1
|
Gregor A, Distel L, Ekici AB, Kirchner P, Uebe S, Krumbiegel M, Turan S, Winner B, Zweier C. Proteasomal activation ameliorates neuronal phenotypes linked to FBXO11-deficiency. HGG ADVANCES 2025; 6:100425. [PMID: 40114442 PMCID: PMC11999343 DOI: 10.1016/j.xhgg.2025.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Haploinsufficiency of FBXO11, encoding a ubiquitin ligase complex subunit, is associated with a variable neurodevelopmental disorder. So far, the underlying nervous system-related pathomechanisms are poorly understood, and specific therapies are lacking. Using a combined approach, we established an FBXO11-deficient human stem cell-based neuronal model using CRISPR-Cas9 and a Drosophila model using tissue-specific knockdown techniques. We performed transcriptomic analyses on iPSC-derived neurons and molecular phenotyping in both models. RNA sequencing revealed disrupted transcriptional networks related to processes important for neuronal development, such as differentiation, migration, and cell signaling. Consistently, we found that loss of FBXO11 leads to neuronal phenotypes such as impaired neuronal migration and abnormal proliferation/differentiation balance in human cultured neurons and impaired dendritic development and behavior in Drosophila. Interestingly, application of three different proteasome-activating substances could alleviate FBXO11-deficiency-associated phenotypes in both human neurons and flies. One of these substances is the long-approved drug Verapamil, opening the possibility of drug repurposing in the future. Our study shows the importance of FBXO11 for neurodevelopment and highlights the reversibility of related phenotypes, opening an avenue for potential development of therapeutic approaches through drug repurposing.
Collapse
Affiliation(s)
- Anne Gregor
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland.
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Soeren Turan
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Shandra O, Wang Y, Coles LD, Mowrey WB, Li Q, Liu W, Moshé SL, Galanopoulou AS. Efficacy and tolerability of celastrol and edaravone in the multiple-hit rat model of infantile spasms. Epilepsy Behav 2025; 162:110159. [PMID: 39577370 PMCID: PMC11681605 DOI: 10.1016/j.yebeh.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To test whether anti-inflammatory and antioxidant drugs that inhibit the nuclear factor kappa light chain enhancer of activated B cells (NF-kB), celastrol and edaravone, suppress spasms and improve developmental outcomes in the multiple-hit rat model of refractory infantile spasms (IS) due to structural lesions. METHODS Postnatal day 3 (PN3) Sprague-Dawley rats were treated according to the multiple-hit IS model protocol. Using a randomized, blinded, vehicle-controlled, dose- and time-response study design, we tested the effects of single celastrol [1, 2, or 4 mg/kg intraperitoneally (i.p.), 10-14 rats/group] or edaravone (1, 10 or 30 mg/kg i.p., 14-17 rats/group) injections vs their vehicles on behavioral and electroclinical spasms and developmental milestones. Video-EEG monitoring was done on PN6-7 (n = 11-12 rats/group). Pulse celastrol treatment effects (PN4: 4 mg/kg, PN5-6: 2 mg/kg/day i.p.) were determined on spasms, developmental milestones and Barnes maze. Celastrol and edaravone pharmacokinetics in plasma and neocortex were assessed. Linear mixed model analysis of raw or normalized log-transformed spasm frequencies, considering repeated observations was used. RESULTS Single (2-4 mg/kg i.p) or pulse celastrol, but not edaravone, reduced behavioral and electroclinical spasms frequencies within 5hrs. Pulse celastrol did not affect spasm-freedom, survival, developmental milestones or Barnes maze performance. Celastrol had erratic i.p. absorption with maximum concentrations observed between 2-4 h, when effects on spasms were seen. Edaravone had low blood-to-brain permeability. CONCLUSIONS Celastrol's efficacy on spasms is partially explained by its better brain penetration than edaravone's. NFkB inhibitors may be useful in treating drug-resistant IS but delivery methods with improved bioavailability and brain permeability are needed.
Collapse
Affiliation(s)
- Oleksii Shandra
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Yongjun Wang
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Lisa D Coles
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Wenzhu B Mowrey
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qianyun Li
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Wei Liu
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Solomon L Moshé
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Yehuda B, Rabinowich A, Zilberman A, Wexler Y, Haratz KK, Miller E, Sira LB, Hiersch L, Bashat DB. Reduced gyrification in fetal growth restriction with prenatal magnetic resonance images. Cereb Cortex 2024; 34:bhae250. [PMID: 38879758 DOI: 10.1093/cercor/bhae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/28/2024] [Accepted: 06/02/2024] [Indexed: 01/28/2025] Open
Abstract
Placental-related fetal growth restriction, resulting from placental dysfunction, impacts 3-5% of pregnancies and is linked to elevated risk of adverse neurodevelopmental outcomes. In response, the fetus employs a mechanism known as brain-sparing, redirecting blood flow to the cerebral circuit, for adequate supply to the brain. In this study we aimed to quantitatively evaluate disparities in gyrification and brain volumes among fetal growth restriction, small for gestational age and appropriate-for gestational-age fetuses. Additionally, we compared fetal growth restriction fetuses with and without brain-sparing. The study encompassed 106 fetuses: 35 fetal growth restriction (14 with and 21 without brain-sparing), 8 small for gestational age, and 63 appropriate for gestational age. Gyrification, supratentorial, and infratentorial brain volumes were automatically computed from T2-weighted magnetic resonance images, following semi-automatic brain segmentation. Fetal growth restriction fetuses exhibited significantly reduced gyrification and brain volumes compared to appropriate for gestational age (P < 0.001). Small for gestational age fetuses displayed significantly reduced gyrification (P = 0.038) and smaller supratentorial volume (P < 0.001) compared to appropriate for gestational age. Moreover, fetal growth restriction fetuses with BS demonstrated reduced gyrification compared to those without BS (P = 0.04), with no significant differences observed in brain volumes. These findings demonstrate that brain development is affected in fetuses with fetal growth restriction, more severely than in small for gestational age, and support the concept that vasodilatation of the fetal middle cerebral artery reflects more severe hypoxemia, affecting brain development.
Collapse
Affiliation(s)
- Bossmat Yehuda
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Aviad Rabinowich
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Department of Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ayala Zilberman
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | - Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Karina Krajden Haratz
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel Aviv Medical Center, Tel Aviv 64239 Israel
| | - Elka Miller
- Department of Diagnostic and Interventional Radiology, The Hospital of Sick Children, University of Toronto, Canada. Affiliate to CHEO, University of Ottawa, Ontario K1H 8M5, Canada
| | - Liat Ben Sira
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Liran Hiersch
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Obstetrics and Gynecology, Lis Maternity and Women's Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
4
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
5
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Fairbanks-Santana M, Rozet JM, Guemez-Gamboa A. PCDH12 loss results in premature neuronal differentiation and impeded migration in a cortical organoid model. Cell Rep 2023; 42:112845. [PMID: 37480564 PMCID: PMC10521973 DOI: 10.1016/j.celrep.2023.112845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Biallelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs). Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development, with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit the cell cycle and differentiate earlier when compared with wild type. Furthermore, we show that PCDH12 regulates neuronal migration and suggest that this could be through a mechanism requiring ADAM10-mediated ectodomain shedding and/or membrane recruitment of cytoskeleton regulators. Our results demonstrate a critical involvement of PCDH12 in cortical organoid development, suggesting a potential cause for the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Sean McDermott
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Devin Davies
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fikayo Fagbemi
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maya Epstein
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martín Fairbanks-Santana
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Papaioannou G, Garel C. The fetal brain: migration and gyration anomalies - pre- and postnatal correlations. Pediatr Radiol 2023; 53:589-601. [PMID: 35913508 DOI: 10.1007/s00247-022-05458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
The cerebral cortex represents a laminar structure of precisely spatially organized neurons in horizontal layers and vertical columns. Neurogenesis, neuronal migration and neuronal wiring are tightly regulated and coordinated procedures that result in the accurate formation of the human cerebral cortex. Abnormal fetal corticogenesis results in several types of migration and gyration anomalies, known as malformations of cortical development, which have long been a topic of investigation. According to the stage of cortical development that is affected, with diverse genetic and non-genetic etiologies, these malformations can cause abnormal head size, abnormal brain surface and abnormal cortical layering with various degrees of neurodevelopmental delay and epilepsy. The pathogenesis of these malformations is multifactorial and includes genetic mutations or environmental insults, acquired either in utero at varying stages of brain development or during the perinatal period after corticogenesis. In this article, we focus on cortical malformations detected on fetal MRI. We present the main antenatal findings that should raise suspicion for malformations of cortical development, together with findings that might be missed on prenatal imaging and describe the correlations between fetal and postnatal MRI.
Collapse
Affiliation(s)
- Georgia Papaioannou
- Department of Pediatric Radiology, Mitera Maternity and Children's Hospital, 6 Erythrou Stavrou str, 15123, Maroussi, Athens, Greece.
| | - Catherine Garel
- Service de Radiologie, Hôpital d'Enfants Armand-Trousseau APHP, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Guemez-Gamboa A. Impaired migration and premature differentiation underlie the neurological phenotype associated with PCDH12 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522934. [PMID: 36711630 PMCID: PMC9881913 DOI: 10.1101/2023.01.05.522934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Bi-allelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs) such as diencephalic-mesencephalic dysplasia syndrome, cerebral palsy, cerebellar ataxia, and microcephaly. Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit cell cycle and differentiate earlier when compared to wildtype. Furthermore, we show that PCDH12 regulates neuronal migration through a mechanism requiring ADAM10-mediated ectodomain shedding and membrane recruitment of cytoskeleton regulators. Our data demonstrate a critical and broad involvement of PCDH12 in cortical development, revealing the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
|
8
|
Cocchetto A, Gallucci A, Biggio F, Cantile C. Malformation of the Cortical Development Associated with Severe Clusters of Epileptic Seizures. Vet Sci 2022; 10:vetsci10010007. [PMID: 36669007 PMCID: PMC9865598 DOI: 10.3390/vetsci10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Three cases of the malformation of the cortical development are described: a mixed breed dog and a Border Collie pup with a focal and diffuse cortical dysplasia, respectively, and a kitten with lissencephaly. All cases presented with intractable epilepsy and were euthanized, due to the cluster of epileptic seizures. The gross examination at necropsy revealed the morphologic alteration of the telencephalic region in two cases. Histopathologically, a disorganization of the cortical lamination with the presence of megalic neurons, was found in the focal cortical dysplasia case. An altered organization of the white and gray matter, with a loss of the normal neuronal distribution and altered neurons, characterized the diffuse cortical dysplasia case. In the lissencephalic cat, there was no recognizable organization of the brain with areas of neuroglial tissue forming nodules in the leptomeningeal space. We strongly support the hypothesis that, as in humans, as well as in the veterinary patients, malformations of the cortical development could be the cause of refractory epilepsy.
Collapse
Affiliation(s)
- Aurora Cocchetto
- San Marco Veterinary Clinic and Laboratory, Neurology and Neurosurgery Division, 35030 Veggiano, Italy
- Correspondence:
| | | | - Federica Biggio
- Veterinary Neurological Centre “La Fenice”, 09047 Selargius, Italy
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa (PI), 56126 Pisa, Italy
| |
Collapse
|
9
|
Liaci C, Camera M, Zamboni V, Sarò G, Ammoni A, Parmigiani E, Ponzoni L, Hidisoglu E, Chiantia G, Marcantoni A, Giustetto M, Tomagra G, Carabelli V, Torelli F, Sala M, Yanagawa Y, Obata K, Hirsch E, Merlo GR. Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Front Cell Dev Biol 2022; 10:875468. [PMID: 36568982 PMCID: PMC9774038 DOI: 10.3389/fcell.2022.875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Mattia Camera
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ammoni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | | | - Luisa Ponzoni
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Enis Hidisoglu
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Giuseppe Chiantia
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | | | - Federico Torelli
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariaelvina Sala
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Yuchio Yanagawa
- Department of Genetic Behavioral Neuroscience, Gunma University, Maebashi, Japan
| | | | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy,*Correspondence: Giorgio R. Merlo,
| |
Collapse
|
10
|
Hickmott RA, Bosakhar A, Quezada S, Barresi M, Walker DW, Ryan AL, Quigley A, Tolcos M. The One-Stop Gyrification Station - Challenges and New Technologies. Prog Neurobiol 2021; 204:102111. [PMID: 34166774 DOI: 10.1016/j.pneurobio.2021.102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
The evolution of the folded cortical surface is an iconic feature of the human brain shared by a subset of mammals and considered pivotal for the emergence of higher-order cognitive functions. While our understanding of the neurodevelopmental processes involved in corticogenesis has greatly advanced over the past 70 years of brain research, the fundamental mechanisms that result in gyrification, along with its originating cytoarchitectural location, remain largely unknown. This review brings together numerous approaches to this basic neurodevelopmental problem, constructing a narrative of how various models, techniques and tools have been applied to the study of gyrification thus far. After a brief discussion of core concepts and challenges within the field, we provide an analysis of the significant discoveries derived from the parallel use of model organisms such as the mouse, ferret, sheep and non-human primates, particularly with regard to how they have shaped our understanding of cortical folding. We then focus on the latest developments in the field and the complementary application of newly emerging technologies, such as cerebral organoids, advanced neuroimaging techniques, and atomic force microscopy. Particular emphasis is placed upon the use of novel computational and physical models in regard to the interplay of biological and physical forces in cortical folding.
Collapse
Affiliation(s)
- Ryan A Hickmott
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Amy L Ryan
- Hastings Centre for Pulmonary Research, Department of Pulmonary, Critical Care and Sleep Medicine, USC Keck School of Medicine, University of Southern California, CA, USA and Department of Stem Cell and Regenerative Medicine, University of Southern California, CA, 90033, USA
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia; School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia; ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
11
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
12
|
del Castillo Velilla I, Martínez Jiménez M, Pascual Martín M, García Cabezas M. Lissencephaly, cerebellar hypoplasia, and extrahepatic biliary atresia: an unusual association. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Lisencefalia, hipoplasia cerebelar y atresia de vías biliares extrahepáticas: una asociación inusual. Neurologia 2020; 35:502-503. [DOI: 10.1016/j.nrl.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
|
14
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
15
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
16
|
Lee S, Kim SH, Kim B, Lee ST, Choi JR, Kim HD, Lee JS, Kang HC. Genetic diagnosis and clinical characteristics by etiological classification in early-onset epileptic encephalopathy with burst suppression pattern. Epilepsy Res 2020; 163:106323. [PMID: 32247221 DOI: 10.1016/j.eplepsyres.2020.106323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/20/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Early-onset epileptic encephalopathies with burst suppression (EOEE-BS) are a group of neonatal epileptic syndromes characterized by intractable epilepsy and severe psychomotor delay with structural and metabolic factors accounting for major etiologies. However, recent advances in gene sequencing have identified that genetic factors might also play a significant role in the development of EOEE-BS. Herein, we used various genetic tests to identify pathogenic genetic variants in EOEE-BS irrespective of structural malformations and analyzed the clinical features associated with each different etiology. METHODS A total of 48 patients with EOEE-BS were included. Except for patients with severe hypoxic damage, patients with structural malformations were included in our patient cohort. Clinical features of the patients were reviewed, and etiological diagnoses were made based on several genetic tests, metabolic studies, and radiological findings. RESULT A genetic diagnosis was made in 31 (64.6 %) patients, with the most commonly diagnosed gene being STXBP1 (n = 13, 27.1 %), followed by KCNQ2 (n = 5, 10.4 %), SCN2A (n = 5, 10.4 %), DEPDC5 (n = 3, 6.3 %), CASK (n = 1, 2.1 %), CDKL5 (n = 1, 2.1 %), GNAO1 (n = 1, 2.1 %), SLC6A8 (n = 1, 2.1 %), and LIS1 deletion (n = 1, 2.1 %). Other than the classification of epilepsy syndrome, no clinical features were associated with the genetically diagnosed group. Among eight patients with structural malformations, genetic diagnosis was achieved in five (62.5 %), and those patients had pathogenic mutations in DEPDC5 and CASK or LIS1 deletion, indicating the significance of gene sequencing irrespective of structural abnormalities. Treatment responses to a variety of medications and the ketogenic diet differed by etiology, and surgical resection proved to be effective in patients with cortical dysplasia. CONCLUSION Genetic etiologies are an important factor in EOEE-BS irrespective of structural malformations and the treatment options may differ by etiology.
Collapse
Affiliation(s)
- Sangbo Lee
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Borahm Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Thiffault I, Atherton A, Heese BA, T Abdelmoity A, Pawar K, Farrow E, Zellmer L, Miller N, Soden S, Saunders C. Pathogenic variants in KPTN gene identified by clinical whole-genome sequencing. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a003970. [PMID: 32358097 PMCID: PMC7304362 DOI: 10.1101/mcs.a003970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus is not rare in critically ill intensive care unit patients, but its diagnosis is often delayed or missed. The mortality for convulsive status epilepticus is dependent on the underlying aetiologies and the age of the patients and thus varies from study to study. In this context, effective molecular diagnosis in a pediatric patient with a genetically heterogeneous phenotype is essential. Homozygous or compound heterozygous variants in KPTN have been recently associated with a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. We describe a comprehensive investigation of a 9-yr-old male patient who was admitted to the intensive care unit, with focal epilepsy, static encephalopathy, autism spectrum disorder, and macrocephaly of unknown etiology, who died of status epilepticus. Clinical whole-genome sequencing revealed compound heterozygous variants in the KPTN gene. The first variant is a previously characterized 18-bp in-frame duplication (c.714_731dup) in exon 8, resulting in the protein change p.Met241_Gln246dup. The second variant, c.394 + 1G > A, affects the splice junction of exon 3. These results are consistent with a diagnosis of autosomal recessive KPTN-related disease. This is the fourth clinical report for KPTN deficiency, providing further evidence of a wider range of severity.
Collapse
Affiliation(s)
- Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA
| | - Andrea Atherton
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Bryce A Heese
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Ahmed T Abdelmoity
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Kailash Pawar
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA.,Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Lee Zellmer
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA
| | - Sarah Soden
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA.,Department of Pediatrics, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA
| | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri 64108, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, Missouri 64108, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108, USA
| |
Collapse
|
18
|
Wilton KM, Morales‐Rosado JA, Selcen D, Muthusamy K, Ewing S, Agre K, Nickels K, Klee EW, Ho M, Morava E. Developmental brain abnormalities and acute encephalopathy in a patient with myopathy with extrapyramidal signs secondary to pathogenic variants in MICU1. JIMD Rep 2020; 53:22-28. [PMID: 32395406 PMCID: PMC7203647 DOI: 10.1002/jmd2.12114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria play a variety of roles in the cell, far beyond their widely recognized role in ATP generation. One such role is the regulation and sequestration of calcium, which is done with the help of the mitochondrial calcium uniporter (MCU) and its regulators, MICU1 and MICU2. Genetic variations in MICU1 and MICU2 have been reported to cause myopathy, developmental disability and neurological symptoms typical of mitochondrial disorders. The symptoms of MICU1/2 deficiency have generally been attributed to calcium regulation in the metabolic and biochemical roles of mitochondria. Here, we report a female child with heterozygous MICU1 variants and multiple congenital brain malformations on MRI. Specifically, she shows anterior perisylvian polymicrogyria, dysmorphic basal ganglia, and cerebellar dysplasia in addition to white matter abnormalities. These novel findings suggest that MICU1 is necessary for proper neurodevelopment through a variety of potential mechanisms, including calcium-mediated regulation of the neuronal cytoskeleton, Miro1-MCU complex-mediated mitochondrial movement, or enhancing ATP production. This case provides new insight into the molecular pathogenesis of MCU dysfunction and may represent a novel diagnostic feature of calcium-based mitochondrial disease.
Collapse
Affiliation(s)
- Katelynn M. Wilton
- Medical Scientist Training Program, Mayo Clinic Alix College of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Joel A. Morales‐Rosado
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesotaUSA
| | - Duygu Selcen
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | - Sarah Ewing
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Katherine Agre
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | | | - Eric W. Klee
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesotaUSA
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Mai‐Lan Ho
- Department of RadiologyNationwide Children's HospitalColumbusOhioUSA
| | - Eva Morava
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
19
|
Sawahata M, Mori D, Arioka Y, Kubo H, Kushima I, Kitagawa K, Sobue A, Shishido E, Sekiguchi M, Kodama A, Ikeda R, Aleksic B, Kimura H, Ishizuka K, Nagai T, Kaibuchi K, Nabeshima T, Yamada K, Ozaki N. Generation and analysis of novel Reln-deleted mouse model corresponding to exonic Reln deletion in schizophrenia. Psychiatry Clin Neurosci 2020; 74:318-327. [PMID: 32065683 PMCID: PMC7318658 DOI: 10.1111/pcn.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
AIM A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia. METHODS A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed. RESULTS The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice. CONCLUSION The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hisako Kubo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kanako Kitagawa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Takeshita Y, Ohto T, Enokizono T, Tanaka M, Suzuki H, Fukushima H, Uehara T, Takenouchi T, Kosaki K, Takada H. Novel ARX mutation identified in infantile spasm syndrome patient. Hum Genome Var 2020; 7:9. [PMID: 32257294 PMCID: PMC7109071 DOI: 10.1038/s41439-020-0094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
We report a 7-year-old boy with infantile spasms caused by a novel mutation in the Aristaless-related homeobox (ARX) gene. He showed infantile spasms and hypsarrhythmia on electroencephalogram from early infancy. Brain MRI did not reveal severe malformation of the brain except mild hypoplasia of the corpus callosum. Two-fold adrenocorticotropic hormone (ACTH) therapy failed to control the seizures, and ketogenic diet therapy and multi-antiepileptic drug therapy were required as he showed intractable daily tonic-clonic seizures. Exome sequencing identified a hemizygous mutation in the ARX gene, NG_008281.1(ARX_v001):c.1448 + 1 G > A, chrX: 25025227 C > T (GRCh37). To our knowledge, this mutation has not been reported previously.
Collapse
Affiliation(s)
- Yohei Takeshita
- Department of Pediatrics, Ibaraki Seinan Medical Center Hospital, Sakai-machi, Japan
| | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Siehr MS, Massey CA, Noebels JL. Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis Model Mech 2020; 13:dmm042515. [PMID: 32033960 PMCID: PMC7132796 DOI: 10.1242/dmm.042515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
X-linked infantile spasms syndrome (ISSX) is a clinically devastating developmental epileptic encephalopathy with life-long impact. Arx(GCG)10+7 , a mouse model of the most common triplet-repeat expansion mutation of ARX, exhibits neonatal spasms, electrographic phenotypes and abnormal migration of GABAergic interneuron subtypes. Neonatal presymptomatic treatment with 17β-estradiol (E2) in Arx(GCG)10+7 reduces spasms and modifies progression of epilepsy. Cortical pathology during this period, a crucial point for clinical intervention in ISSX, has largely been unexplored, and the pathogenic cellular defects that are targeted by early interventions are unknown. In the first postnatal week, we identified a transient wave of elevated apoptosis in Arx(GCG)10+7 mouse cortex that is non-Arx cell autonomous, since mutant Arx-immunoreactive (Arx+) cells are not preferentially impacted by cell death. NeuN+ (also known as Rbfox3) survival was also not impacted, suggesting a vulnerable subpopulation in the immature Arx(GCG)10+7 cortex. Inflammatory processes during this period might explain this transient elevation in apoptosis; however, transcriptomic and immunohistochemical profiling of several markers of inflammation revealed no innate immune activation in Arx(GCG)10+7 cortex. Neither neonatal E2 hormone therapy, nor ACTH(1-24), the frontline clinical therapy for ISSX, diminished the augmented apoptosis in Arx(GCG)10+7 , but both rescued neocortical Arx+ cell density. Since early E2 treatment effectively prevents seizures in this model, enhanced apoptosis does not solely account for the seizure phenotype, but may contribute to other aberrant brain function in ISSX. However, since both hormone therapies, E2 and ACTH(1-24), elevate the density of cortical Arx+-interneurons, their early therapeutic role in other neurological disorders hallmarked by interneuronopathy should be explored.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meagan S Siehr
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cory A Massey
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
22
|
Chang HY, Cheng HY, Tsao AN, Liu C, Tsai JW. Multiple Functions of KBP in Neural Development Underlie Brain Anomalies in Goldberg-Shprintzen Syndrome. Front Mol Neurosci 2019; 12:265. [PMID: 31736709 PMCID: PMC6838004 DOI: 10.3389/fnmol.2019.00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Kinesin-binding protein (KBP; KIF1BP; KIAA1279) functions as a regulator for a subset of kinesins, many of which play important roles in neural development. Previous studies have shown that KBP is expressed in nearly all tissue with cytoplasmic localization. Autosomal recessive mutations in KIAA1279 cause a rare neurological disorder, Goldberg-Shprintzen syndrome (GOSHS), characterized by microcephaly, polymicrogyria, intellectual disability, axonal neuropathy, thin corpus callosum and peripheral neuropathy. Most KIAA1279 mutations found in GOSHS patients are homozygous nonsense mutations that result in KBP loss-of-function. However, it is not fully understood how KBP dysfunction causes these defects. Here, we used in utero electroporation (IUE) to express KBP short hairpin RNA (shRNA) with green fluorescent protein (GFP) in neural progenitor cells of embryonic day (E) 14 mice, and collected brain slices at different developmental stages. By immunostaining of neuronal lineage markers, we found that KBP knockdown does not affect the neural differentiation process. However, at 4 days post IUE, many cells were located in the intermediate zone (IZ). Moreover, at postnatal day (P) 6, about one third of the cells, which have become mature neurons, remained ectopically in the white matter (WM), while cells that have reached Layer II/III of the cortex showed impaired dendritic outgrowth and axonal projection. We also found that KBP knockdown induces apoptosis during the postnatal period. Our findings indicate that loss of KBP function leads to defects in neuronal migration, morphogenesis, maturation, and survival, which may be responsible for brain phenotypes observed in GOSHS.
Collapse
Affiliation(s)
- Hsin-Yun Chang
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Ni Tsao
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chen Liu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
24
|
Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells 2019; 8:cells8070669. [PMID: 31269740 PMCID: PMC6678821 DOI: 10.3390/cells8070669] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in tubulin genes are responsible for a large spectrum of brain malformations secondary to abnormal neuronal migration, organization, differentiation and axon guidance and maintenance. Motor impairment, intellectual disability and epilepsy are the main clinical symptoms. In the present study 15 patients from a personal cohort and 75 from 21 published studies carrying mutations in TUBA1A, TUBB2B and TUBB3 tubulin genes were evaluated with the aim to define a clinical and electrophysiological associated pattern. Epilepsy shows a wide range of severity without a specific pattern. Mutations in TUBA1A (60%) and TUBB2B (74%) and TUBB3 (25%) genes are associated with epilepsy. The accurate analysis of the Electroencephalogram (EEG) pattern in wakefulness and sleep in our series allows us to detect significant abnormalities of the background activity in 100% of patients. The involvement of white matter and of the inter-hemispheric connection structures typically observed in tubulinopathies is evidenced by the high percentage of asynchronisms in the organization of sleep activity recorded. In addition to asymmetries of the background activity, excess of slowing, low amplitude and Magnetic Resonance (MR) imaging confirm the presence of extensive brain malformations involving subcortical and midline structures. In conclusion, epilepsy in tubulinopathies when present has a favorable evolution over time suggesting a not particularly aggressive therapeutic approach.
Collapse
|
25
|
Yildirimer L, Zhang Q, Kuang S, Cheung CWJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards
in vitro
disease models of the central nervous system. Biofabrication 2019; 11:032003. [DOI: 10.1088/1758-5090/ab17aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Vontell R, Supramaniam VG, Davidson A, Thornton C, Marnerides A, Holder-Espinasse M, Lillis S, Yau S, Jansson M, Hagberg HE, Rutherford MA. Post-mortem Characterisation of a Case With an ACTG1 Variant, Agenesis of the Corpus Callosum and Neuronal Heterotopia. Front Physiol 2019; 10:623. [PMID: 31231230 PMCID: PMC6558385 DOI: 10.3389/fphys.2019.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
Abstract
Cytoplasmic Actin Gamma 1 (ACTG1) gene variant are autosomal dominant and can cause CNS anomalies (Baraitser Winter Malformation Syndrome; BWMS). ACTG1 anomalies in offspring include agenesis of the corpus callosum (ACC) and neuronal heterotopia which are ectopic nodules of nerve cells that failed to migrate appropriately. Subcortical and periventricular neuronal heterotopia have been described previously in association with ACC. In this case report, we investigated a neonatal brain with an ACTG1 gene variant and a phenotype of ACC, and neuronal heterotopia (ACC-H) which was diagnosed on antenatal MR imaging and was consistent with band heterotopia seen on post-mortem brain images. Histologically clusters of neurons were seen in both the subcortical and periventricular white matter (PVWM) brain region that coincided with impaired abnormalities in glial formation. Immunohistochemistry was performed on paraffin-embedded brain tissue blocks from this case with ACTG1 variant and an age-matched control. Using tissue sections from the frontal lobe, we examined the distribution of neuronal cells (HuC/HuD, calretinin, and parvalbumin), growth cone (drebrin), and synaptic proteins (synaptophysin and SNAP-25). Additionally, we investigated how the ACTG1 variant altered astroglia (nestin, GFAP, vimentin); oligodendroglia (OLIG2) and microglia (Iba-1) in the corpus callosum, cortex, caudal ganglionic eminence, and PVWM. As predicted in the ACTG1 variant case, we found a lack of midline radial glia and glutamatergic fibers. We also found disturbances in the cortical region, in glial cells and a lack of extracellular matrix components in the ACTG1 variant. The caudal ganglionic eminence and the PVWM regions in the ACTG1 variant lacked several cellular components that were identified in a control case. Within the neuronal heterotopia, we found evidence of glutamatergic and GABAergic neurons with apparent synaptic connections. The data presented from this case study with BWMS with variants in the ACTG1 gene provides insight as to the composition of neuronal heterotopia, and how disturbances of important migratory signals may dramatically affect ongoing brain development.
Collapse
Affiliation(s)
- Regina Vontell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Veena G. Supramaniam
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Alice Davidson
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Andreas Marnerides
- Department of Cellular Pathology, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom
| | - Muriel Holder-Espinasse
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Suzanne Lillis
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Shu Yau
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Mattias Jansson
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Henrik E. Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Perinatal Center, Department of Physiology and Neuroscience – Department of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mary A. Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
27
|
Jimenez J, Herrera DA, Vargas SA, Montoya J, Castillo M. β-Tubulinopathy caused by a mutation of the TUBB2B gene: magnetic resonance imaging findings of the brain. Neuroradiol J 2019; 32:148-150. [PMID: 30704335 PMCID: PMC6410457 DOI: 10.1177/1971400919828142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with mutations in tubulin-related genes usually present with brain malformations, intellectual disability, epilepsy, microcephaly and ocular abnormalities. In these patients the diagnosis can be suggested by neuroimaging findings. We report a 5-year-old patient with characteristic magnetic resonance imaging findings including malformation of cortical development, fused basal ganglia, large head of the caudate nuclei, absent anterior limbs of the internal capsules, corpus callosum dysgenesis and dysplastic cerebellar vermis. Sequencing of the TUBB2B gene confirmed a heterozygous mutation: c. 260C>A (p. Pro87Gln).
Collapse
Affiliation(s)
| | | | | | - Jorge Montoya
- Division of Medical Genetics, Hospital Universitario San Vicente Fundación, Colombia
| | | |
Collapse
|
28
|
Haldipur P, Millen KJ. What cerebellar malformations tell us about cerebellar development. Neurosci Lett 2019; 688:14-25. [PMID: 29802918 PMCID: PMC6240394 DOI: 10.1016/j.neulet.2018.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Structural birth defects of the cerebellum, or cerebellar malformations, in humans, have long been recognized. However, until recently there has been little progress in elucidating their developmental pathogenesis. Innovations in brain imaging and human genetic technologies over the last 2 decades have led to better classifications of these disorders and identification of several causative genes. In contrast, cerebellar malformations in model organisms, particularly mice, have been the focus of intense study for more than 70 years. As a result, many of the molecular, genetic and cellular programs that drive formation of the cerebellum have been delineated in mice. In this review, we overview the basic epochs and key molecular regulators of the developmental programs that build the structure of the mouse cerebellum. This mouse-centric approach has been a useful to interpret the developmental pathogenesis of human cerebellar malformations. However, it is becoming apparent that we actually know very little regarding the specifics of human cerebellar development beyond what is inferred from mice. A better understanding of human cerebellar development will not only facilitate improved diagnosis of human cerebellar malformations, but also lead to the development of treatment paradigms for these important neurodevelopmental disorders.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; University of Washington, Department of Pediatrics, Division of Genetics, Seattle, WA, United States.
| |
Collapse
|
29
|
Katsarou AM, Li Q, Liu W, Moshé SL, Galanopoulou AS. Acquired parvalbumin-selective interneuronopathy in the multiple-hit model of infantile spasms: A putative basis for the partial responsiveness to vigabatrin analogs? Epilepsia Open 2018; 3:155-164. [PMID: 30564774 PMCID: PMC6293059 DOI: 10.1002/epi4.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
West syndrome, an age-specific epileptic encephalopathy, manifests with infantile spasms (IS) and impaired neurodevelopmental outcomes and epilepsy. The multiple-hit rat model of IS is a chronic model of IS due to structural etiology, in which spasms respond partially to vigabatrin analogs. Using this model, we investigated whether IS due to structural etiology may have deficits in parvalbumin (PRV) and somatostatin (SST) immunoreactive (-ir) interneurons, and calretinin-ir (CR-ir) neurons of the primary somatosensory cortex of postnatal day (PN) 20-24 rats, using specific immunohistochemical assays. PN3 Sprague-Dawley male rats underwent the multiple-hit induction protocol, were monitored until PN20-24, and were transcardially perfused to collect brains for histology. Age-matched sham and naive control male rats were also used. Coronal brain cryosections were stained with anti-PRV, anti-CR, and anti-SST antibodies, and regions of interest (ROIs) from the primary somatosensory cortices were selected to determine PRV-, CR-, and SST-ir cell counts and cortical ROI volumes, with blinding to experimental group. Statistical analyses were done using a linear mixed model accounting for repeated measures. We found PRV-ir interneuronal selective reduction, sparing of the CR-ir and SST-ir neurons, and bilateral cortical atrophy. Our findings provide evidence for acquired PRV-selective interneuronopathy, possibly underlying the pathogenesis of IS, neurodevelopmental deficits, and epilepsy, and potentially contributing to the partial response to vigabatrin analogs in this model.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Qianyun Li
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Wei Liu
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A.,Department of Pediatrics Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| |
Collapse
|
30
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
31
|
Sato T, Kato M, Moriyama K, Haraguchi K, Saitsu H, Matsumoto N, Moriuchi H. A case of tubulinopathy presenting with porencephaly caused by a novel missense mutation in the TUBA1A gene. Brain Dev 2018; 40:819-823. [PMID: 29907476 DOI: 10.1016/j.braindev.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Tubulinopathies include a wide spectrum of disorders ranging from abnormal ocular movement to severe brain malformations, and typically present as diffuse agyria or perisylvian pachygyria with microcephaly, agenesis of the corpus callosum, and cerebellar hypoplasia. They are caused by the dysfunction of tubulins encoded by tubulin-related genes, and the TUBA1A gene encoding alpha-1A tubulin is most frequently responsible for this clinical entity. Porencephaly is relatively rare among patients with the TUBA1A mutations. Mild case of tubulinopathy associated with porencephaly caused by a novel TUBA1A mutation. CASE REPORT The patient, a 10-month-old girl, presented with gross motor delay at 4 months of age and convulsions at 7 months of age. Brain magnetic resonance imaging showed porencephaly, occipital polymicrogyria, hypoplasia of the corpus callosum, volume loss of the white matter, dysgenesis of anterior limbs of internal capsules, non-separative basal ganglia, cerebellar hypoplasia, and dysplastic brainstem. We identified a novel de novo heterozygous missense mutation in the TUBA1A gene, c.381C > A (p.Asp127Glu), by whole-exome sequencing. DISCUSSION Microtubules composed of tubulins regulate not only neuronal migration but also cell division or axon guidance. Accordingly, tubulinopathy affects the cortical lamination, brain size, callosal formation, and white matter as seen in the present case. In contrast to the previously reported cases, the present case showed milder cortical dysgenesis with a rare manifestation of porencephaly. The genotype-phenotype correlation is still unclear, and this study expands the phenotypic range of tubulinopathy.
Collapse
Affiliation(s)
- Tatsuharu Sato
- Department of Pediatrics, Nagasaki University Hospital, Japan.
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Kaoru Moriyama
- Department of Pediatrics, Nagasaki University Hospital, Japan
| | - Kohei Haraguchi
- Department of Pediatrics, Nagasaki University Hospital, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | | |
Collapse
|
32
|
Tan AP, Chong WK, Mankad K. Comprehensive genotype-phenotype correlation in lissencephaly. Quant Imaging Med Surg 2018; 8:673-693. [PMID: 30211035 DOI: 10.21037/qims.2018.08.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malformations of cortical development (MCD) are a heterogenous group of disorders with diverse genotypic and phenotypic variations. Lissencephaly is a subtype of MCD caused by defect in neuronal migration, which occurs between 12 and 24 weeks of gestation. The continuous advancement in the field of molecular genetics in the last decade has led to identification of at least 19 lissencephaly-related genes, most of which are related to microtubule structural proteins (tubulin) or microtubule-associated proteins (MAPs). The aim of this review article is to bring together current knowledge of gene mutations associated with lissencephaly and to provide a comprehensive genotype-phenotype correlation. Illustrative cases will be presented to facilitate the understanding of the described genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Wui Khean Chong
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Tubulin genes and malformations of cortical development. Eur J Med Genet 2018; 61:744-754. [PMID: 30016746 DOI: 10.1016/j.ejmg.2018.07.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/03/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
Abstract
A large number of genes encoding for tubulin proteins are expressed in the developing brain. Each is subject to specific spatial and temporal expression patterns. However, most are highly expressed in post-mitotic neurons during stages of neuronal migration and differentiation. The major tubulin subclasses (alpha- and beta-tubulin) share high sequence and structural homology. These globular proteins form heterodimers and subsequently co-assemble into microtubules. Microtubules are dynamic, cytoskeletal polymers which play key roles in cellular processes crucial for cortical development, including neuronal proliferation, migration and cortical laminar organisation. Mutations in seven genes encoding alpha-tubulin (TUBA1A), beta-tubulin (TUBB2A, TUBB2B, TUBB3, TUBB4A, TUBB) and gamma-tubulin (TUBG1) isoforms have been associated with a wide and overlapping range of brain malformations or "Tubulinopathies". The majority of cortical phenotypes include lissencephaly, polymicrogyria, microlissencephaly and simplified gyration. Well-known hallmarks of the tubulinopathies include dysmorphism of the basal ganglia (fusion of the caudate nucleus and putamen with absence of the anterior limb of the internal capsule), midline commissural structures hypoplasia and/or agenesis (anterior commissure, corpus callosum and fornix), hypoplasia of the oculomotor and optic nerves, cerebellar hypoplasia or dysplasia and dysmorphism of the hind-brain structures. The cortical and extra-cortical brain phenotypes observed are largely dependent on the specific tubulin gene affected. In the present review, all the published data on tubulin family gene mutations and the associated cortical phenotypes are summarized. In addition, the most typical neuroimaging patterns of malformations of cortical development associated with tubulin gene mutations detected on the basis of our own experience are described.
Collapse
|
34
|
Shoukfeh O, Richards AB, Prouty LA, Hinrichsen J, Spencer WR, Langford MP. Case Report of Proliferative Peripheral Retinopathy in Two Familial Lissencephaly Infants with Miller-Dieker Syndrome. J Pediatr Genet 2018; 7:86-91. [PMID: 29707411 DOI: 10.1055/s-0037-1612638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
A complete ophthalmic examination is not routinely performed on infants with Miller-Dieker syndrome (MDS, chromosome 17p13.3 microdeletion). The authors present the cases of four cousins with MDS who also carried a 16p13.3 microduplication (not associated with Rubinstein-Taybi syndrome). Retinopathy of prematurity-like proliferative peripheral retinopathy (PPR) was detected in two male first cousins, but was not detected in the female half-cousins. PPR in the first infant resolved by 4 months, but the second infant's PPR progressed, requiring photocoagulation followed by lens-sparing vitrectomy. While ocular abnormalities are more prevalent and severe in other lissencephalopathies, the PPR in these MDS infants underscores the sight-saving potential of performing an ophthalmologic exam with early molecular testing for all lissencephaly infants.
Collapse
Affiliation(s)
- Omar Shoukfeh
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Alan B Richards
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Leonard A Prouty
- Departments of Pathology and Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - John Hinrichsen
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | | | - Marlyn P Langford
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| |
Collapse
|
35
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
36
|
Gueneau L, Fish RJ, Shamseldin HE, Voisin N, Tran Mau-Them F, Preiksaitiene E, Monroe GR, Lai A, Putoux A, Allias F, Ambusaidi Q, Ambrozaityte L, Cimbalistienė L, Delafontaine J, Guex N, Hashem M, Kurdi W, Jamuar SS, Ying LJ, Bonnard C, Pippucci T, Pradervand S, Roechert B, van Hasselt PM, Wiederkehr M, Wright CF, Xenarios I, van Haaften G, Shaw-Smith C, Schindewolf EM, Neerman-Arbez M, Sanlaville D, Lesca G, Guibaud L, Reversade B, Chelly J, Kučinskas V, Alkuraya FS, Reymond A, Reymond A. KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis. Am J Hum Genet 2018; 102:116-132. [PMID: 29290337 PMCID: PMC5777449 DOI: 10.1016/j.ajhg.2017.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands’ features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
37
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
38
|
ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience 2017. [PMID: 28627419 DOI: 10.1016/j.neuroscience.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
Collapse
|
39
|
Manganaro L, Bernardo S, De Vito C, Antonelli A, Marchionni E, Vinci V, Saldari M, Di Meglio L, Giancotti A, Silvestri E, Catalano C, Pizzuti A. Role of fetal MRI in the evaluation of isolated and non-isolated corpus callosum dysgenesis: results of a cross-sectional study. Prenat Diagn 2017; 37:244-252. [PMID: 27992967 DOI: 10.1002/pd.4990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE The aims of this study were to characterize isolated and non-isolated forms of corpus callosum dysgenesis (CCD) at fetal magnetic resonance imaging (MRI) and to identify early predictors of associated anomalies. METHODS We retrospectively analyzed 104 fetuses with CCD undergoing MRI between 2006 and 2016. Corpus callosum, cavum septi pellucidi, biometry, presence of ventriculomegaly, gyration anomalies, cranio-encephalic abnormalities and body malformations were evaluated. Results of genetic tests were also recorded. RESULTS At MRI, isolated CCD was 26.9%, the rest being associated to other abnormalities. In the isolated group, median gestational age at MRI was lower in complete agenesis than in hypoplasia (22 vs 28 weeks). In the group with additional findings, cortical dysplasia was the most frequently associated feature (P = 0.008), with a more frequent occurrence in complete agenesis (70%) versus other forms; mesial frontal lobes were more often involved than other cortical regions (P = 0.006), with polymicrogyria as the most frequent cortical malformation (40%). Multivariate analysis confirmed the association between complete agenesis and cortical dysplasia (odds ratio = 7.29, 95% confidence interval 1.51-35.21). CONCLUSIONS CCD is often complicated by other intra-cranial and extra-cranial findings (cortical dysplasias as the most prevalent) that significantly affect the postnatal prognosis. The present study showed CCD with associated anomalies as more frequent than isolated (73.1%). In isolated forms, severe ventriculomegaly was a reliable herald of future appearance of associated features. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Bernardo
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Amanda Antonelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Casa Sollievo della Sofferenza, Istituto Mendel, Rome, Italy
| | - Valeria Vinci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Saldari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Letizia Di Meglio
- Private Prenatal Diagnostic Centre 'Diagnostica ecografica Aniello Di Meglio s.r.l.', Naples, Italy
| | - Antonella Giancotti
- Department of Obstetrics, Gynecology and Urologic Sciences, Sapienza, University of Rome, Rome, Italy
| | - Evelina Silvestri
- Surgical Pathology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Casa Sollievo della Sofferenza, Istituto Mendel, Rome, Italy
| |
Collapse
|
40
|
Sweet KM, Shaw DW, Chapman T. Cerebral palsy and seizures in a child with tubulinopathy pattern dysgenesis and focal cortical dysplasia. Radiol Case Rep 2017; 12:396-400. [PMID: 28491196 PMCID: PMC5417618 DOI: 10.1016/j.radcr.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
A 7-year-old boy with a history of spasticity, global developmental delay, and seizures was given the general diagnosis of cerebral palsy at an early age. Chromosomal array analysis performed at an outside center was normal. The patient's family sought neurodevelopmental pediatric care at a new institution following a move out of state. Electroencephalography confirmed abnormal epileptogenic activity. Brain magnetic resonance imaging showed findings consistent with a tubulin gene defect (tubulinopathy) and of focal cortical dysplasia, as well as evidence of a remote occipital lobe injury. This case report describes the various brain magnetic resonance findings suggestive of a tubulin gene defect and raises the possibility of focal cortical dysplasia manifesting as a result of tubulin dysfunction.
Collapse
Affiliation(s)
- Kevin M. Sweet
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dennis W.W. Shaw
- Department of Radiology, Seattle Children’s Hospital, Mail Stop MA.07.220, 4800 Sand Point Way NE, Seattle, WA 98105, USA
- Department of Radiology, University of Washington School of Medicine, Campus Box 359300, 1959 Pacific St, Seattle, WA 98195-9300, USA
| | - Teresa Chapman
- Department of Radiology, Seattle Children’s Hospital, Mail Stop MA.07.220, 4800 Sand Point Way NE, Seattle, WA 98105, USA
- Department of Radiology, University of Washington School of Medicine, Campus Box 359300, 1959 Pacific St, Seattle, WA 98195-9300, USA
- Corresponding author.
| |
Collapse
|
41
|
Kobayashi Y, Magara S, Okazaki K, Komatsubara T, Saitsu H, Matsumoto N, Kato M, Tohyama J. Megalencephaly, polymicrogyria and ribbon-like band heterotopia: A new cortical malformation. Brain Dev 2016; 38:950-953. [PMID: 27381655 DOI: 10.1016/j.braindev.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/27/2016] [Accepted: 06/12/2016] [Indexed: 11/25/2022]
Abstract
Megalencephalic polymicrogyria syndromes include megalencephaly-capillary malformation and megalencephaly-polymicrogyria-polydactyly-hydrocephalus. Recent genetic studies have identified that genes in the PI3K-AKT pathway are involved in the pathogenesis of these disorders. Herein, we report a patient who presented with developmental delay, epilepsy and peculiar neuroimaging findings of megalencephaly, polymicrogyria, and symmetrical band heterotopia in the periventricular region. The heterotopias exhibited inhomogeneous signals with undulatory mixtures of gray and white matter, resembling ribbon-like heterotopia, with a predominance in the temporal to occipital regions. These neuroradiological findings were not consistent with those in known megalencephalic polymicrogyria syndromes. No genetic abnormality was identified through whole-exome sequencing. The neuroimaging findings of this patient may represent a novel cortical malformation involving megalencephaly with polymicrogyria and ribbon-like band heterotopia.
Collapse
Affiliation(s)
- Yu Kobayashi
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Japan.
| | - Shinichi Magara
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Japan
| | - Kenichi Okazaki
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Japan
| | - Takao Komatsubara
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Japan; Niigata University Medical and Dental Hospital, Japan
| |
Collapse
|
42
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|
43
|
Siehr MS, Noebels JL. Early rescue of interneuron disease trajectory in developmental epilepsies. Curr Opin Neurobiol 2015; 36:82-8. [PMID: 26517286 DOI: 10.1016/j.conb.2015.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
The discovery of over 150 monogenic epilepsies and advances in early genetic diagnoses have launched a search for molecular strategies and developmental timetables to reverse or even prevent the course of these debilitating brain disorders. Orthologous rodent models of key disease genes are providing important examples of the range of targets, and serve as valuable test systems for perinatal therapeutic approaches. While gene-specific analyses of single rare 'orphan' diseases are each narrow in scope, they illuminate downstream pathways converging onto interneurons, and treatments that strengthen inhibition during cortical maturation may provide broad protection against these seemingly disparate gene errors. Several genes, even those linked to malformations, show promise for postnatal correction before the onset of their clinical phenotype.
Collapse
Affiliation(s)
- Meagan S Siehr
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|