maunakea
- Department of Anatomy, Biochemistry, and Physiology (ABP), John A. Burns School of Medicine (JABSOM), University of Hawaii, Manoa, Honolulu, HI 96813, United States
| | - Jacob Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA 02421, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Li Q, Gan X, Zhang M, Zhang G, Li Y, Gao L. Erianin promotes endogenous neurogenesis in traumatic brain injury rats. Sci Rep 2024; 14:4108. [PMID: 38374284 PMCID: PMC10876537 DOI: 10.1038/s41598-023-50573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The objective of this study was to explore the positive influence and potential mechanism of Erianin on the recovery of brain cells following a traumatic brain injury (TBI). TBI rat models were prepared and treated with Erianin injection via tail vein. The assessment included evaluating the rats' levels of oxidative stress, inflammation, neuronal damage, mitochondrial damage, neuronal regeneration, transformation of pro-inflammatory microglial cells, activation status of the ERK signal pathway, and the functionality of their learning and memory. After administering Erianin, there was a suppression of oxidative stress, inflammation, nerve cell damage, and mitochondrial damage in the TBI rats. Additionally, there was an increase in neuronal regeneration in the cortex and hippocampus, inhibition of pro-inflammatory microglial cell transformation in the cortex, improvement in learning and memory function in TBI rats, and simultaneous inhibition of the activation of the ERK1/c-Jun signal pathway. The findings suggest that Erianin has the potential to reduce oxidative stress and inflammatory reaction in rats with TBI, safeguard nerve cells against apoptosis, stimulate the growth of new neural cells, ultimately enhancing the cognitive abilities and memory function of the rats. The inhibition of the ERK signaling pathway could be closely associated with these effects.
Collapse
Affiliation(s)
- Qingquan Li
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaokui Gan
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Gao
- Department of Shanghai Tenth People's Hospital Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, No. 301 Extend Middle Road, Shanghai, 200072, China.
| |
Collapse
|
5
|
Llido JP, Fioriti E, Pascut D, Giuffrè M, Bottin C, Zanconati F, Tiribelli C, Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. BIOLOGY 2023; 12:834. [PMID: 37372119 DOI: 10.3390/biology12060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Recent findings indicated aberrant epigenetic control of the central nervous system (CNS) development in hyperbilirubinemic Gunn rats as an additional cause of cerebellar hypoplasia, the landmark of bilirubin neurotoxicity in rodents. Because the symptoms in severely hyperbilirubinemic human neonates suggest other regions as privileged targets of bilirubin neurotoxicity, we expanded the study of the potential impact of bilirubin on the control of postnatal brain development to regions correlating with human symptoms. Histology, transcriptomic, gene correlation, and behavioral studies were performed. The histology revealed widespread perturbation 9 days after birth, restoring in adulthood. At the genetic level, regional differences were noticed. Bilirubin affected synaptogenesis, repair, differentiation, energy, extracellular matrix development, etc., with transient alterations in the hippocampus (memory, learning, and cognition) and inferior colliculi (auditory functions) but permanent changes in the parietal cortex. Behavioral tests confirmed the presence of a permanent motor disability. The data correlate well both with the clinic description of neonatal bilirubin-induced neurotoxicity, as well as with the neurologic syndromes reported in adults that suffered neonatal hyperbilirubinemia. The results pave the way for better deciphering the neurotoxic features of bilirubin and evaluating deeply the efficacy of new therapeutic approaches against the acute and long-lasting sequels of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Emanuela Fioriti
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Silvia Gazzin
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| |
Collapse
|
6
|
Kumar A, Narayan RK, Prasoon P, Jha RK, Kumar S, Kumari C, Pandey SN, Faiq MA. COVID-19 vaccination may enhance hippocampal neurogenesis in adults. Brain Behav Immun 2023; 107:87-89. [PMID: 36202167 PMCID: PMC9527215 DOI: 10.1016/j.bbi.2022.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests a detrimental impact of COVID-19 illness on the continued hippocampal neurogenesis in adults. In contrast, the existing literature supports an enhancing effect of COVID-19 vaccination on adult hippocampal neurogenesis. Vaccines against respiratory infections, including influenza, have been shown to enhance hippocampal neurogenesis in adult-age animals. We propose that a similar benefit may happen in COVID-19 vaccinated adults. The vaccine-induced enhancement of the hippocampal neurogenesis in adults thus may protect against age-related cognitive decline and mental disorders. It alsohints at an added mental health benefit of the COVID-19 vaccination programs in adults.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India.
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, Dr. B.C. Roy Multi Speciality Medical Research Centre, Indian Institute of Technology, Kharagpur, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rakesh K Jha
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Centre for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Maharashtra, India
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
The relation between self-reported healthy living and attentional engagement in everyday life. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
8
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Kumaria A, Noah A, Kirkman MA. Does covid-19 impair endogenous neurogenesis? J Clin Neurosci 2022; 105:79-85. [PMID: 36113246 DOI: 10.1016/j.jocn.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/14/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Endogenous neural stem cells are thought to continue to generate new neurons throughout life in the human brain. Endogenous neurogenesis has been proposed to contribute to physiological roles in maintaining and regenerating olfaction, as well as promoting normal cognition, learning and memory. Specific impairments in these processes in COVID-19 - impaired olfaction and cognition - may implicate the SARS-CoV-2 virus in attenuating neurogenesis. Furthermore, neurogenesis has been linked with neuroregeneration; and impaired neuroregeneration has previously been linked with neurodegenerative diseases. Emerging evidence supports an association between COVID-19 infection and accelerated neurodegeneration. Also, structural changes indicating global reduction in brain size and specific reduction in the size of limbic structures - including orbitofrontal cortex, olfactory cortex and parahippocampal gyrus - as a result of SARS-CoV-2 infection have been demonstrated. This paper proposes the hypothesis that SARS-CoV-2 infection may impair endogenous neural stem cell activity. An attenuation of neurogenesis may contribute to reduction in brain size and/or neurodegenerative processes following SARS-CoV-2 infection. Furthermore, as neural stem cells are thought to be the cell of origin in glioma, better understanding of SARS-CoV-2 interaction with tumorigenic stem cells is indicated, with a view to informing therapeutic modulation. The subacute and chronic implications of attenuated endogenous neurogenesis are explored in the context of long COVID. Modulating endogenous neurogenesis may be a novel therapeutic strategy to address specific neurological manifestations of COVID-19 and potential applicability in tumour virotherapy.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Abiodun Noah
- Anaesthesia and Critical Care, Academic Unit of Injury, Inflammation and Recovery Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Matthew A Kirkman
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
10
|
Just N, Chevillard PM, Migaud M. Imaging and spectroscopic methods to investigate adult neurogenesis in vivo: New models and new avenues. Front Neurosci 2022; 16:933947. [PMID: 35992937 PMCID: PMC9389108 DOI: 10.3389/fnins.2022.933947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adult neurogenesis (AN) can be defined as the birth and development of new neurons in adulthood. Until the 1990s, AN was deemed not to happen after birth. Gradually, several groups demonstrated that specific zones of the brain of various species had a neurogenic potential. AN could be the key to treating a large range of neurodegenerative, neuropsychiatric, and metabolic diseases, with a better understanding of the mechanisms allowing for regeneration of new neurons. Despite this promising prospect, the existence of AN has not been validated in vivo in humans and therefore remains controversial. Moreover, the weight of AN-induced plasticity against other mechanisms of brain plasticity is not known, adding to the controversy. In this review, we would like to show that recent technical advances in brain MR imaging methods combined with improved models can resolve the debate.
Collapse
Affiliation(s)
- Nathalie Just
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager og Hvidovre, Hvidovre, Denmark
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
- *Correspondence: Nathalie Just
| | - Pierre-Marie Chevillard
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
| | - Martine Migaud
- Physiologie de la Reproduction et des Comportements, Centre INRAE Val de Loire, CNRS, IFCE, INRAE, and Université de Tours, Nouzilly, France
| |
Collapse
|
11
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Radhakrishnan RK, Kandasamy M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221078418. [PMID: 35133907 PMCID: PMC10581113 DOI: 10.1177/15333175221078418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
Collapse
Affiliation(s)
- Risna K. Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| |
Collapse
|
13
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
14
|
Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci 2021; 41:2541-2553. [PMID: 33762406 DOI: 10.1523/jneurosci.0675-20.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The rodent hippocampus generates new neurons throughout life. This process, named adult hippocampal neurogenesis (AHN), is a striking form of neural plasticity that occurs in the brains of numerous mammalian species. Direct evidence of adult neurogenesis in humans has remained elusive, although the occurrence of this phenomenon in the human dentate gyrus has been demonstrated in seminal studies and recent research that have applied distinct approaches to birthdate newly generated neurons and to validate markers of adult-born neurons. Our data point to the persistence of AHN until the 10th decade of human life, as well as to marked impairments in this process in patients with Alzheimer's disease. Moreover, our work demonstrates that the methods used to process and analyze postmortem human brain samples can limit the detection of various markers of AHN to the point of making them undetectable. In this Dual Perspectives article, we highlight the critical methodological aspects that should be strictly controlled in human studies and the robust evidence that supports the occurrence of AHN in humans. We also put forward reasons that may account for current discrepancies on this topic. Finally, the unresolved questions and future challenges awaiting the field are highlighted.
Collapse
|
15
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
17
|
Sackeim HA. The impact of electroconvulsive therapy on brain grey matter volume: What does it mean? Brain Stimul 2020; 13:1226-1231. [DOI: 10.1016/j.brs.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/16/2023] Open
|
18
|
Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA‑29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep 2020; 22:1008-1016. [PMID: 32468029 PMCID: PMC7339629 DOI: 10.3892/mmr.2020.11177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) remain in the mammalian brain throughout life, where they have the ability to self-renew and generate different types of cell in the central nervous system (CNS). Therefore, NSPCs may be a potential novel therapeutic strategy following damage to the CNS. Previous research has reported that microRNA (miR)-29a served an important role in regulating cell proliferation, differentiation and survival; however, to the best of our knowledge, little is known of the effect of miR-29a in neural differentiation. The present study aimed to investigate the effect of miR-29a on the differentiation of NSPCs, determined via RNA interference, immunostaining, reverse transcription-quantitative PCR and western blotting. The present study discovered that the expression levels of miR-29a were significantly upregulated in a time-dependent manner during neural differentiation. Immunostaining showed that overexpression of miR-29a promoted neural differentiation, which manifested in increased expression levels of neuron-specific class III β-tubulin (Tuj1); however, miR-29a had no effect on neuroglial differentiation. The expression levels of Kruppel-like factor 4 (KLF4) were downregulated following overexpression of miR-29a, whereas the inhibition of miR-29a demonstrated the opposite effect. These results suggested that the overexpression of miR-29a may promote neural differentiation in cultured rat NSPCs by decreasing the expression levels of KLF4. Thus indicating that targeting KLF4, a crucial regulatory factor for the maintenance of stemness, may be a potential underlying mechanism of action for miR-29a. In conclusion, the findings of the present study identified a potential mechanism of action for miR-29a in NSPC differentiation and provided a novel insight into the treatment strategies for CNS damage.
Collapse
Affiliation(s)
- Yunan Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhen Lu
- Department of Orthodontics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
19
|
Zhang Z, Zheng X, Liu Y, Luan Y, Wang L, Zhao L, Zhang J, Tian Y, Lu H, Chen X, Liu Y. Activation of metabotropic glutamate receptor 4 regulates proliferation and neural differentiation in neural stem/progenitor cells of the rat subventricular zone and increases phosphatase and tensin homolog protein expression. J Neurochem 2020; 156:465-480. [PMID: 32052426 DOI: 10.1111/jnc.14984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone throughout life, where they can be activated in response to physiological and pathophysiological stimuli. A recent study indicates metabotropic glutamate receptor 4 (mGluR4) is involved in regulating NSPCs behaviors. Therefore, defining mGluR4 function in NSPCs is necessary for determining novel strategies to enhance the intrinsic potential for brain regeneration after injuries. In this study, mGluR4 was functionally expressed in SVZ-derived NSPCs from male Sprague-Dawley rats, in which the cyclic adenosine monophosphate concentration was reduced after treatment with the mGluR4-specific agonist VU0155041. Additionally, lateral ventricle injection of VU0155041 significantly decreased 5-bromo-2'-deoxyuridine (BrdU)+ and Ki67+ cells, while increased Doublecortin (DCX)/BrdU double-positive cells in SVZ. In cultured NSPCs, mGluR4 activation decreased the ratio of BrdU+ cells, G2/M-phase cells, and inhibited Cyclin D1 expression, whereas it increased neuron-specific class III β-tubulin (Tuj1) expression and the number of Tuj1, DCX, and PSA-NCAM-positive cells. However, pharmacological blocking mGluR4 with the antagonist MSOP or knockdown of mGluR4 abolished the effects of VU0155041 on NSPCs proliferation and neuronal differentiation. Further investigation demonstrated that VU0155041 treatment down-regulated AKT phosphorylation and up-regulated expression of the phosphatase and tensin homolog protein (PTEN) in NSPCs culture. Moreover VU0155041-induced proliferating inhibition and neuronal differentiating amplification in NSPCs were significantly hampered by VO-OHpic, a PTEN inhibitor. We conclude that activation of mGluR4 in SVZ-derived NSPCs suppresses proliferation and enhances their neuronal differentiation, and regulation of PTEN may be involved as a potential intracellular target of mGluR4 signal. Cover Image for this issue: https://doi.org/10.1111/jnc.15052.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaoyan Zheng
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, China
| | - Lingyu Zhao
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yumei Tian
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
21
|
Macht V, Crews FT, Vetreno RP. Neuroimmune and epigenetic mechanisms underlying persistent loss of hippocampal neurogenesis following adolescent intermittent ethanol exposure. Curr Opin Pharmacol 2019; 50:9-16. [PMID: 31778865 DOI: 10.1016/j.coph.2019.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Alcohol abuse and binge drinking are common during adolescence - a maturational period characterized by heightened hippocampal neuroplasticity and neurogenesis. Preclinical rodent models of adolescent binge drinking (i.e., adolescent intermittent ethanol [AIE]) find unique vulnerability of adolescent hippocampal neurogenesis with reductions persisting into adulthood after ethanol cessation. Recent discoveries implicate increased neuroimmune signaling and decreased neurotrophic support through epigenetic mechanisms in the persistent AIE-induced loss of neurogenesis. Importantly, interventions aimed at rectifying the increased neuroimmune signaling and neurotrophic-epigenetic modifications through physical activity, anti-inflammatory drugs, and histone deacetylase inhibitors protect and recover the loss of neurogenesis and cognitive deficits. The mechanisms underlying the persistent AIE-induced loss of adult hippocampal neurogenesis could contribute to broader neurodegeneration, loss of hippocampal neuroplasticity, and cognitive dysfunction.
Collapse
Affiliation(s)
- Victoria Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
22
|
Horgusluoglu-Moloch E, Risacher SL, Crane PK, Hibar D, Thompson PM, Saykin AJ, Nho K. Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Sci Rep 2019; 9:14498. [PMID: 31601890 PMCID: PMC6787090 DOI: 10.1038/s41598-019-50507-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/09/2019] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis occurs in the dentate gyrus of the hippocampus during adulthood and contributes to sustaining the hippocampal formation. To investigate whether neurogenesis-related pathways are associated with hippocampal volume, we performed gene-set enrichment analysis using summary statistics from a large-scale genome-wide association study (N = 13,163) of hippocampal volume from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium and two year hippocampal volume changes from baseline in cognitively normal individuals from Alzheimer's Disease Neuroimaging Initiative Cohort (ADNI). Gene-set enrichment analysis of hippocampal volume identified 44 significantly enriched biological pathways (FDR corrected p-value < 0.05), of which 38 pathways were related to neurogenesis-related processes including neurogenesis, generation of new neurons, neuronal development, and neuronal migration and differentiation. For genes highly represented in the significantly enriched neurogenesis-related pathways, gene-based association analysis identified TESC, ACVR1, MSRB3, and DPP4 as significantly associated with hippocampal volume. Furthermore, co-expression network-based functional analysis of gene expression data in the hippocampal subfields, CA1 and CA3, from 32 normal controls showed that distinct co-expression modules were mostly enriched in neurogenesis related pathways. Our results suggest that neurogenesis-related pathways may be enriched for hippocampal volume and that hippocampal volume may serve as a potential phenotype for the investigation of human adult neurogenesis.
Collapse
Grants
- UL1 TR001108 NCATS NIH HHS
- R01 CA129769 NCI NIH HHS
- R35 CA197289 NCI NIH HHS
- P50 GM115318 NIGMS NIH HHS
- R01 AG019771 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- R03 AG054936 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- UL1 TR002369 NCATS NIH HHS
- R01 LM011360 NLM NIH HHS
- U54 EB020403 NIBIB NIH HHS
- K01 AG049050 NIA NIH HHS
- R01 LM012535 NLM NIH HHS
- CIHR
- NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
- ENIGMA was supported in part by a Consortium grant (U54EB020403 to PMT) from the NIH Institutes contributing to the Big Data to Knowledge (BD2K) Initiative, including the NIBIB and NCI.
- Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Additional support for data analysis was provided by NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Derrek Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 2019; 27:934-948. [PMID: 31591472 PMCID: PMC7206128 DOI: 10.1038/s41418-019-0409-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Alterations of adult neurogenesis have been reported in several Alzheimer's disease (AD) animal models and human brains, while defects in this process at presymptomatic/early stages of AD have not been explored yet. To address this, we investigated potential neurogenesis defects in Tg2576 transgenic mice at 1.5 months of age, a prodromal asymptomatic age in terms of Aβ accumulation and neurodegeneration. We observe that Tg2576 resident and SVZ-derived adult neural stem cells (aNSCs) proliferate significantly less. Further, they fail to terminally differentiate into mature neurons due to pathological, tau-mediated, and microtubule hyperstabilization. Olfactory bulb neurogenesis is also strongly reduced, confirming the neurogenic defect in vivo. We find that this phenotype depends on the formation and accumulation of intracellular A-beta oligomers (AβOs) in aNSCs. Indeed, impaired neurogenesis of Tg2576 progenitors is remarkably rescued both in vitro and in vivo by the expression of a conformation-specific anti-AβOs intrabody (scFvA13-KDEL), which selectively interferes with the intracellular generation of AβOs in the endoplasmic reticulum (ER). Altogether, our results demonstrate that SVZ neurogenesis is impaired already at a presymptomatic stage of AD and is caused by endogenously generated intracellular AβOs in the ER of aNSCs. From a translational point of view, impaired SVZ neurogenesis may represent a novel biomarker for AD early diagnosis, in association to other biomarkers. Further, this study validates intracellular Aβ oligomers as a promising therapeutic target and prospects anti-AβOs scFvA13-KDEL intrabody as an effective tool for AD treatment.
Collapse
|
24
|
Loprinzi PD, Zou L, Li H. The Endocannabinoid System as a Potential Mechanism through which Exercise Influences Episodic Memory Function. Brain Sci 2019; 9:E112. [PMID: 31100856 PMCID: PMC6562547 DOI: 10.3390/brainsci9050112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Emerging research demonstrates that exercise, including both acute and chronic exercise, may influence episodic memory function. To date, mechanistic explanations of this effect are often attributed to alterations in long-term potentiation, neurotrophic production, angiogenesis, and neurogenesis. Herein, we discuss a complementary mechanistic model, suggesting that the endocannabinoid system may, in part, influence the effects of exercise on memory function. We discuss the role of the endocannabinoid system on memory function as well as the effects of exercise on endocannabinoid alterations. This is an exciting line of inquiry that should help delineate new insights into the mechanistic role of exercise on memory function.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA.
| | - Liye Zou
- Lifestyle (Mind-Body Movement) Research Center, College of Psychology and Sociology, Shenzhen University, Shenzhen 518060, China.
| | - Hong Li
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, College of Psychology and Sociology, Shenzhen University, Shenzhen 518060, China.
- Research Centre of Brain Function and Psychological Science, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Institute of Neuroscience, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
25
|
Todorov G, Cunha C. Hypothesis: Regulation of neuroplasticity may involve I-motif and G-quadruplex DNA formation modulated by epigenetic mechanisms. Med Hypotheses 2019; 127:129-135. [PMID: 31088636 DOI: 10.1016/j.mehy.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023]
Abstract
Recent studies demonstrated the existence in vivo of various functional DNA structures that differ from the double helix. The G-quadruplex (G4) and intercalated motif (I-motif or IM) DNA structures are formed as knots where, correspondingly, guanines or cytosines on the same strand of DNA bind to each other. There are grounds to believe that G4 and IM sequences play a significant role in regulating gene expression considering their tendency to be found in or near regulatory sites (such as promoters, enhancers, and telomeres) as well as the correlation between the prevalence of G4 or IM conformations and specific phases of cell cycle. Notably, G4 and IM capable sequences tend to be found on the opposite strands of the same DNA site with at most one of the two structures formed at any given time. The recent evidence that K+, Mg2+ concentrations directly affect IM formation (and likely G4 formation indirectly) lead us to believe that these structures may play a major role in synaptic plasticity of neurons, and, therefore, in a variety of central nervous system (CNS) functions including memory, learning, habitual behaviors, pain perception and others. Furthermore, epigenetic mechanisms, which have an important role in synaptic plasticity and memory formation, were also shown to influence formation and stability of G4s and IMs. Our hypothesis is that non-canonical DNA and RNA structures could be an integral part of neuroplasticity control via gene expression regulation at the level of transcription, translation and splicing. We propose that the regulatory activity of DNA IM and G4 structures is modulated by DNA methylation/demethylation of the IM and/or G4 sequences, which facilitates the switch between canonical and non-canonical conformation. Other neuronal mechanisms interacting with the formation and regulatory activity of non-canonical DNA and RNA structures, particularly G4, IM and triplexes, may involve microRNAs as well as ion and proton fluxes. We are proposing experiments in acute brain slices and in vivo to test our hypothesis. The proposed studies would provide new insights into fundamental neuronal mechanisms in health and disease and potentially open new avenues for treating mental health disorders.
Collapse
Affiliation(s)
- German Todorov
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, USA
| | - Catarina Cunha
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
26
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
27
|
Cooper JJ, Korb AS, Akil M. Bringing Neuroscience to the Bedside. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:2-7. [PMID: 31975952 PMCID: PMC6493145 DOI: 10.1176/appi.focus.20180033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clinical psychiatry has not historically expected practitioners to learn the basic science of psychiatric illness. Despite wide recognition that all effective psychiatric treatments have neurophysiological mechanisms, the field has struggled to integrate concepts of the mind and brain. Because of historical separations of clinical psychiatry and evolving neuroscience research, many psychiatric residency programs feel underresourced to teach clinically relevant neuroscience, and current residency graduates are not being prepared to integrate neuroscience findings into their practice. Significant strides have been made in the understanding of the neurobiology of psychiatric disorders. Similarly, the neurobiological mechanisms of a wide variety of treatments have been elucidated, spanning interventions from psychotherapy to physical exercise, electroconvulsive therapy, and modern neuromodulation techniques. The authors discuss strategies for integrating the language of clinical neuroscience into everyday psychiatric practice and review resources available to clinicians and trainees to help them acquire and practice these skills.
Collapse
Affiliation(s)
- Joseph J Cooper
- Department of Psychiatry, University of Illinois at Chicago (Cooper); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Korb); Department of Psychiatry, MedStar Georgetown University Hospital, Washington, D.C. (Akil)
| | - Alexander S Korb
- Department of Psychiatry, University of Illinois at Chicago (Cooper); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Korb); Department of Psychiatry, MedStar Georgetown University Hospital, Washington, D.C. (Akil)
| | - Mayada Akil
- Department of Psychiatry, University of Illinois at Chicago (Cooper); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Korb); Department of Psychiatry, MedStar Georgetown University Hospital, Washington, D.C. (Akil)
| |
Collapse
|
28
|
Heterogeneity of Stem Cells in the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:31-53. [DOI: 10.1007/978-3-030-24108-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
30
|
Vetreno RP, Lawrimore CJ, Rowsey PJ, Crews FT. Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 2018; 12:200. [PMID: 29643762 PMCID: PMC5882830 DOI: 10.3389/fnins.2018.00200] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol abuse and binge drinking are common during adolescence, a developmental period characterized by heightened neuroplasticity. Animal studies reveal that adolescent ethanol exposure decreases hippocampal neurogenesis that persists into adulthood, but the mechanism remains to be fully elucidated. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-days on/2-days off from postnatal day [P]25 to P55), we tested the hypothesis that AIE-induced upregulation of neuroimmune signaling contributes to the loss of hippocampal neurogenesis in adulthood. We found that AIE caused upregulation of multiple proinflammatory Toll-like receptors (TLRs), increased expression of phosphorylated NF-κB p65 (pNF-κB p65) and the cell death marker cleaved caspase 3, and reduced markers of neurogenesis in the adult (P80) hippocampus, which is consistent with persistently increased neuroimmune signaling reducing neurogenesis. We observed a similar increase of pNF-κB p65-immunoreactive cells in the post-mortem human alcoholic hippocampus, an effect that was negatively correlated with age of drinking onset. Voluntary wheel running from P24 to P80 prevented the AIE-induced loss of neurogenesis markers (i.e., nestin and doublecortin) in the adult hippocampus that was paralleled by blockade of increased expression of the cell death marker cleaved caspase 3. Wheel running also prevented the AIE-induced increase of hippocampal pNF-κB p65 and induction of neuroimmune NF-κB target genes, including TNFα and IκBα in the adult brain. Administration of the anti-inflammatory drug indomethacin during AIE prevented the loss of neurogenesis markers (i.e., nestin and doublecortin) and the concomitant increase of cleaved caspase 3, an effect that was accompanied by blockade of the increase of pNF-κB p65. Similarly, administration of the proinflammatory TLR4 activator lipopolysaccharide resulted in a loss of doublecortin that was paralleled by increased expression of cleaved caspase 3 and pNF-κB p65 in the hippocampal dentate gyrus of CON animals that mimicked the AIE-induced loss of neurogenesis. Taken together, these data suggest that exercise and anti-inflammatory drugs protect against adolescent binge ethanol-induced brain neuroimmune signaling and the loss of neurogenesis in the adult hippocampus.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Colleen J. Lawrimore
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pamela J. Rowsey
- School of Nursing, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Abookasis D, Lerman D, Roth H, Tfilin M, Turgeman G. Optically derived metabolic and hemodynamic parameters predict hippocampal neurogenesis in the BTBR mouse model of autism. JOURNAL OF BIOPHOTONICS 2018; 11:e201600322. [PMID: 28800207 DOI: 10.1002/jbio.201600322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, we made use of dual-wavelength laser speckle imaging (DW-LSI) to assess cerebral blood flow (CBF) in the BTBR-genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW-LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO2 ), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed which confirmed the lowered CBF in the autistic-like group. Furthermore, we found in vivo cortical CBF measurements to predict the rate of hippocampal neurogenesis, measured ex vivo by the number of neurons expressing doublecortin or the cellular proliferation marker Ki-67 in the dentate gyrus, with a strong positive correlation between CBF and neurogenesis markers (Pearson, r = 0.78; 0.9, respectively). These novel findings identifying cortical CBF as a predictive parameter of hippocampal neurogenesis highlight the power and flexibility of the DW-LSI and LDF setups for studying neurogenesis trends under normal and pathological conditions.
Collapse
Affiliation(s)
- David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| | - Danit Lerman
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
- Department of Physics, Ariel University, Ariel, Israel
| | - Hava Roth
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Matanel Tfilin
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Department of Pre-Medical Studies, Ariel University, Ariel, Israel
| |
Collapse
|
32
|
Gandy K, Kim S, Sharp C, Dindo L, Maletic-Savatic M, Calarge C. Pattern Separation: A Potential Marker of Impaired Hippocampal Adult Neurogenesis in Major Depressive Disorder. Front Neurosci 2017; 11:571. [PMID: 29123464 PMCID: PMC5662616 DOI: 10.3389/fnins.2017.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/29/2017] [Indexed: 12/26/2022] Open
Abstract
Adult neurogenesis involves the generation of new neurons, particularly in the dentate gyrus of the hippocampus. Decreased hippocampal neurogenesis has been implicated in both animal models of depression and in patients with major depressive disorder (MDD), despite some inconsistency in the literature. Here, we build upon current models to generate a new testable hypothesis, linking impaired neurogenesis to downstream psychological outcomes commonly observed in MDD. We contend that disruption in adult neurogenesis impairs pattern separation, a hippocampus-dependent function requiring the careful discrimination and storage of highly similar, but not identical, sensory inputs. This, in turn, can affect downstream processing and response selection, of relevance to emotional wellbeing. Specifically, disrupted pattern separation leads to misperceived stimuli (i.e., stimulus confusion), triggering the selection and deployment of established responses inappropriate for the actual stimuli. We speculate that this may be akin to activation of automatic thoughts, described in the Cognitive Behavior Theory of MDD. Similarly, this impaired ability to discriminate information at a fundamental sensory processing level (e.g., impaired pattern separation) could underlie impaired psychological flexibility, a core component of Acceptance and Commitment Therapy of MDD. We propose that research is needed to test this model by examining the relationship between cognitive functioning (e.g., pattern separation ability), psychological processes (e.g., perseveration and psychological inflexibility), and neurogenesis, taking advantage of emerging magnetic resonance spectroscopy-based imaging that measures neurogenesis in-vivo.
Collapse
Affiliation(s)
- Kellen Gandy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sohye Kim
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Center for Reproductive Psychiatry, Pavilion for Women, Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Carla Sharp
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Lilian Dindo
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
- Dan and Jan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Chadi Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
33
|
Vainshenker Y, Zinserling V, Korotkov A, Medvedev S. Noncanonical Adult Human Neurogenesis and Axonal Growth as Possible Structural Basis of Recovery From Traumatic Vegetative State. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2017; 10:1179547617732040. [PMID: 28979176 PMCID: PMC5617086 DOI: 10.1177/1179547617732040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 11/17/2022]
Abstract
Patient recovering from traumatic vegetative state has suddenly died from cardiac arrest. In-life improvement of consciousness appeared after reduction of generalized spasticity due to botulinum toxin administration. Neuropathologic examination revealed Musashi1+, Nestin+, PCNA+, and Ki67+ cells in the hippocampus, frontal, parietal and occipital cortex, caudate, thalamus, mammillary bodies, brainstem, cerebellum, and near the posterior horn of the lateral ventricle. New neurons with neurite growth (TUC4+) appeared in corpus callosum. At the same time, axonal growth was detected in all areas of interest. New cells whose functional state was continuously improving, as revealed by in-life neurologic and positron emission tomography monitoring, have mainly been found in brain areas without neuropathologic signs of damage. We suggest that the possible role of neurogenesis consists in improvement of the microenvironment and interneuron interactions, whereas the activation of neurogenesis and the induction of neurite growth may be associated with reduction of spasticity.
Collapse
Affiliation(s)
- Yulia Vainshenker
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), Saint Petersburg, Russia
| | - Vsevolod Zinserling
- Department of Pathology, Saint Petersburg State University, Saint Petersburg, Russia.,Department of Pathology, S.P. Botkin Clinical Infectious Diseases Hospital, Saint Petersburg, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), Saint Petersburg, Russia
| | - Svyatoslav Medvedev
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS), Saint Petersburg, Russia
| |
Collapse
|
34
|
Li B, Sierra A, Deudero JJ, Semerci F, Laitman A, Kimmel M, Maletic-Savatic M. Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC SYSTEMS BIOLOGY 2017; 11:90. [PMID: 28984196 PMCID: PMC5629620 DOI: 10.1186/s12918-017-0468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in the hippocampus. New neurons have been associated with learning and memory as well as mood control, and impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging. Thus, understanding the biological properties of adult neurogenesis has important implications for human health. Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve using experimentation. However, the majority of the computational studies have predominantly focused on the late stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny. RESULTS Here, based on the branching process theory and biological evidence, we developed a computational model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade. Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while the apoptotic stage is short. CONCLUSION At a practical level, the stochastic model and simulation framework we developed will enable us to predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis due to disease or treatment.
Collapse
Affiliation(s)
- Biao Li
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
| | - Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Juan Jose Deudero
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Fatih Semerci
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Andrew Laitman
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Marek Kimmel
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
- Systems Engineering Group, Silesian University of Technology, Gliwice, 44–100 Poland
- Department of Statistics, Rice University, Houston, Texas, 77005 USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
35
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
36
|
Akhoundzadeh K, Vakili A, Sameni HR, Vafaei AA, Rashidy-Pour A, Safari M, Mohammadkhani R. Effects of the combined treatment of bone marrow stromal cells with mild exercise and thyroid hormone on brain damage and apoptosis in a mouse focal cerebral ischemia model. Metab Brain Dis 2017; 32:1267-1277. [PMID: 28547077 DOI: 10.1007/s11011-017-0034-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/16/2017] [Indexed: 01/20/2023]
Abstract
This study examined whether post-stroke bone marrow stromal cells (BMSCs) therapy combined with exercise (EX) and/or thyroid hormone (TH) could reduce brain damage in an experimental ischemic stroke in mice. Focal cerebral ischemia was induced under Laser Doppler Flowmetry (LDF) guide by 45 min of middle cerebral artery occlusion (MCAO), followed by 7 days of reperfusion in albino mice. BMSCs were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of T3 (20 μg/100 g weight S.C) and 6 days of running on a treadmill. Infarct size, neurobehavioral test, TUNEL and BrdU positive cells were evaluated at 7 days after MCAO. Treatment with BMSCs and mild EX alone significantly reduced the infarct volume by 23% and 44%, respectively (both, p < 0.001). The BMSCs + TH, BMSCs + EX, and BMSCs + EX + TH combination therapies significantly reduced the infarct volume by 26%, 51%, and 70%, respectively (all, p < 0.001). A significant improvement in the neurobehavioral functioning was observed in the EX, BMSCs + EX, and BMSCs + EX+ TH groups (p < 0.001). The number of TUNEL-positive cells (a marker of apoptosis) was significantly reduced in the EX, BMSCs, BMSCs + EX, BMSCs + TH, and BMSCs + EX + TH groups (all, p < 0.001). Moreover, the combination therapy considerably increased BrdU-labeled cells in the subventricular zone (SVZ) (p < 0.01). Our findings indicated that the combined treatment of BMSCs with mild EX and TH more efficiently reduces the cerebral infarct size after stroke. More likely, these effects mediate via enchaining generation of new neuronal cells and the attenuation of apoptosis in ischemia stroke in young mice.
Collapse
Affiliation(s)
- Kobar Akhoundzadeh
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Abbas Ali Vafaei
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Razieh Mohammadkhani
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
37
|
Abstract
Ever since the discovery of neural stem cells in the mammalian brain, the possibility of brain tissue regeneration has captured the minds of scientists, clinicians, and the public. Neural stem cells have been envisioned as a source of donor cells for transplantation and vectors for the delivery of gene therapy. Over the past decade, many researchers have contributed to characterizing these cells and their lineages, providing the foundation for their utilization as therapeutic devices. In a new study, Azim and colleagues took a different approach: using pharmacogenomics to focus on neural stem cell lineage, they identified specific compounds that can direct neural stem cell fate toward a specific lineage in vivo, both in physiological and pathological conditions. Their work opens new avenues for treatment of neurodegenerative and demyelinating disorders.
Collapse
Affiliation(s)
- Mirjana Maletic-Savatic
- Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lugert S, Kremer T, Jagasia R, Herrmann A, Aigner S, Giachino C, Mendez-David I, Gardier AM, Carralot JP, Meistermann H, Augustin A, Saxe MD, Lamerz J, Duran-Pacheco G, Ducret A, Taylor V, David DJ, Czech C. Glypican-2 levels in cerebrospinal fluid predict the status of adult hippocampal neurogenesis. Sci Rep 2017; 7:46543. [PMID: 28440309 PMCID: PMC5404329 DOI: 10.1038/srep46543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain plasticity through which new neurons are generated throughout life. Despite its important roles in cognition and emotion and its modulation in various preclinical disease models, the functional importance of adult hippocampal neurogenesis in human health has not been revealed because of a lack of tools for monitoring adult neurogenesis in vivo. Therefore, we performed an unbiased proteomics screen to identify novel proteins expressed during neuronal differentiation using a human neural stem cell model, and we identified the proteoglycan Glypican-2 (Gpc2) as a putative secreted marker of immature neurons. Exogenous Gpc2 binds to FGF2 and inhibits FGF2-induced neural progenitor cell proliferation. Gpc2 is enriched in neurogenic regions of the adult brain. Its expression is increased by physiological stimuli that increase hippocampal neurogenesis and decreased in transgenic models in which neurogenesis is selectively ablated. Changes in neurogenesis also result in changes in Gpc2 protein level in cerebrospinal fluid (CSF). Gpc2 is detectable in adult human CSF, and first pilot experiments with a longitudinal cohort indicate a decrease over time. Thus, Gpc2 may serve as a potential marker to monitor adult neurogenesis in both animal and human physiology and disease, warranting future studies.
Collapse
Affiliation(s)
- S Lugert
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - T Kremer
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - R Jagasia
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Herrmann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - S Aigner
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - C Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - I Mendez-David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - A M Gardier
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - J P Carralot
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - H Meistermann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Augustin
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - M D Saxe
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - J Lamerz
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - G Duran-Pacheco
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - V Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - D J David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - C Czech
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
39
|
Ihunwo AO, Tembo LH, Dzamalala C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 2016; 11:1869-1883. [PMID: 28197172 PMCID: PMC5270414 DOI: 10.4103/1673-5374.195278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.
Collapse
Affiliation(s)
- Amadi O. Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lackson H. Tembo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Dzamalala
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
40
|
Jeon SG, Kim KA, Chung H, Choi J, Song EJ, Han SY, Oh MS, Park JH, Kim JI, Moon M. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels. Mol Cells 2016; 39:603-10. [PMID: 27432189 PMCID: PMC4990752 DOI: 10.14348/molcells.2016.0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Junghyun Choi
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186,
Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243,
Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
- Konyang University Myunggok Medical Research Institute, Dajeon 35365,
Korea
| |
Collapse
|
41
|
Semerci F, Maletic-Savatic M. Transgenic mouse models for studying adult neurogenesis. ACTA ACUST UNITED AC 2016; 11:151-167. [PMID: 28473846 DOI: 10.1007/s11515-016-1405-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.
Collapse
Affiliation(s)
- Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics-Neurology, Department of Neuroscience, and Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
42
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
43
|
Ontogeny of memory: An update on 40 years of work on infantile amnesia. Behav Brain Res 2016; 298:4-14. [DOI: 10.1016/j.bbr.2015.07.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 01/01/2023]
|
44
|
Abstract
Previous tests of the SeniorWISE intervention with community-residing older adults that were designed to improve affect and cognitive performance were successful and positively affected these outcomes. In this study, we tested whether adding yoga to the intervention would affect the outcomes. Using a quasiexperimental pre-post design, we delivered 12 hours of SeniorWISE memory training that included a 30-minute yoga component before each training session. The intervention was based on the four components of self-efficacy theory: enactive mastery experience, vicarious experience, verbal persuasion, and physiologic arousal. We recruited 133 older adults between the ages of 53 and 96 years from four retirement communities in Central Texas. Individuals were screened and tested and then attended training sessions two times a week over 4 weeks. A septuagenarian licensed psychologist taught the memory training, and a certified yoga instructor taught yoga. Eighty-three participants completed at least 9 hours (75%) of the training and completed the posttest. Those individuals who completed made significant gains in memory performance, instrumental activities of daily living, and memory self-efficacy and had fewer depressive symptoms. Thirteen individuals advanced from poor to normal memory performance, and seven improved from impaired to poor memory performance; thus, 20 individuals improved enough to advance to a higher functioning memory group. The findings from this study of a memory training intervention plus yoga training show that the benefits of multifactorial interventions had additive benefits. The combined treatments offer a unique model for brain health programs and the promotion of nonpharmacological treatment with the goals of maintaining healthy brain function and boosting brain plasticity.
Collapse
|
45
|
Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci 2015; 9:35. [PMID: 25729346 PMCID: PMC4325907 DOI: 10.3389/fnins.2015.00035] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 12/23/2022] Open
Abstract
Adolescence is a developmental period that coincides with the maturation of adult cognitive faculties. Binge drinking is common during adolescence and can impact brain maturation. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 20% EtOH w/v; 2 days on/2 days off from postnatal day [P]25 to P55), we discovered that AIE treatment reduced neurogenesis (i.e., doublecortin-immunoreactive [DCX + IR] cells) in both the dorsal and ventral hippocampal dentate gyrus of late adolescent (P56) male Wistar rats that persisted during abstinence into adulthood (P220). This reduction in neurogenesis was accompanied by a concomitant reduction in proliferating cells (Ki-67) and an increase in cell death (cleaved caspase-3). In the hippocampus, AIE treatment induced a long-term upregulation of neuroimmune genes, including Toll-like receptor 4 (TLR4) and its endogenous agonist high-mobility group box 1 as well as several proinflammatory signaling molecules. Administration of lipopolysaccharide, a gram-negative endotoxin agonist at TLR4, to young adult rats (P70) produced a similar reduction of DCX + IR cells that was observed in AIE-treated animals. Behaviorally, AIE treatment impaired object recognition on the novel object recognition task when assessed from P163 to P165. Interestingly, object recognition memory was positively correlated with DCX + IR in both the dorsal and ventral hippocampal dentate gyrus while latency to enter the center of the apparatus was negatively correlated with DCX + IR in the ventral dentate gyrus. Together, these data reveal that adolescent binge ethanol exposure persistently inhibits neurogenesis throughout the hippocampus, possibly through neuroimmune mechanisms, which might contribute to altered adult cognitive and emotive function.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Fulton T Crews
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
46
|
Donaldson ZR, Hen R. From psychiatric disorders to animal models: a bidirectional and dimensional approach. Biol Psychiatry 2015; 77:15-21. [PMID: 24650688 PMCID: PMC4135025 DOI: 10.1016/j.biopsych.2014.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/08/2014] [Indexed: 12/31/2022]
Abstract
Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosologic divide of psychiatric illness, although clinically relevant, is not directly translatable in animal models. For instance, mice will never fully recapitulate the broad criteria for many psychiatric disorders; additionally, mice will never have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders to identify neural circuits and mechanisms underlying disease-relevant phenotypes. The genetic investigation of psychiatric illness can yield the greatest insights if efforts continue to identify and use biologically valid phenotypes across species. This review discusses the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species and the importance of refined modeling of human disease-associated genetic variation in mice and other animal models.
Collapse
Affiliation(s)
| | - René Hen
- Departments of Psychiatry and Neuroscience, Columbia University, and Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
47
|
Seib DR, Martin-Villalba A. Neurogenesis in the Normal Ageing Hippocampus: A Mini-Review. Gerontology 2014; 61:327-35. [DOI: 10.1159/000368575] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
|
48
|
O'Leary OF, Cryan JF. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 2014; 35:675-87. [PMID: 25455365 DOI: 10.1016/j.tips.2014.09.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
Abstract
Adult hippocampal neurogenesis is implicated in antidepressant action, stress responses, and cognitive functioning. The hippocampus is functionally segregated along its longitudinal axis into dorsal (dHi) and ventral (vHi) regions in rodents, and analogous posterior and anterior regions in primates, whereby the vHi preferentially regulates stress and anxiety, while the dHi preferentially regulates spatial learning and memory. Given the role of neurogenesis in functions preferentially regulated by the dHi or vHi, it is plausible that neurogenesis is preferentially regulated in either the dHi or vHi depending upon the stimulus. We appraise here the literature on the effects of stress and antidepressants on neurogenesis along the hippocampal longitudinal axis and explore whether preferential regulation of neurogenesis in the vHi/anterior hippocampus contributes to stress resilience and antidepressant action.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Abdou E, Hazell AS. Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 2014; 40:353-61. [PMID: 25297573 DOI: 10.1007/s11064-014-1430-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Abstract
Thiamine is an essential vitamin that is necessary to maintain the functional integrity of cells in the brain. Its deficiency is the underlying cause of Wernicke's encephalopathy (WE), a disorder primarily associated with, but not limited to, chronic alcoholism. Thiamine deficiency leads to the development of impaired energy metabolism due to mitochondrial dysfunction in focal regions of the brain resulting in cerebral vulnerability. The consequences of this include oxidative stress, excitotoxicity, inflammatory responses, decreased neurogenesis, blood-brain barrier disruption, lactic acidosis and a reduction in astrocyte functional integrity involving a loss of glutamate transporters and other astrocyte-specific proteins which together contribute in a major way to the resulting neurodegeneration. Exactly how these factors acting in concert lead to the demise of neurons is unclear. In this review we reassess their relative importance in the light of more recent findings and discuss therapeutic possibilities that may provide hope for the future for individuals with WE.
Collapse
Affiliation(s)
- Eman Abdou
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | |
Collapse
|
50
|
Yuan TF, Li J, Ding F, Arias-Carrion O. Evidence of adult neurogenesis in non-human primates and human. Cell Tissue Res 2014; 358:17-23. [PMID: 25130142 DOI: 10.1007/s00441-014-1980-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis in rodents has been extensively studied. Here, we briefly summarize the studies of adult neurogenesis based on non-human primate brains and human postmortem brain samples in recent decades. The differences between rodent, primate and human neurogenesis are discussed. We conclude that these differences may contribute to distinct physiological roles and the self-repair mechanisms in the brain across species.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China,
| | | | | | | |
Collapse
|