1
|
Traiffort E, Kassoussi A, Zahaf A. Revisiting the role of sexual hormones in the demyelinated central nervous system. Front Neuroendocrinol 2025; 76:101172. [PMID: 39694337 DOI: 10.1016/j.yfrne.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease. The present review is an update of our current knowledge about progestagens, androgens and estrogens in the context of CNS demyelination including their synthesis, the impact of their dysregulation, the preclinical and clinical data presently available, the main molecular dimorphisms related to these hormones and their age-related changes and relationship with failure of spontaneous remyelination, likely impacting the inexorable progression of multiple sclerosis towards irreversible disabilities.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
3
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Kamińska J, Koper-Lenkiewicz OM, Ponikwicka-Tyszko D, Lebiedzińska W, Palak E, Sztachelska M, Bernaczyk P, Dorf J, Guzińska-Ustymowicz K, Zaręba K, Wołczyński S, Rahman NA, Dymicka-Piekarska V. New Insights on the Progesterone (P4) and PGRMC1/NENF Complex Interactions in Colorectal Cancer Progression. Cancers (Basel) 2023; 15:5074. [PMID: 37894441 PMCID: PMC10605590 DOI: 10.3390/cancers15205074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The literature data regarding the risk of colorectal cancer (CRC) in the context of hormone therapy (HT), including both estrogen-progestogen combinations and estrogen alone, are inconclusive. The precise relationship underlying the action of progesterone (P4) and progesterone receptors in CRC has yet to be determined. We characterized the expression profiles of both nuclear and membrane progesterone receptors and their potential cofactors in CRC tissues. Additionally, we analyzed the P4 and NENF treatment effects on the cell proliferation and invasion of DLD-1 and HT-29 colorectal cancer cells. We observed a weak expression of the nuclear P4 receptor (PGR), but an abundant expression of the P4 receptor membrane component 1 (PGRMC1) and neuron-derived neurotrophic factor (NENF) in the CRC tissues. P4 treatment stimulated the proliferation of the DLD-1 and HT-29 CRC cells. The co-treatment of P4 and NENF significantly increased the invasiveness of the DLD-1 and HT-29 cells. A functional analysis revealed that these effects were dependent on PGRMC1. AN immunocytochemical analysis demonstrated a cytoplasmic co-localization of PGRMC1 and NENF in the CRC cells. Moreover, the concentration of serum NENF was significantly higher in CRC patients, and P4 treatment significantly increased the release of NENF in the DLD-1 cells. P4 or NENF treatment also significantly increased the IL-8 release in the DLD-1 cells. Our data may provide novel insights into the action of P4 and PGRMC1/NENF in CRC progression, where NENF may act as a potential PGRMC1 co-activator in non-classical P4 signaling. Furthermore, NENF, as a secreted protein, potentially could serve as a promising circulating biomarker candidate for distinguishing between colorectal cancer patients and healthy individuals, although large-scale extensive studies are needed to establish this.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Weronika Lebiedzińska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
| | - Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | | | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, 15-094 Bialystok, Poland;
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
| | - Nafis Ahmed Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland;
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| |
Collapse
|
5
|
Wang L, Yue Y, Zhang L, Jing M, Ma M, Liu C, Li Y, Xu S, Wang K, Wang X, Fan J, Zhang M. PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway. Cell Oncol (Dordr) 2023; 46:1317-1332. [PMID: 37126128 DOI: 10.1007/s13402-023-00813-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has a high degree of malignancy and poor overall prognosis in advanced and metastatic patients. Therefore, it is of great significance to find new prognostic biomarkers and therapeutic targets for ccRCC. The expression of progestin and adipoQ receptor family member 5 (PAQR5) is significantly downregulated in ccRCC compared with normal tissues, but its specific mechanism and potential biological function in ccRCC remain unclear. METHODS The expression pattern of PAQR5 and the correlation between the PAQR5 expression and clinicopathological parameters and various survival periods in ccRCC patients were analyzed by using multiple public databases and ccRCC tissues chip. Its prognostic value was analyzed by univariate/multivariate Cox regression. In addition, MTT assay, EdU staining assay, flow cytometry, wound healing assay, transwell migration and invasion assay, colony formation assay, immunofluorescence assay, and a xenograft tumor model were conducted to assess the biological function of PAQR5 in ccRCC in vitro and in vivo. RESULTS Our results indicated that the downregulation of PAQR5 was demonstrated in ccRCC tumor tissues and associated with poorer OS, DSS, and PFI. Meanwhile, the univariate/multivariate Cox regression analysis confirmed that PAQR5 might serve as an independent prognostic factor for ccRCC, and its low expression was tightly correlated with tumor progression and distant metastasis. Mechanistically, a series of gain- and loss-of-function assay revealed that PAQR5 could suppress the ccRCC proliferation, invasion, metastasis, and tumorigenicity in vitro and in vivo by inhibiting the JAK/STAT3 signaling pathway. CONCLUSION Our study revealed the tumor suppressor role of PAQR5 in ccRCC. PAQR5 is a valuable prognostic biomarker for ccRCC and may provide new strategies for clinical targeted therapy.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yangyang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of education, Xi'an, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Zhou C, Zhu T, Ni W, Zhou H, Song J, Wang M, Jin G, Zhou Y, Han J, Hua F. Gain-of-function of progesterone receptor membrane component 2 ameliorates ischemic brain injury. CNS Neurosci Ther 2023; 29:1585-1601. [PMID: 36794556 PMCID: PMC10173723 DOI: 10.1111/cns.14122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Progesterone receptor membrane component 2 (PGRMC2) belongs to the membrane-associated progesterone receptor family, which regulates multiple pathophysiological processes. However, the role of PGRMC2 in ischemic stroke remains unexplored. The present study sought to determine the regulatory role of PGRMC2 in ischemic stroke. METHODS Male C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAO). The protein expression level and localization of PGRMC2 were examined by western blotting and immunofluorescence staining. The gain-of-function ligand of PGRMC2 (CPAG-1, 45 mg/kg) was intraperitoneally injected into sham/MCAO mice, and brain infarction, blood-brain barrier (BBB) leakage, and sensorimotor functions were evaluated by magnetic resonance imaging, brain water content, Evans blue extravasation, immunofluorescence staining, and neurobehavioral tests. The astrocyte and microglial activation, neuronal functions, and gene expression profiles were revealed by RNA sequencing, qPCR, western blotting, and immunofluorescence staining after surgery and CPAG-1 treatment. RESULTS Progesterone receptor membrane component 2 was elevated in different brain cells after ischemic stroke. Intraperitoneal delivery of CPAG-1 reduced infarct size, brain edema, BBB leakage, astrocyte and microglial activation, and neuronal death, and improved sensorimotor deficits after ischemic stroke. CONCLUSION CPAG-1 acts as a novel neuroprotective compound that could reduce neuropathologic damage and improve functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Taiyang Zhu
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Wanyan Ni
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hui Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Jiaxing Song
- Department of NeurologyXinqiao Hospital and The Second Affiliated Hospital, Third Military Medical UniversityChongqingChina
| | - Miao Wang
- Department of GeriatricsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guoliang Jin
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yan Zhou
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Jingjing Han
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Fang Hua
- Institute of Neurological DiseasesXuzhou Medical UniversityXuzhouChina
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of Interdisciplinary Health ScienceCollege of Allied Health Science, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
7
|
Yang X, Lv W, Yang Y, Yang J, Zhang H, Xu Z. Progesterone receptor membrane component 2 regulates the neuronal activity and participates in epileptic seizures in experimental mice. IBRAIN 2023; 10:356-365. [PMID: 39346797 PMCID: PMC11427800 DOI: 10.1002/ibra.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 10/01/2024]
Abstract
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Wenbo Lv
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Yong Yang
- Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
| | - Juan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Haiqing Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
8
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
9
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
10
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
11
|
Rainville JR, Lipuma T, Hodes GE. Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited. Biol Psychiatry 2022; 91:25-35. [PMID: 33865609 PMCID: PMC10197090 DOI: 10.1016/j.biopsych.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Timothy Lipuma
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia.
| |
Collapse
|
12
|
Sabbir MG, Inoue A, Taylor CG, Zahradka P. Loss of β-Arrestins or six Gα proteins in HEK293 cells caused Warburg effect and prevented progesterone-induced rapid proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol 2021; 214:105995. [PMID: 34506922 DOI: 10.1016/j.jsbmb.2021.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Hormonal dysregulation plays a significant role in the metabolic switching during malignant transformation. Progesterone Receptor Membrane Component 1 (PGRMC1) is a single-pass transmembrane receptor activated by the binding of progesterone (P4), a sex hormone. In a previous study, P4 treatment caused rapid (within 30 min) induction of aerobic glycolysis in transformed HEK293 cells, a hallmark malignant phenotype known as the Warburg effect. This metabolic reprogramming was associated with the proteasomal degradation of a 70 kilodalton (kDa) PGRMC1. PGRMC1 interacts with a variety of proteins, including G protein-coupled receptors (GPCRs) and P4-PGRMC1 signaling modulates cyclic adenosine monophosphate (cAMP) production. Therefore, we hypothesized that the P4-induced Warburg effect and proteasomal degradation of PGRMC1 involve G proteins and β-Arrestins (ARRBs). In the present study, we investigated P4-induced aerobic glycolysis, proteasomal degradation of p70 PGRMC1, as well as abundance and subcellular translocation of PGRMC1 along with two key glycolytic enzymes Hexokinase 1 (HK1) and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in six Gα subunit (Gsix) proteins or ARRB1/2-deficient HEK293 cells. Loss of ARRB1/2 or Gsix proteins inhibited P4-induced p70 PGRMC1 degradation but failed to prevent the P4-induced Warburg effect. Also, deficiency of ARRB1/2 or Gsix proteins differentially affected the basal as well as P4-induced abundance and subcellular translocation of PGRMC1, HK1, and GAPDH proteins. Overall, the findings indicate that P4-PGRMC1-mediated metabolic reprogramming in HEK293 cells depends on β-Arrestins and Gα proteins suggesting the involvement of an underlying GPCR signal transduction pathway.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Alzo Biosciences Inc., San Diego, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
13
|
Sun X, Hu Y, Zhou H, Wang S, Zhou C, Lin L, Zhu T, Ge J, Han J, Zhou Y, Jin G, Wang Y, Zu J, Shi H, Yang X, Zan K, Wang J, Hua F. Inhibition of progesterone receptor membrane component-1 exacerbates neonatal hypoxic-ischemic cerebral damage in male mice. Exp Neurol 2021; 347:113893. [PMID: 34653511 DOI: 10.1016/j.expneurol.2021.113893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/04/2022]
Abstract
This study investigated the expression of progesterone receptor membrane component 1 (pgrmc1) in the brains of male and female mice, and the effect of inhibiting pgrmc1 on neonatal hypoxic-ischemic (HI) cerebral injury in male mice. A mouse model of neonatal HI brain injury was established, and AG205, a specific antagonist of pgrmc1, was injected into the left lateral cerebral ventricle 1 h before HI. Histological staining, behavior testing, Western blots, and quantitative PCR (qPCR) were employed to evaluate pgrmc1 expression, brain damage, neurological function, and molecular mechanisms. Results demonstrated that the mRNA and protein levels of pgrmc1 increased significantly in the cortex and hippocampus 72 h after HI without sex differences. The inhibition of pgrmc1 exacerbated the neonatal brain damage in the acute stage of HI in male mice as seen in the increase in brain water content, infarction area, and neuronal death. Inhibition of pgrmc1 also aggravated the neurological dysfunction and anxiety induced by HI brain injury. In addition, inhibition of pgrmc1 activated the NF-kB signaling and NF-κB-mediated cytokines, and inhibited BDNF/PI3K/AKT pathway in the brains of the newborn HI mice. The results indicated that pgrmc1 inhibition exacerbated the brain damage in newborn male mice subjected to HI by activating IκBα/NFκB signaling and inhibiting BDNF/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shang Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chao Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Li Lin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ji Ge
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jingjing Han
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yuqiao Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Shi
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xingxing Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Kun Zan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jun Wang
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
14
|
PAQR6 Upregulation Is Associated with AR Signaling and Unfavorite Prognosis in Prostate Cancers. Biomolecules 2021; 11:biom11091383. [PMID: 34572596 PMCID: PMC8465620 DOI: 10.3390/biom11091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Progesterone-induced rapid non-genomic signaling events have been confirmed through several membrane progesterone receptors (mPR). Some mPRs were reported to correlate with cancer progression and patient prognosis. In this study, we conducted a comprehensive analysis of all progesterone receptor (PGR)-related genes in prostate cancer tissues and examined the correlations of their expression levels with disease progression and patient survival outcomes. We utilized multiple RNA-seq and cDNA microarray datasets to analyze gene expression profiles and performed logistics aggression and Kaplan-Meier survival analysis after stratifying patients based on tumor stages and Gleason scores. We also used NCBI GEO datasets to examine gene expression patterns in individual cell types of the prostate gland and to determine the androgen-induced alteration of gene expression. Spearman coefficient analysis was conducted to access the correlation of target gene expression with treatment responses and disease progression status. The classic PGR was mainly expressed in stromal cells and progestin and adipoQ receptor (PAQR) genes were the predominant genes in prostate epithelial cells. Progesterone receptor membrane component-1 (PGRMC1) was significantly higher than PGRMC2 in all prostate cell types. In prostate cancer tissues, PAQR6 expression was significantly upregulated, while all other genes were largely downregulated compared to normal prostate tissues. Although both PAQR6 upregulation and PAQR5 downregulation were significantly correlated with tumor pathological stages, only PAQR6 upregulation was associated with Gleason score, free-prostate-specific antigen (fPSA)/total-PSA (tPSA) ratio, and patient overall survival outcomes. In addition, PAQR6 upregulation and PGR/PGRMC1 downregulation were significantly associated with a quick relapse. Conversely, in neuroendocrinal prostate cancer (NEPC) tissues, PAQR6 expression was significantly lower, but PAQR7/8 expression was higher than castration-resistant prostate cancer (CRPC) tissues. PAQR8 expression was positively correlated with androgen receptor (AR) score and AR-V7 expression levels but inversely correlated with NEPC score in metastatic CRPC tumors. This study provides detailed expression profiles of membrane progesterone receptor genes in primary cancer, CRPC, and NEPC tissues. PAQR6 upregulation in primary cancer tissues is a novel prognostic biomarker for disease progression, overall, and progression-free survival in prostate cancers. PAQR8 expression in CRPC tissues is a biomarker for AR activation.
Collapse
|
15
|
Fedotcheva TA. Clinical Use of Progestins and Their Mechanisms of Action: Present and Future (Review). Sovrem Tekhnologii Med 2021; 13:93-106. [PMID: 34513071 PMCID: PMC8353691 DOI: 10.17691/stm2021.13.1.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the current opinions on the mechanisms of action of nuclear, mitochondrial, and membrane progesterone receptors. The main aspects of the pharmacological action of progestins have been studied. Data on the clinical use of gestagens by nosological groups are presented. Particular attention is paid to progesterone, megestrol acetate, medroxyprogesterone acetate due to broadening of their spectrum of action. The possibilities of using gestagens as neuroprotectors, immunomodulators, and chemosensitizers are considered.
Collapse
Affiliation(s)
- T A Fedotcheva
- Senior Researcher, Research Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia
| |
Collapse
|
16
|
Kabe Y, Koike I, Yamamoto T, Hirai M, Kanai A, Furuhata R, Tsugawa H, Harada E, Sugase K, Hanadate K, Yoshikawa N, Hayashi H, Noda M, Uchiyama S, Yamazaki H, Tanaka H, Kobayashi T, Handa H, Suematsu M. Glycyrrhizin Derivatives Suppress Cancer Chemoresistance by Inhibiting Progesterone Receptor Membrane Component 1. Cancers (Basel) 2021; 13:3265. [PMID: 34209885 PMCID: PMC8269059 DOI: 10.3390/cancers13133265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazue Hanadate
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nobuji Yoshikawa
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroaki Hayashi
- Laboratory of Natural Products Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
Ogiwara K, Hoyagi M, Takahashi T. A central role for cAMP/EPAC/RAP/PI3K/AKT/CREB signaling in LH-induced follicular Pgr expression at medaka ovulation†. Biol Reprod 2021; 105:413-426. [PMID: 33880506 DOI: 10.1093/biolre/ioab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
Nuclear progestin receptor (PGR) is a ligand-activated transcription factor that has been identified as a pivotal mediator of many processes associated with ovarian and uterine function, and aberrant control of PGR activity causes infertility and disease including cancer. The essential role of PGR in vertebrate ovulation is well recognized, but the mechanisms by which PGR is rapidly and transiently induced in preovulatory follicles after the ovulatory LH surge are not known in lower vertebrates. To address this issue, we utilized the small freshwater teleost medaka Oryzias latipes, which serves as a good model system for studying vertebrate ovulation. In the in vitro ovulation system using preovulatory follicles dissected from the fish ovaries, we found that inhibitors of EPAC (brefeldin A), RAP (GGTI298), PI3K (Wortmannin), AKT (AKT inhibitor IV), and CREB (KG-501) inhibited LH-induced follicle ovulation, while the PKA inhibitor H-89 had no effect on follicle ovulation. The inhibitors capable of inhibiting follicle ovulation also inhibited follicular expression of Pgr and matrix metalloproteinase-15 (Mmp15), the latter of which was previously shown to not only be a downstream effector of Pgr but also a proteolytic enzyme indispensable for follicle rupture in medaka ovulation. Further detailed analysis revealed for the first time that the cAMP/EPAC/RAP/PI3K/AKT/CREB signaling pathway mediates the LH signal to induce Pgr expression in preovulatory follicles. Our data also showed that phosphorylated Creb1 is a transcription factor essential for pgr expression and that Creb1 phosphorylated by Akt1, rather than PKA, may be preferably used to induce pgr expression.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Miyuki Hoyagi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Giles J, Alama P, Gamiz P, Vidal C, Badia P, Pellicer A, Bosch E. Medroxyprogesterone acetate is a useful alternative to a gonadotropin-releasing hormone antagonist in oocyte donation: a randomized, controlled trial. Fertil Steril 2021; 116:404-412. [PMID: 33814126 DOI: 10.1016/j.fertnstert.2021.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare ovarian response and reproductive outcomes in oocyte donors undergoing pituitary suppression with medroxyprogesterone acetate (MPA) versus those undergoing conventional treatment with a gonadotropin-releasing hormone (GnRH) antagonist. DESIGN A prospective, randomized, controlled trial of cycles was conducted from October 2017 to June 2019 to evaluate ovarian response in terms of the number of oocytes. The reproductive outcomes of the recipients were retrospectively analyzed later. SETTING A university-affiliated private in vitro fertilization center. PATIENT(S) We randomly divided 318 donors into 2 groups in a 1:1 ratio. The oocytes obtained were assigned to 364 recipients. One hundred sixty-one donors were treated with a daily dose of 10 mg of MPA administered orally from the beginning of ovarian stimulation (OS), and 156 were treated with a GnRH antagonist (initiated once the leading follicle reached a diameter of 13 mm). Transvaginal ultrasound was performed, and serum estradiol, luteinizing hormone, and progesterone levels were recorded during monitoring. The following additional parameters were analyzed: endocrine profile (in follicular fluid), number of metaphase II oocytes, and pregnancy outcome. INTERVENTION(S) The donors included in the study group were stimulated using recombinant follicle-stimulating hormone and MPA at 10 mg/day, simultaneously begun on cycle day 2 or 3. Ovulation was induced using a GnRH agonist when dominant follicles matured. A short protocol with ganirelix at 0.25 mg/day was used for the control group. Oocytes were assigned to the recipients, followed by routine in vitro fertilization procedures in which 1 embryo was usually transferred. MAIN OUTCOME MEASURE(S) The primary outcome measure was the numbers of oocytes and metaphase II oocytes retrieved. The secondary outcomes were the incidence of premature luteinizing hormone surge, serum and follicular fluid hormone profiles, and clinical pregnancy outcomes in the recipient group. RESULT(S) The number of oocytes retrieved was 21.4 ± 11.7 in the MPA group and 21.2 ± 9.2 in the antagonist group (mean difference 0.14; 95% confidence interval -2.233, 2.517). The total dose of recombinant follicle-stimulating hormone, duration of OS, and endocrine profiles of the serum and follicular fluids were comparable in the 2 groups. No early ovulation was observed in either group. No statistically significant differences with respect to implantation rate (68.1% in the MPA group vs. 62% in the antagonist group), clinical pregnancy rate (64.5% in the MPA group vs. 57.8 in the antagonist group), ongoing pregnancy rate (55.4% in the MPA group vs. 48.5% in the antagonist group), live birth rate (55.1% in the MPA group vs. 48.5% in the antagonist group), or cumulative live birth rate (73.8% in the MPA group vs. 70.7% in the antagonist group) were observed between the groups. CONCLUSION(S) The administration of MPA resulted in oocyte retrieval rates, endocrine profiles, viable embryo numbers, and pregnancy outcomes similar to those achieved with the GnRH antagonist. Therefore, MPA can be recommended for OS in oocyte donation because it permits a more patient-friendly approach. CLINICAL TRIAL REGISTRATION NUMBER NCT03300960.
Collapse
Affiliation(s)
- Juan Giles
- IVI-RMA, Valencia, Spain; IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - Pilar Alama
- IVI-RMA, Valencia, Spain; IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Pilar Gamiz
- IVI-RMA, Valencia, Spain; IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Vidal
- IVI-RMA, Valencia, Spain; IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Antonio Pellicer
- IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain; IVI-RMA, Rome, Italy; Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Genomic and Systems Reproductive Medicine, IVI-RMA IVI Foundation, Valencia, Spain
| | - Ernesto Bosch
- IVI-RMA, Valencia, Spain; IVI Foundation, Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
19
|
Li HJ, Goff A, Rudzinskas SA, Jung Y, Dubey N, Hoffman J, Hipolito D, Mazzu M, Rubinow DR, Schmidt PJ, Goldman D. Altered estradiol-dependent cellular Ca 2+ homeostasis and endoplasmic reticulum stress response in Premenstrual Dysphoric Disorder. Mol Psychiatry 2021; 26:6963-6974. [PMID: 34035477 PMCID: PMC8613306 DOI: 10.1038/s41380-021-01144-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is characterized by debilitating mood symptoms in the luteal phase of the menstrual cycle. Prior studies of affected women have implicated a differential response to ovarian steroids. However, the molecular basis of these patients' differential response to hormone remains poorly understood. We performed transcriptomic analyses of lymphoblastoid cell lines (LCLs) derived from women with PMDD and asymptomatic controls cultured under untreated (steroid-free), estradiol-treated (E2), and progesterone-treated (P4) conditions. Weighted gene correlation network analysis (WGCNA) of transcriptomes identified four gene modules with significant diagnosis x hormone interactions, including one enriched for neuronal functions. Next, in a gene-level analysis comparing transcriptional response to hormone across diagnoses, a generalized linear model identified 1522 genes differentially responsive to E2 (E2-DRGs). Among the top 10 E2-DRGs was a physically interacting network (NUCB1, DST, GCC2, GOLGB1) involved in endoplasmic reticulum (ER)-Golgi function. qRT-PCR validation reproduced a diagnosis x E2 interaction (F(1,24)=7.01, p = 0.014) for NUCB1, a regulator of cellular Ca2+ and ER stress. Finally, we used a thapsigargin (Tg) challenge assay to test whether E2 induces differences in Ca2+ homeostasis and ER stress response in PMDD. PMDD LCLs had a 1.36-fold decrease in Tg-induced XBP1 splicing response compared to controls, and a 1.62-fold decreased response (p = 0.005), with a diagnosis x treatment interaction (F(3,33)=3.51, p = 0.026) in the E2-exposed condition. Altered hormone-dependent in cellular Ca2+ dynamics and ER stress may contribute to the pathophysiology of PMDD.
Collapse
Affiliation(s)
- Howard J. Li
- grid.47100.320000000419368710Dept. of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT USA ,grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Allison Goff
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sarah A. Rudzinskas
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Yonwoo Jung
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Neelima Dubey
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Jessica Hoffman
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Dion Hipolito
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Maria Mazzu
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David R. Rubinow
- grid.410711.20000 0001 1034 1720Dept. of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Peter J. Schmidt
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David Goldman
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
20
|
Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone - Friend or foe? Front Neuroendocrinol 2020; 59:100856. [PMID: 32730861 DOI: 10.1016/j.yfrne.2020.100856] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Estradiol is the "prototypic" sex hormone of women. Yet, women have another sex hormone, which is often disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual dysphoric disorder as well as contraception that women can use without risking mental health problems are still needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative.
Collapse
Affiliation(s)
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Eileen Luders
- School of Psychology, University of Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
21
|
Lai CW, Jadhav S, Njei B, Ye A, Wactawski-Wende J, Mumford SL, Schisterman EF, Rotman Y. Rhythmic Fluctuations in Levels of Liver Enzymes During Menstrual Cycles of Healthy Women and Effects of Body Weight. Clin Gastroenterol Hepatol 2020; 18:2055-2063.e2. [PMID: 31811951 PMCID: PMC7269853 DOI: 10.1016/j.cgh.2019.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Female sex hormones affect several non-reproductive organs, but little is known about their effects on the liver during a normal menstrual cycle. We aimed to investigate the association between sex hormones and liver enzymes in healthy menstruating women. METHODS We performed a post-hoc analysis of data from the BioCycle study, a longitudinal cohort study designed to determine the association of sex hormones with markers of oxidative stress during the menstrual cycle. We analyzed data collected from 259 menstruating women, over 1-2 menstrual cycles, who had as many as 16 separate office visits, timed by fertility monitors. Levels of liver enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALKP), bilirubin, and lipids were measured by laboratory assays. RESULTS We found a natural cyclic pattern for liver enzymes, with transaminases and ALKP peaking in the mid-follicular phase and reaching a trough in the late luteal phase; the peak to trough differences were 4.0 ± 4.9 U/L for ALT and 8.8 ± 4.0 U/L for ALKP. Levels of ALT were significantly and negatively associated with levels of progesterone on the preceding visit (P = 5x10-4), whereas level of ALKP was negatively associated with level of estrogen (P = .007) and progesterone (P = 1x10-11). Food and alcohol intake did not modify the association. The amplitude of ALT fluctuation was greater in African Americans and decreased with age. Fluctuations in levels of ALT were smaller in women with body mass indices >30 kg/m2 (P = .03). During menstrual fluctuation, 49% of participants had ALT values both above and below the normal cut-off value (19 U/L). CONCLUSIONS Levels of liver enzymes fluctuate during the normal menstrual cycle, possibly mediated by progesterone, and the fluctuation varies with age and body mass index. These findings indicate the importance of accounting for phase of menstrual cycle when interpreting liver enzyme measurements in menstruating women.
Collapse
Affiliation(s)
- Chunwei Walter Lai
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,These authors contributed equally
| | - Sneha Jadhav
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,These authors contributed equally
| | - Basile Njei
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,Department of Medicine, University of Connecticut School of Medicine, Farmington, CT
| | - Aijun Ye
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Rockville, MD
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY
| | - Sunni L. Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Rockville, MD
| | - Enrique F. Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Rockville, MD
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Vaitsopoulou CI, Kolibianakis EM, Bosdou JK, Neofytou E, Lymperi S, Makedos A, Savvaidou D, Chatzimeletiou K, Grimbizis GF, Lambropoulos A, Tarlatzis BC. Expression of genes that regulate follicle development and maturation during ovarian stimulation in poor responders. Reprod Biomed Online 2020; 42:248-259. [PMID: 33214084 DOI: 10.1016/j.rbmo.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
RESEARCH QUESTION Sex hormone-binding globulin (SHBG), androgen receptor (AR), LH beta polypeptide (LHB), progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) regulate follicle development and maturation. Their mRNA expression was assessed in peripheral blood mononuclear cells (PBMC) of normal and poor responders, during ovarian stimulation. DESIGN Fifty-two normal responders and 15 poor responders according to the Bologna criteria were enrolled for IVF and intracytoplasmic sperm injection and stimulated with 200 IU of follitrophin alpha and gonadotrophin-releasing hormone antagonist. HCG was administered for final oocyte maturation. On days 1, 6 and 10 of stimulation, blood samples were obtained, serum hormone levels were measured, RNA was extracted from PBMC and real-time polymerase chain reaction was carried out to identify the mRNA levels. Relative mRNA expression of each gene was calculated by the comparative 2-DDCt method. RESULTS Differences between mRNA levels of each gene on the same time point between the two groups were not significant. PGRMC1 and PGRMC2 mRNA levels were downregulated, adjusted for ovarian response and age. Positive correlations between PGRMC1 and AR (standardized beta = 0.890, P < 0.001) from day 1 to 6 and PGRMC1 and LHB (standardized beta = 0.806, P < 0.001) from day 1 to 10 were found in poor responders. PGRMC1 and PGRMC2 were positively correlated on days 6 and 10 in normal responders. CONCLUSIONS PGRMC1 and PGRMC2 mRNA are significantly decreased during ovarian stimulation, with some potential differences between normal and poor responders.
Collapse
Affiliation(s)
- Christine I Vaitsopoulou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece.
| | - Efstratios M Kolibianakis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Julia K Bosdou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Eirini Neofytou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Stefania Lymperi
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Anastasios Makedos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Despina Savvaidou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Katerina Chatzimeletiou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Grigoris F Grimbizis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Alexandros Lambropoulos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Basil C Tarlatzis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| |
Collapse
|
23
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
24
|
Bunma T, Vonnahme KA, Vasquez-Hidalgo MA, Swanson KC, Dorsam ST, Ward AK, Navanukrav C, Grazul-Bilska AT. Nuclear and membrane progesterone receptors expression in placenta from early to late pregnancy in sheep: Effects of restricted nutrition and realimentation. Theriogenology 2020; 148:95-102. [PMID: 32169627 DOI: 10.1016/j.theriogenology.2020.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023]
Abstract
Nutrient restriction and/or realimentation may affect several placental functions, such as expression of selected regulatory factors, blood flow and other processes in sheep and other species. To determine the effects of the plane of nutrition, nulliparous white face ewes (6-8 months) carrying singletons on day 50 of gestation were randomly assigned to two dietary treatments receiving 100% of National Research Council recommendations (control; C) or 60% of C (restricted; R). Two groups remained on C or R diets from day 50 until day 130. From day 90-130 another group of C fed ewes was switched to the R diet, and another group of R fed ewes was switched to the C diet. This resulted in 7 groups (n = 5-6 ewes/group): C (day 50, 90 and 130), R (day 90 and 130), CR (day 130) and RC (day 130). At these time points, placental tissues were collected for the evaluation of progesterone receptor (PGR) protein expression (whole tissue), and mRNA expression in maternal (caruncular, CAR) and fetal (cotyledon, COT) (separated tissues). Data were statistically analyzed using analysis of variance (SAS 9.4). Protein for PGRAB and PGRB isoforms was detected using immunohistochemistry in all placental tissues, but the pattern of expression differed depending on pregnancy stage and placental compartment (e.g., CAR vs COT). PGRAB protein expression, quantified using image analysis, was greater (P < 0.04) on day 50 than 90 or 130, and was not affected by plane of nutrition. In CAR and COT, PGRAB mRNA expression was greater (P < 0.05) on day 50 than 90 or 130. PGRB mRNA expression was greater (P < 0.03) in CAR on day 50 than 90 and 130, and was greatest (P < 0.02) in COT on day 50, less on day 130, and least on day 90. For the membrane progesterone receptors, PAQR7 (membrane PGR alpha) mRNA expression was greater (P < 0.05) on days 50 and 90 than 130 in CAR, and greater (P < 0.01) on days 50 than 90 and 130 in COT; PAQR8 (membrane PGR beta) was similar throughout pregnancy in CAR and COT, and PAQR5 (membrane PGR gamma) was greatest (P < 0.0001) on day 130 in COT, but similar throughout pregnancy in CAR. Plane of nutrition affected (P < 0.05) mRNA expression for all genes in CAR and COT throughout pregnancy. These data indicate that expression of PGR in ovine placenta is dependent on stage of pregnancy and plane of nutrition in sheep. The mechanisms of how diet and stage of pregnancy influences placental PGR expression and function remains to be elucidated.
Collapse
Affiliation(s)
- Thanya Bunma
- Agricultural Biotechnology Research Center for Sustainable Economy (ANRCE), Department of Animal Sciences, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kimberly A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Chainarong Navanukrav
- Agricultural Biotechnology Research Center for Sustainable Economy (ANRCE), Department of Animal Sciences, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
25
|
Lei L, Ling ZN, Chen XL, Hong LL, Ling ZQ. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization. Cancer Manag Res 2020; 12:353-362. [PMID: 32021448 PMCID: PMC6970510 DOI: 10.2147/cmar.s210919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is critical in the compartmentalization of signaling cascades originating from the cytoplasmic membrane and various organelles. Scaffold proteins, such as progestin and adipoQ receptor (PAQR)3, specifically regulate this process, and have recently been identified in the Golgi apparatus. PAQR3 belongs to the PAQR family, and was recently described as a tumor suppressor. Accumulating evidence demonstrates PAQR3 is downregulated in different cancers to suppress its inhibitory effects on malignant potential. PAQR3 functions biologically through the pathological regulation of altered signaling pathways. Significant cell proliferation networks, including Ras proto-oncogene (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin, and vascular endothelial growth factor, are closely controlled by PAQR3 for physiologically relevant effects. Meanwhile, genetic/epigenetic susceptibility and environmental factors, may have functions in the downregulation of PAQR3 in human cancers. This study aimed to assess the subcellular localization of PAQR3 and determine its topological features and functional domains, summarizing its effects on cell signaling compartmentalization. The pathophysiological functions of PAQR3 in cancer pathogenesis, metabolic diseases, and developmental ailments were also highlighted.
Collapse
Affiliation(s)
- Lan Lei
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China.,The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Zhe-Nan Ling
- Department of Clinical Medicine, Medical College, Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Xiang-Liu Chen
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Lian-Lian Hong
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Zhi-Qiang Ling
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| |
Collapse
|
26
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
27
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
28
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
29
|
Meng ID, Barton ST, Goodney I, Russell R, Mecum NE. Progesterone Application to the Rat Forehead Produces Corneal Antinociception. Invest Ophthalmol Vis Sci 2019; 60:1706-1713. [PMID: 31013343 PMCID: PMC6736375 DOI: 10.1167/iovs.18-26049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Ocular pain and discomfort are the most defining symptoms of dry eye disease. We determined the ability of topical progesterone to affect corneal sensitivity and brainstem processing of nociceptive inputs. Methods Progesterone or vehicle gel was applied to the shaved forehead in male Sprague Dawley rats. As a site control, gel also was applied to the cheek on the side contralateral to corneal stimulation. Corneal mechanical thresholds were determined using the Cochet-Bonnet esthesiometer in intact and lacrimal gland excision–induced dry eye animals. Eye wipe behaviors in response to hypertonic saline and capsaicin were examined, and corneal mustard oil-induced c-Fos immunohistochemistry was quantified in the brainstem spinal trigeminal nucleus. Results Progesterone gel application to the forehead, but not the contralateral cheek, increased corneal mechanical thresholds in intact and lacrimal gland excision animals beginning <30 minutes after treatment. Subcutaneous injection of the local anesthetic bupivacaine into the forehead region before application of progesterone prevented the increase in corneal mechanical thresholds. Furthermore, progesterone decreased capsaicin-evoked eye wipe behavior in intact animals and hypertonic saline evoked eye wipe behavior in dry eye animals. The number of Fos-positive neurons located in the caudal region of the spinal trigeminal nucleus after corneal mustard oil application was reduced in progesterone-treated animals. Conclusions Results from this study indicate that progesterone, when applied to the forehead, produces analgesia as indicated by increased corneal mechanical thresholds and decreased nociceptive responses to hypertonic saline and capsaicin.
Collapse
Affiliation(s)
- Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| | - Stephen T Barton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Ian Goodney
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Rachel Russell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Neal E Mecum
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States
| |
Collapse
|
30
|
Tanaka M, Ogaeri T, Samsonov M, Sokabe M. Nestorone exerts long-term neuroprotective effects against transient focal cerebral ischemia in adult male rats. Brain Res 2019; 1719:288-296. [DOI: 10.1016/j.brainres.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
|
31
|
Ren J, Chung-Davidson YW, Jia L, Li W. Genomic sequence analyses of classical and non-classical lamprey progesterone receptor genes and the inference of homologous gene evolution in metazoans. BMC Evol Biol 2019; 19:136. [PMID: 31262250 PMCID: PMC6604198 DOI: 10.1186/s12862-019-1463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 06/18/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nuclear progesterone receptor (nPR) is an evolutionary innovation in vertebrates that mediates genomic responses to progesterone. Vertebrates also respond to progesterone via membrane progesterone receptors (mPRs) or membrane associated progesterone receptors (MAPRs) through rapid nongenomic mechanisms. Lampreys are extant agnathan vertebrates, residing at the evolutionary juncture where vertebrates diverged from invertebrates. A survey of the progesterone receptor (PR) gene sequences in lamprey genomes would inform PR gene evolutionary events during the transition from invertebrates to vertebrates. RESULTS In this study, we annotated sequences of one nPR, four mPR (β, γ, δ and ε) and four MAPR genes from genomes of two lamprey species (Petromyzon marinus and Lethenteron japonicum). To infer the origin and evolutionary history of PR genes, we constructed phylogenetic trees of PR homologous sequences across representative species of metazoans. Phylogenetic analyses revealed that the mPRγ gene first appeared in non-bilaterians, and the mPRβ gene likely arose from a duplication of mPRγ. On the other hand, the mPRγ gene gave rise to the mPRδ and ε genes much later in the vertebrate lineage. In addition, the mPRα gene first appeared in cartilaginous fishes, likely derived from duplication of mPRβ after the agnathan-gnathostome divergence. All known MAPR genes were present in the lamprey genomes. Progesterone receptor membrane component 1 (PGRMC1), neudesin and neuferricin genes probably evolved in parallel in non-bilaterians, whereas two copies of PGRMC genes probably derived from duplication of ancestral PGRMC1 sequence and appeared before the speciation of lampreys. CONCLUSIONS Non-classical mPR and MAPR genes first evolved in non-bilaterians and classical nPR genes evolved later in basal vertebrates. Sequence repertoires for membrane progesterone receptor genes in vertebrates likely originated from an ancestral metazoan sequence and expanded via several duplication events.
Collapse
Affiliation(s)
- Jianfeng Ren
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Liang Jia
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
32
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
33
|
Progesterone relates to enhanced incisional acute pain and pinprick hyperalgesia in the luteal phase of female volunteers. Pain 2019; 160:1781-1793. [DOI: 10.1097/j.pain.0000000000001561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Novais A, Silva A, Ferreira AC, Falcão AM, Sousa N, Palha JA, Marques F, Sousa JC. Adult Hippocampal Neurogenesis Modulation by the Membrane-Associated Progesterone Receptor Family Member Neudesin. Front Cell Neurosci 2018; 12:463. [PMID: 30534059 PMCID: PMC6275434 DOI: 10.3389/fncel.2018.00463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Neudesin (Neuron-derived neurotrophic factor, NENF), a membrane-associated progesterone receptor family (MAPR) member, is a neuron secreted protein with neurotrophic properties during embryonic stages. However, its role in the adult brain is still poorly addressed. In this study we have used neudesin-null (Nenf−/−) mice and performed a characterization of the proliferation state of the adult neurogenic niches, the adult subventricular zone (SVZ) and the hippocampus subgranular zone (SGZ). Nenf−/− males did not presented any deficits in proliferation in the SVZ neither in vivo nor in vitro. On the other hand a decrease in cell proliferation in the SGZ was observed, as well as a decrease in the number of newborn neurons in the dentate gyrus (DG) that was accompanied by impaired context discrimination in a contextual fear conditioning (CFC) task. Since NENF neurotrophic action is suggested to occur via the formation of a progesterone stability complex for the activation of non-genomic cascade, we further evaluated progesterone metabolism in the absence of NENF. Interestingly, expression of progesterone catabolic rate-determining enzyme, 5-α-reductase was upregulated in the DG of Nenf−/−, together with a significant increase in the expression of the δGABAA receptor gene, involved in DG tonic inhibition. Taken together, these findings add in vivo evidence on the neurotrophic properties of NENF in the adult brain. Furthermore, the mechanism of action of NENF in this process might implicate neurosteroids modulation, at least in the DG.
Collapse
Affiliation(s)
- Ashley Novais
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Alberto Silva
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Mendanha Falcão
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Almeida Palha
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), Neuroscience Domain, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
35
|
Zhang R, Zhang Y, Wu M, Yan P, Izaz A, Wang R, Zhu H, Zhou Y, Wu X. Molecular cloning of androgen receptor and gene expression of sex steroid hormone receptors in the brain of newborn Chinese alligator (Alligator sinensis). Gene 2018; 674:178-187. [DOI: 10.1016/j.gene.2018.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
36
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
37
|
Role of Exogenous Progesterone in the Treatment of Men and Women with Substance Use Disorders: A Narrative Review. CNS Drugs 2018; 32:421-435. [PMID: 29761343 PMCID: PMC6235727 DOI: 10.1007/s40263-018-0525-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substance use disorders (SUDs) remain problematic as many individuals are untreated or do not benefit from the currently available interventions. Thus, there is an urgent need to develop novel pharmacological interventions to treat SUDs. Evidence suggests that the female sex hormone, progesterone, attenuates the craving for and the euphoric effects of drugs of abuse. Research to date has demonstrated that progesterone may modulate responses to drugs of abuse and may have utility as a novel treatment for SUDs. A literature search was conducted to identify and examine studies that administered exogenous progesterone. Sixteen publications were identified, exploring the utility of exogenous progesterone or its metabolite, allopregnanolone, among a range of substances, including amphetamines (one study), benzodiazepines (one study), cocaine (nine studies), and tobacco/nicotine (five studies). Results indicated that exogenous progesterone and, its metabolite allopregnanolone, demonstrated preliminary efficacy as a treatment for substance use in both men and women. Notably, progesterone appears to target negative affect and augment cognitive functioning, especially among female substance users. Additional research is needed to explore the potential use of exogenous progesterone and allopregnanolone in the treatment of SUDs, including that associated with alcohol and opioids, but considering the current promising findings, exogenous progesterone and allopregnanolone may have utility as novel pharmacological treatments for SUDs.
Collapse
|
38
|
Aguilar-Díaz H, Nava-Castro KE, Escobedo G, Domínguez-Ramírez L, García-Varela M, Del Río-Araiza VH, Palacios-Arreola MI, Morales-Montor J. A novel progesterone receptor membrane component (PGRMC) in the human and swine parasite Taenia solium: implications to the host-parasite relationship. Parasit Vectors 2018. [PMID: 29523160 PMCID: PMC5845172 DOI: 10.1186/s13071-018-2703-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background We have previously reported that progesterone (P4) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. Methods By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Results Our results show that P4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P4-binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P4-binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Conclusion Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the field of host-parasite co-evolution as well as the sex-associated susceptibility to this infection. In a more practical matter, present results may contribute to the molecular design of new drugs with anti-parasite actions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2703-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Aguilar-Díaz
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, CP 62550, Jiutepec, Morelos, Mexico
| | - Karen E Nava-Castro
- Laboratorio de Genotoxicología y Medicina Ambientales. Departamento de.Ciencias Ambientales. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Galileo Escobedo
- Unidad de Medicina Experimental, Hospital General de México "Dr. Eduardo Liceaga", 06726, México DF, Mexico
| | - Lenin Domínguez-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Sta. Catarina Mártir, Cholula, C.P 72810, Puebla, Mexico
| | - Martín García-Varela
- Instituto de Biología, Universidad Nacional Autónoma de México, CP 04510, Ciudad de Mexico, DF, Mexico
| | - Víctor H Del Río-Araiza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510, Ciudad de Mexico, DF, Mexico
| | - Margarita I Palacios-Arreola
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510, Ciudad de Mexico, DF, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510, Ciudad de Mexico, DF, Mexico.
| |
Collapse
|
39
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
40
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
41
|
Sundström-Poromaa I. The Menstrual Cycle Influences Emotion but Has Limited Effect on Cognitive Function. VITAMINS AND HORMONES 2018; 107:349-376. [DOI: 10.1016/bs.vh.2018.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Li B, Lin Z, Liang Q, Hu Y, Xu WF. PAQR6 Expression Enhancement Suggests a Worse Prognosis in Prostate Cancer Patients. Open Life Sci 2018; 13:511-517. [PMID: 33817121 PMCID: PMC7874734 DOI: 10.1515/biol-2018-0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/01/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression of progestin and adipoQ receptor family member VI (PAQR6, mPRδ) in prostate cancer and to explore its role in prostate cancer progression. METHODS PAQR6 mRNA expression was evaluated based on the data obtained from the TCGA database and the GEO database. The prognostic value of PAQR6 was explored by Kaplan-Meier analysis. To investigate the role of PAQR6, it was depleted by siRNA in DU145 cells. The effects of depleting PAQR6 on DU145 cell viability and migration were determined by CCK8 assay, colony formation assay, and wound healing assay, respectively. The activation of MEK and ERK were analyzed by western blot. RESULTS PAQR6 mRNA expression was significantly up-regulated in prostate cancer tissues and correlated with lower survival rates (p=0.014). Furthermore, qPCR revealed that PAQR6 expression was elevated in DU145 and LNCaP cells compared with RWPE-2 cells. Depleting PAQR6 obviously suppressed DU145 cell proliferation and migration (p<0.01). In addition, the ratio of p-MEK/MEK and p-ERK/ERK was significantly reduced after silencing PAQR6 (p<0.01). CONCLUSION PAQR6 might play a facilitating role in prostate cancer development by regulating the MAPK signaling pathway. Moreover, it might serve as a potential predictor and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Zhe Lin
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Quan Liang
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Yuan Hu
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| | - Wen-Feng Xu
- Department of Urology Surgery, The First People’s Hospital of Foshan, No.81 LingNan Road, Foshan, GuangDong 528000, P.R. China
| |
Collapse
|
43
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
44
|
Yousuf S, Brat DJ, Shu HK, Wang Y, Stein DG, Atif F. Progesterone improves neurocognitive outcomes following therapeutic cranial irradiation in mice. Horm Behav 2017; 96:21-30. [PMID: 28866326 DOI: 10.1016/j.yhbeh.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Despite improved therapeutic methods, CNS toxicity resulting from cancer treatment remains a major cause of post-treatment morbidity. More than half of adult patients with cranial irradiation for brain cancer develop neurobehavioral/cognitive deficits that severely impact quality of life. We examined the neuroprotective effects of the neurosteroid progesterone (PROG) against ionizing radiation (IR)-induced neurobehavioral/cognitive deficits in mice. Male C57/BL mice were exposed to one of two fractionated dose regimens of IR (3Gy×3 or 3Gy×5). PROG (16mg/kg; 0.16mg/g) was given as a pre-, concurrent or post-IR treatment for 14days. Mice were tested for short- and long-term effects of IR and PROG on neurobehavioral/cognitive function on days 10 and 30 after IR treatment. We evaluated both hippocampus-dependent and -independent memory functions. Locomotor activity, elevated plus maze, novel object recognition and Morris water maze tests revealed behavioral deficits following IR. PROG treatment produced improvement in behavioral performance at both time points in the mice given IR. Western blot analysis of hippocampal and cortical tissue showed that IR at both doses induced astrocytic activation (glial fibrillary acidic protein), reactive macrophages/microglia (CD68) and apoptosis (cleaved caspase-3) and PROG treatment inhibited these markers of brain injury. There was no significant difference in the degree of deficit in any test between the two dose regimens of IR at either time point. These findings could be important in the context of patients with brain tumors who may undergo radiotherapy and eventually develop cognitive deficits.
Collapse
Affiliation(s)
- Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Daniel J Brat
- Department of Pathology, Emory University Hospital Room H183, 1364 Clifton Rd NE, Atlanta, GA 30322, USA.
| | - Hui-Kuo Shu
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ya Wang
- Department of Radiation Oncology, 1365 C Clifton Rd NE, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Ovarian steroids act as respiratory stimulant and antioxidant against the causes and consequences of sleep-apnea in women. Respir Physiol Neurobiol 2017; 239:46-54. [DOI: 10.1016/j.resp.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022]
|
46
|
Mittelman-Smith MA, Wong AM, Micevych PE. Estrogen and Progesterone Integration in an in vitro Model of RP3V Kisspeptin Neurons. Neuroendocrinology 2017; 106:101-115. [PMID: 28384629 PMCID: PMC5750133 DOI: 10.1159/000471878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
Positive feedback on gonadotropin release requires not only estrogen but also progesterone to activate neural circuits. In rodents, ovarian estradiol (E2) stimulates progesterone synthesis in hypothalamic astrocytes (neuroP), needed for the luteinizing hormone (LH) surge. Kisspeptin (kiss) neurons are the principal stimulators of gonadotropin-releasing hormone neurons, and disruption of kiss signaling abrogates the LH surge. Similarly, blocking steroid synthesis in the hypothalamus or deleting classical progesterone receptor (PGR) selectively in kiss neurons prevents the LH surge. These results suggest a synergistic action of E2 and progesterone in kiss neurons to affect gonadotropin release. The mHypoA51, immortalized kiss-expressing neuronal cell line derived from adult female mice, is a tractable model for examining integration of steroid signaling underlying estrogen positive feedback. Here, we report that kiss neurons in vitro integrate E2 and progesterone signaling to increase levels of kiss translation and release. mHypoA51 neurons expressed nonclassical membrane progesterone receptors (mPRα and mPRβ) and E2-inducible PGR, required for progesterone-augmentation of E2-induced kiss expression. With astrocyte-conditioned media or in mHypoA51-astrocyte co-culture, neuroP augmented stimulatory effects of E2 on kiss protein. Progesterone activation of classical, membrane-localized PGR led to activation of MAPK and Src kinases. Importantly, progesterone or Src activation induced release of kiss from E2-primed mHypoA51 neurons. Consistent with previous studies, the present results provide compelling evidence that the interaction of E2 and progesterone stimulates kiss expression and release. Further, these results demonstrate a mechanism though which peripheral E2 may prime kiss neurons to respond to neuroP, mediating estrogen positive feedback.
Collapse
|
47
|
Russo V, Inglese C, Avallone L, Roperto F, Abate C, Zizzo N, Munday JS, Berardi F, Colabufo NA, Roperto S. Sigma 2 receptor expression levels in blood and bladder from healthy and bladder cancer cattle. Vet Comp Oncol 2017; 15:1503-1512. [DOI: 10.1111/vco.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Affiliation(s)
- V. Russo
- Dipartimento di Medicina Veterinaria e Produzioni Animali; Università di Napoli Federico II; Napoli Italy
| | - C. Inglese
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari; Bari Italy
| | - L. Avallone
- Dipartimento di Medicina Veterinaria e Produzioni Animali; Università di Napoli Federico II; Napoli Italy
| | - F. Roperto
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - C. Abate
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari; Bari Italy
| | - N. Zizzo
- Dipartimento di Medicina Veterinaria; Università di Bari; Bari Italy
| | - J. S. Munday
- College of Science; Massey University; Palmerston North New Zealand
| | - F. Berardi
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari; Bari Italy
| | - N. A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari; Bari Italy
| | - S. Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali; Università di Napoli Federico II; Napoli Italy
| |
Collapse
|
48
|
Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 2017; 1654:123-144. [PMID: 27590721 PMCID: PMC5283387 DOI: 10.1016/j.brainres.2016.08.042] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Carolyn M Johnson
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
| | - A Wren Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ezequiel M Galarce
- School of Public Health, University of California, Berkeley, Berkeley CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|
49
|
Minchenko DO, Riabovol OO, Ratushna OO, Minchenko OH. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocr Regul 2017; 51:8-19. [PMID: 28222026 DOI: 10.1515/enr-2017-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. METHODS The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. RESULTS Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. CONCLUSIONS Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes possibly contribute to the suppression of the cell proliferation. Most of these genes are regulated by hypoxia and preferentially through IRE1 signaling pathway of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- D O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - O O Riabovol
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O O Ratushna
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
50
|
Ohtani N, Iwano H, Suda K, Tsuji E, Tanemura K, Inoue H, Yokota H. Adverse effects of maternal exposure to bisphenol F on the anxiety- and depression-like behavior of offspring. J Vet Med Sci 2016; 79:432-439. [PMID: 28025458 PMCID: PMC5326953 DOI: 10.1292/jvms.16-0502] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, is metabolized and eliminated rapidly from the body in adult animals. However, many authors have reported that perinatal BPA exposure alters development of the brain, reproductive system and behavior in the next generation. Recently, BPA substitutes, especially bisphenol F (BPF), have been used because of concerns about the influence of BPA on children, although the actual effects on the next generation are unknown. In this study, we observed behavioral adverse effects of the offspring of mice exposed to BPA or BPF in fetal period. Female C57BL/6 mice were given oral BPA or BPF (0 or 10 mg/kg body weight) daily from gestational day 11.5 to 18.5. The open field test, the elevated plus maze test and the forced swim test were performed at postnatal week 10. BPF exposure altered offspring behavior significantly, resulting in increases in anxiety and depressive state. The influence of BPF was stronger than that of BPA. We demonstrated novel evidence that BPF influences the behavior of offspring.
Collapse
Affiliation(s)
- Naoko Ohtani
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|