1
|
Shibu P, Ra D, Robins JE, Joseph S, Anteraper S. Terra Incognita - Contributions of the Olivo-Cerebellar System to Autism Spectrum Disorder. CEREBELLUM (LONDON, ENGLAND) 2025; 24:93. [PMID: 40316858 DOI: 10.1007/s12311-025-01843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
The inferior olivary nuclei (ION), a key component of the olivo-cerebellar system, remain understudied in autism spectrum disorder (ASD) research despite evident cerebellar involvement. This perspective piece aims to elucidate the critical role of the ION in cerebellar microcircuitry and its potential implications in ASD pathophysiology. We review the olivo- cerebellar system and the structural and functional alterations of the ION in autism, highlighting findings from neuroanatomical, neuroimaging, and behavioral studies. ION disruptions, although underexplored, may have a major role in the symptomatology of ASD, particularly higher-order cognitive abilities, rapid stimuli processing, and motor coordination. Specifically, we highlight how anomalies in olivary neuron morphology and olivo-cerebellar connectivity patterns may underlie deficits in temporal processing and motor learning observed in ASD. Furthermore, we discuss the challenges in brainstem imaging and recent advancements in ultra-high field (UHF) 7 T MRI technology, as standard neuroimaging techniques. As these neuroimaging techniques continue to evolve, further investigation of the functional territories of the ION holds promise for providing essential understandings into ASD processes and may lead to pioneering therapeutic options targeting this crucial brainstem area.
Collapse
Affiliation(s)
- Pranav Shibu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Ra
- Program in Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jemima Elise Robins
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Sheeba Anteraper
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Luo Y, Chen Q, Li F, Yi L, Xu P, Zhang Y. Hierarchical feature extraction on functional brain networks for autism spectrum disorder identification with resting-state fMRI data. Neural Netw 2025; 188:107450. [PMID: 40233539 DOI: 10.1016/j.neunet.2025.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Autism Spectrum Disorder (ASD) is a pervasive developmental disorder of the central nervous system, primarily manifesting in childhood. It is characterized by atypical and repetitive behaviors. Conventional diagnostic methods mainly rely on questionnaire surveys and behavioral observations, which are prone to misdiagnosis due to their subjective nature. With advancements in medical imaging, MR imaging-based diagnostics have emerged as a more objective alternative. In this paper, we propose a Hierarchical Neural Network model for ASD identification, termed ASD-HNet, which hierarchically extracts features from functional brain networks based on resting-state functional magnetic resonance imaging (rs-fMRI) data. This hierarchical approach enhances the extraction of brain representations, improving diagnostic accuracy and aiding in the identification of brain regions associated with ASD. Specifically, features are extracted at three levels, i.e., the local region of interest (ROI) scale, the community scale, and the global representation scale. At the ROI scale, graph convolution is employed to transfer features between ROIs. At the community scale, functional gradients are introduced, and a K-Means clustering algorithm is applied to group ROIs with similar functional gradients into communities. Features from ROIs within the same community are then extracted to characterize the communities. At the global representation scale, we extract global features from the whole community-scale brain networks to represent the entire brain. We validate the effectiveness of the ASD-HNet model using the publicly available Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, ADHD-200,dataset and ABIDE-II dataset. Extensive experimental results demonstrate that ASD-HNet outperforms existing baseline methods. The code is available at https://github.com/LYQbyte/ASD-HNet.
Collapse
Affiliation(s)
- Yiqian Luo
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Qiurong Chen
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Fali Li
- MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yi
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Peng Xu
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yangsong Zhang
- Laboratory for Brain Science and Artificial Intelligence, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China; MOE Key Laboratory for NeuroInformation, Clinical Hospital of Chengdu Brain Science Institute, and Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Qu H, Wang J, Shirley DJ, Gemmell HM, Christensen D, Orlando A, Romero RA, Zielinski BA, Wang Z. Atypical Postural Control Variability and Coordination Persist Into Middle and Older Adulthood in Autism Spectrum Disorder. Autism Res 2025; 18:752-764. [PMID: 40103348 PMCID: PMC12015802 DOI: 10.1002/aur.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Postural control deviations remain largely unexplored in middle aged and older autistic adults. With the increased prevalence of neurodegenerative conditions and heightened fall risk, precise quantification of postural variability and coordination may provide valuable insights into aging associated neuromotor deviations in autistic adults. Forty-seven autistic and 48 non-autistic individuals completed static stance, anterior-posterior (AP), and mediolateral (ML) postural sway on a force platform. Center of pressure (COP) metrics were derived and interpreted using ANCOVAs for between-group comparisons and multilinear regressions for group × age interaction. Correlations between clinical measures and COP variables that differentiated groups were explored. Compared to non-autistic individuals, autistic adults exhibited greater COP standard deviation (COPSD) and COP trajectory length during static stance and demonstrated significant COPSD-AP reductions in older age. Autistic adults also exhibited decreased COP range of motion (ROM) but increased ROM variability in the target direction during dynamic stance. Autistic adults' postural sway was jerkier during dynamic stance, and increased ROM variability during dynamic AP sway was moderately associated with lower verbal IQ in autistic adults. Our findings highlight persistent postural control deviations in middle aged and older autistic adults. Static and dynamic stance are differentially associated with unique profiles of postural control in ASD. Specifically, autistic adults demonstrated pronounced increases in postural sway variability during static stance, while reducing coordination during dynamic conditions. The extent to which postural control deviations found in autistic adults are predictive to the onset of neurodegenerative conditions and the severity of falls warrants future longitudinal research.
Collapse
Affiliation(s)
- Hang Qu
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Desirae J. Shirley
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Hanna M. Gemmell
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Ann‐Marie Orlando
- Center for Autism and Related Disabilities (CARD)University of FloridaGainesvilleFloridaUSA
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Regilda A. Romero
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Brandon A. Zielinski
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of Pediatrics, Neurology, and NeuroscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of PsychologyUniversity of FloridaGainesvilleFloridaUSA
- Rehabilitation Science ProgramUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
4
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
5
|
Bojanek EK, Kelly SE, Schmitt LM, Pulver SL, Sweeney JA, Sprenger A, Unruh KE, Mosconi MW. Sensorimotor Behavior in Individuals With Autism Spectrum Disorder and Their Unaffected Biological Parents. Autism Res 2025; 18:498-514. [PMID: 39957414 PMCID: PMC11929603 DOI: 10.1002/aur.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
Sensorimotor impairments are common in autism spectrum disorder (ASD) and evident in unaffected first-degree relatives, suggesting that they may serve as endophenotypes associated with inherited autism likelihood. We tested the familiality of sensorimotor impairments in autism across multiple motor behaviors and effector systems and in relation to parental broader autism phenotypic (BAP) characteristics. Fifty-seven autistic individuals (probands), 109 parents, and 89 neurotypical control participants completed tests of manual motor and oculomotor control. Sensorimotor tests varied in their involvement of rapid, feedforward control and sustained, sensory feedback control processes. Subgroup analyses compared families with at least one parent showing BAP traits (BAP+) and those in which neither parent showed BAP traits (BAP-). Results show that probands with BAP- parents (BAP- probands) showed atypical control of rapid oculomotor behaviors, while BAP+ probands showed impairments of sustained manual motor and oculomotor behaviors compared to controls. BAP- parents showed impaired rapid oculomotor and sustained manual motor abilities relative to BAP+ parents and controls. Rapid oculomotor behaviors were highly intercorrelated among probands and their biological parents. These findings indicate that rapid oculomotor behaviors are selectively impacted in BAP- probands and their parents and may reflect a familial likelihood for autism independent of parental autistic traits. In contrast, sustained sensorimotor behaviors were affected in BAP+ probands and BAP- parents, suggesting separate familial pathways associated with autism. Finally, atypical saccade dynamics may serve as strong endophenotypes for autism. These findings provide new evidence that rapid and sustained sensorimotor alterations represent strong but separate familial pathways of inherited likelihood for autism.
Collapse
Affiliation(s)
- Erin K. Bojanek
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, The Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
- Life Span Institute and Kansas Center for Autism Research and Training, University of Kansas, Dole Human Development Center Room 1052, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Dole Human Development Center Room 2010, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Shannon E. Kelly
- Life Span Institute and Kansas Center for Autism Research and Training, University of Kansas, Dole Human Development Center Room 1052, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
- Scholars Strategy Network, 501 Boylston St. Suite 10A120, Boston, MA 02116, USA
- Department of Psychology, University of Kansas, 1415 Jayhawk Blvd., Lawrence, KS 66045, USA
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Stormi L. Pulver
- Department of Pediatrics, Marcus Autism Center, Emory University School of Medicine, 1920 Briarcliff Road NE, Atlanta, GA 30329, USA
| | - John A Sweeney
- Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Stetson Building Suite 3200, 260 Stetson Street, PO Box 670559, Cincinnati, OH 45267, USA
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Institute of Psychology II, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie Street, 23562 Lübeck, Germany
| | - Kathryn E. Unruh
- Life Span Institute and Kansas Center for Autism Research and Training, University of Kansas, Dole Human Development Center Room 1052, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Matthew W. Mosconi
- Life Span Institute and Kansas Center for Autism Research and Training, University of Kansas, Dole Human Development Center Room 1052, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Dole Human Development Center Room 2010, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Kshetri R, Beavers JO, Hyde R, Ewa R, Schwertman A, Porcayo S, Richardson BD. Behavioral decline in Shank3 Δex4-22 mice during early adulthood parallels cerebellar granule cell glutamatergic synaptic changes. Mol Autism 2024; 15:52. [PMID: 39633421 PMCID: PMC11616285 DOI: 10.1186/s13229-024-00628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND SHANK3, a gene encoding a synaptic scaffolding protein, is implicated in autism spectrum disorder (ASD) and is disrupted in Phelan-McDermid syndrome (PMS). Despite evidence of regression or worsening of ASD-like symptoms in individuals with PMS, the underlying mechanisms remain unclear. Although Shank3 is highly expressed in the cerebellar cortical granule cells, its role in cerebellar function and contribution to behavioral deficits in ASD models are unknown. This study investigates behavioral changes and cerebellar synaptic alterations in Shank3Δex4-22 mice at two developmental stages. METHODS Shank3Δex4-22 wildtype, heterozygous, and homozygous knockout mice lacking exons 4-22 (all functional isoforms) were subjected to a behavioral battery in both juvenile (5-7 weeks old) and adult (3-5 months old) mouse cohorts of both sexes. Immunostaining was used to show the expression of Shank3 in the cerebellar cortex. Spontaneous excitatory postsynaptic currents (sEPSCs) from cerebellar granule cells (CGCs) were recorded by whole-cell patch-clamp electrophysiology. RESULTS Deletion of Shank3 caused deficits in motor function, heightened anxiety, and repetitive behaviors. These genotype-dependent behavioral alterations were more prominent in adult mice than in juveniles. Reduced social preference was only identified in adult Shank3Δex4-22 knockout male mice, while self-grooming was uniquely elevated in males across both age groups. Heterozygous mice showed little to no changes in behavioral phenotypes in most behavioral tests. Immunofluorescence staining indicated the presence of Shank3 predominantly in the dendrite-containing rosette-like structures in CGCs, colocalizing with presynaptic markers of glutamatergic mossy fiber. Electrophysiological findings identified a parallel relationship between the age-related exacerbation of behavioral impairments and the enhancement of sEPSC amplitude in CGCs. LIMITATIONS Other behavioral tests of muscle strength (grip strength test), memory (Barnes/water maze), and communication (ultrasonic vocalization), were not performed. Further study is necessary to elucidate how Shank3 modulates synaptic function at the mossy fiber-granule cell synapse in the cerebellum and whether these changes shape the behavioral phenotype. CONCLUSIONS Our findings reveal an age-related exacerbation of behavioral impairments in Shank3Δex4-22 mutant mice. These results suggest that Shank3 may alter the function of glutamatergic receptors at the mossy fiber-cerebellar granule cell synapse as a potential mechanism causing cerebellar disruption in ASD.
Collapse
Affiliation(s)
- Rajaram Kshetri
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - James O Beavers
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Romana Hyde
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Roseline Ewa
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Amber Schwertman
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Sarahi Porcayo
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Ben D Richardson
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
7
|
Di Giminiani R, La Greca S, Marinelli S, Attanasio M, Masedu F, Mazza M, Valenti M. Locomotion and Postural Control in Young Adults with Autism Spectrum Disorders: A Novel Kinesiological Assessment. J Funct Morphol Kinesiol 2024; 9:185. [PMID: 39449479 PMCID: PMC11503382 DOI: 10.3390/jfmk9040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The purposes of the present study were to assess gait by using a novel approach that plots two adjacent joint angles and the postural control in individuals with autism (ASD) and individuals with typical neurodevelopmental (TD). Methods: The surface electromyography (sEMG) activity was measured synchronously with the other variables. Twenty young adult men, 10 with TD and 10 with a diagnosis of ASD, took part in this study. Results: There was a significant difference between ASD and TD groups in the area described by the knee-ankle diagram (p < 0.05). The sEMG activity recorded from the lateral gastrocnemius (LG) during the contact phase of gait was significantly lower in the ASD group compared with the TD group (p < 0.05). The sEMG activity recorded in the different postural conditions showed differences in LG and tibialis anterior (TA) between the ASD and TD groups (p < 0.05). Conclusions: The knee-ankle diagram provided a sensitive and specific movement descriptor to differentiate individuals with ASD from individuals with TD. The reduced LG activation is responsible for the reduced area in the knee-ankle diagram and 'toe-walking' in individuals with ASD and represents the common denominator of an altered ankle strategy during locomotion and postural control.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.L.G.); (S.M.); (M.A.); (F.M.); (M.M.); (M.V.)
| | | | | | | | | | | | | |
Collapse
|
8
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 PMCID: PMC12063742 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Sivayokan B, King C, Mali I, Payne M, Strating H, Warnes E, Bossmann SH, Plakke B. Aerobic exercise improves cognitive flexibility and modulates regional volume changes in a rat model of autism. Behav Brain Res 2024; 471:115136. [PMID: 38971431 PMCID: PMC12035974 DOI: 10.1016/j.bbr.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Gestational exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD). Rodents exposed to VPA in utero display common features of ASD, including volumetric dysregulation in higher-order cognitive regions like the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus. Exercise has been shown in elderly populations to boost cognition and to buffer against brain volume losses with age. This study employed an adolescent treadmill exercise intervention to facilitate cognitive flexibility and regional brain volume regulation in rats exposed to VPA during gestation. It was found that exercise improved performance on extra-dimensional shifts of attention on a set-shifting task, which is indicative of improved cognitive flexibility. Exercise decreased frontal cortex volume in females, whereas in males exercise increased the ventral hippocampus. These findings suggest that aerobic exercise may be an effective intervention to counteract the altered development of prefrontal and hippocampal regions often observed in ASD.
Collapse
Affiliation(s)
- Bhavana Sivayokan
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Cole King
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ivina Mali
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Macy Payne
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Hunter Strating
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ellie Warnes
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Bethany Plakke
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States.
| |
Collapse
|
10
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kirk GR, Kecskemeti SR, Alexander AL, Li JJ, Travers BG. Microstructural neural correlates of maximal grip strength in autistic children: the role of the cortico-cerebellar network and attention-deficit/hyperactivity disorder features. Front Integr Neurosci 2024; 18:1359099. [PMID: 38808069 PMCID: PMC11130426 DOI: 10.3389/fnint.2024.1359099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - James J. Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Psychology Department, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Huntley MK, Nguyen A, Albrecht MA, Marinovic W. Tactile cues are more intrinsically linked to motor timing than visual cues in visual-tactile sensorimotor synchronization. Atten Percept Psychophys 2024; 86:1022-1037. [PMID: 38263510 PMCID: PMC11062975 DOI: 10.3758/s13414-023-02828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
Many tasks require precise synchronization with external sensory stimuli, such as driving a car. This study investigates whether combined visual-tactile information provides additional benefits to movement synchrony over separate visual and tactile stimuli and explores the relationship with the temporal binding window for multisensory integration. In Experiment 1, participants completed a sensorimotor synchronization task to examine movement variability and a simultaneity judgment task to measure the temporal binding window. Results showed similar synchronization variability between visual-tactile and tactile-only stimuli, but significantly lower than visual only. In Experiment 2, participants completed a visual-tactile sensorimotor synchronization task with cross-modal stimuli presented inside (stimulus onset asynchrony 80 ms) and outside (stimulus-onset asynchrony 400 ms) the temporal binding window to examine temporal accuracy of movement execution. Participants synchronized their movement with the first stimulus in the cross-modal pair, either the visual or tactile stimulus. Results showed significantly greater temporal accuracy when only one stimulus was presented inside the window and the second stimulus was outside the window than when both stimuli were presented inside the window, with movement execution being more accurate when attending to the tactile stimulus. Overall, these findings indicate there may be a modality-specific benefit to sensorimotor synchronization performance, such that tactile cues are weighted more strongly than visual information as tactile information is more intrinsically linked to motor timing than visual information. Further, our findings indicate that the visual-tactile temporal binding window is related to the temporal accuracy of movement execution.
Collapse
Affiliation(s)
- Michelle K Huntley
- School of Population Health, Curtin University, Perth, Western Australia, Australia.
- School of Psychology and Public Health, La Trobe University, Wodonga, Victoria, Australia.
| | - An Nguyen
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Matthew A Albrecht
- Western Australia Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Li L, Jiang J, Wu B, Lin J, Roberts N, Sweeney JA, Gong Q, Jia Z. Distinct gray matter abnormalities in children/adolescents and adults with history of childhood maltreatment. Neurosci Biobehav Rev 2023; 153:105376. [PMID: 37643682 DOI: 10.1016/j.neubiorev.2023.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Gray matter (GM) abnormalities have been reported in both adults and children/adolescents with histories of childhood maltreatment (CM). A comparison of effects in youth and adulthood may be informative regarding life-span effects of CM. Voxel-wise meta-analyses of whole-brain voxel-based morphometry studies were conducted in all datasets and age-based subgroups respectively, followed by a quantitative comparison of the subgroups. Thirty VBM studies (31 datasets) were included. The pooled meta-analysis revealed increased GM in left supplementary motor area, and reduced GM in bilateral cingulate/paracingulate gyri, left occipital lobe, and right middle frontal gyrus in maltreated individuals compared to the controls. Maltreatment-exposed youth showed less GM in the cerebellum, and greater GM in bilateral middle cingulate/paracingulate gyri and bilateral visual cortex than maltreated adults. Opposite GM alterations in bilateral middle cingulate/paracingulate gyri were found in maltreatment-exposed adults (decreased) and children/adolescents (increased). Our findings demonstrate different patterns of GM changes in youth closer to maltreatment events than those seen later in life, suggesting detrimental effects of CM on the developmental trajectory of brain structure.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jing Jiang
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Radiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Torres EB, Twerski G, Varkey H, Rai R, Elsayed M, Katz MT, Tarlowe J. The time is ripe for the renaissance of autism treatments: evidence from clinical practitioners. Front Integr Neurosci 2023; 17:1229110. [PMID: 37600235 PMCID: PMC10437220 DOI: 10.3389/fnint.2023.1229110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Recent changes in diagnostics criteria have contributed to the broadening of the autism spectrum disorders and left clinicians ill-equipped to treat the highly heterogeneous spectrum that now includes toddlers and children with sensory and motor issues. Methods To uncover the clinicians' critical needs in the autism space, we conducted surveys designed collaboratively with the clinicians themselves. Board Certified Behavioral Analysts (BCBAs) and developmental model (DM) clinicians obtained permission from their accrediting boards and designed surveys to assess needs and preferences in their corresponding fields. Results 92.6% of BCBAs are open to diversified treatment combining aspects of multiple disciplines; 82.7% of DMs also favor this diversification with 21.8% valuing BCBA-input and 40.6% neurologists-input; 85.9% of BCBAs and 85.3% of DMs advocate the use of wearables to objectively track nuanced behaviors in social exchange; 76.9% of BCBAs and 57.0% DMs feel they would benefit from augmenting their knowledge about the nervous systems of Autism (neuroscience research) to enhance treatment and planning programs; 50.0% of BCBAs feel they can benefit for more training to teach parents. Discussion Two complementary philosophies are converging to a more collaborative, integrative approach favoring scalable digital technologies and neuroscience. Autism practitioners seem ready to embrace the Digital-Neuroscience Revolutions under a new cooperative model.
Collapse
Affiliation(s)
- Elizabeth B. Torres
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Rutgers Center for Cognitive Science, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Department of Computer Science, Rutgers Center for Biomedicine Imaging and Modeling, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | | | - Hannah Varkey
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Richa Rai
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Mona Elsayed
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Miriam Tirtza Katz
- MTK Therapy, Yahalom NJ, Family Advocacy and Support, Agudas Yisroel of America, Lakewood, NJ, United States
| | - Jillian Tarlowe
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
14
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
15
|
Moghaddam AH, Eslami A, Jelodar SK, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res 2023; 441:114300. [PMID: 36642103 DOI: 10.1016/j.bbr.2023.114300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
The autism is an abnormality in the neuronal advance which starts before age 3 recognized by defective behaviors. This study aimed to make quercetin-loaded nanophytosomes (QNP) on behavioral deficits, cerebellar oxidative stress and apoptosis in an autistic-like model caused by maternal separation (MS). The newborn rats are randomly categorized into seven groups, including control, positive control, disease, and diseases treated with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg). Pups exposed to MS for 3 h per day from postnatal days (PND) 1-9 showed behavioral impairment in adult rats compared to control group. The oral administration of quercetin and QNP was constantly started after the lactation period (21 postnatal days) for three weeks. Autistic-like behaviors, antioxidant parameters, and Nrf2, Bax/Bcl-2, and Caspase-3 expressions were surveyed in the cerebellum. Quercetin (40 mg/kg) treated improved some behavioral disorders. Also, the improvement of oxidative stress parameters, Nrf2 and apoptotic factors gene expression was observed in the cerebellum of quercetin (40 mg/kg) treated (p < 0.01). QNP treatment (10 and 40 mg/kg) significantly ameliorated anxiety-like behaviors, line crossing, and grooming index (p < 0.001), lipid peroxidation (p < 0.001), and increased catalase (CAT) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.001) activity, and glutathione (GSH) levels (p < 0.05). Moreover, QNP significantly reduced Caspase-3 and Bax expression (p < 0.001), but increased Bcl-2, and Nrf2 expressions (p < 0.001). These findings indicated that QNP due to its high bioavailability was more effective than quercetin can be reduced autistic-like behavior, oxidative and apoptotic damages in the model of MS rats.
Collapse
Affiliation(s)
| | - Ali Eslami
- Department of Animal Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Vahid Hasantabar
- Department of Organic Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
16
|
Deficits in Cerebellum-Dependent Learning and Cerebellar Morphology in Male and Female BTBR Autism Model Mice. NEUROSCI 2022. [DOI: 10.3390/neurosci3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, there has been increased interest in the role of the cerebellum in autism spectrum disorder (ASD). To better understand the pathophysiological role of the cerebellum in ASD, it is necessary to have a variety of mouse models that have face validity for cerebellar disruption in humans. Here, we add to the literature on the cerebellum in mouse models of autism with the characterization of the cerebellum in the idiopathic BTBR T + Itpr3tf/J (BTBR) inbred mouse strain, which has behavioral phenotypes that are reminiscent of ASD in patients. When we examined both male and female BTBR mice in comparison to C57BL/6J (C57) controls, we noted that both sexes of BTBR mice showed motor coordination deficits characteristic of cerebellar dysfunction, but only the male mice showed differences in delay eyeblink conditioning, a cerebellum-dependent learning task that is known to be disrupted in ASD patients. Both male and female BTBR mice showed considerable expansion of, and abnormal foliation in, the cerebellum vermis—including a significant expansion of specific lobules in the anterior cerebellum. In addition, we found a slight but significant decrease in Purkinje cell density in both male and female BTBR mice, irrespective of the lobule. Finally, there was a marked reduction of Purkinje cell dendritic spine density in both male and female BTBR mice. These findings suggest that, for the most part, the BTBR mouse model phenocopies many of the characteristics of the subpopulation of ASD patients that have a hypertrophic cerebellum. We discuss the significance of strain differences in the cerebellum as well as the importance of this first effort to identify both similarities and differences between male and female BTBR mice with regard to the cerebellum.
Collapse
|
17
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
18
|
Daniel S, Wimpory D, Delafield-Butt JT, Malloch S, Holck U, Geretsegger M, Tortora S, Osborne N, Schögler B, Koch S, Elias-Masiques J, Howorth MC, Dunbar P, Swan K, Rochat MJ, Schlochtermeier R, Forster K, Amos P. Rhythmic Relating: Bidirectional Support for Social Timing in Autism Therapies. Front Psychol 2022; 13:793258. [PMID: 35693509 PMCID: PMC9186469 DOI: 10.3389/fpsyg.2022.793258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
We propose Rhythmic Relating for autism: a system of supports for friends, therapists, parents, and educators; a system which aims to augment bidirectional communication and complement existing therapeutic approaches. We begin by summarizing the developmental significance of social timing and the social-motor-synchrony challenges observed in early autism. Meta-analyses conclude the early primacy of such challenges, yet cite the lack of focused therapies. We identify core relational parameters in support of social-motor-synchrony and systematize these using the communicative musicality constructs: pulse; quality; and narrative. Rhythmic Relating aims to augment the clarity, contiguity, and pulse-beat of spontaneous behavior by recruiting rhythmic supports (cues, accents, turbulence) and relatable vitality; facilitating the predictive flow and just-ahead-in-time planning needed for good-enough social timing. From here, we describe possibilities for playful therapeutic interaction, small-step co-regulation, and layered sensorimotor integration. Lastly, we include several clinical case examples demonstrating the use of Rhythmic Relating within four different therapeutic approaches (Dance Movement Therapy, Improvisational Music Therapy, Play Therapy, and Musical Interaction Therapy). These clinical case examples are introduced here and several more are included in the Supplementary Material (Examples of Rhythmic Relating in Practice). A suite of pilot intervention studies is proposed to assess the efficacy of combining Rhythmic Relating with different therapeutic approaches in playful work with individuals with autism. Further experimental hypotheses are outlined, designed to clarify the significance of certain key features of the Rhythmic Relating approach.
Collapse
Affiliation(s)
- Stuart Daniel
- British Association of Play Therapists, London, United Kingdom
| | - Dawn Wimpory
- BCU Health Board (NHS), Bangor, United Kingdom
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Jonathan T. Delafield-Butt
- Laboratory for Innovation in Autism, University of Strathclyde, Glasgow, United Kingdom
- School of Education, University of Strathclyde, Glasgow, United Kingdom
| | - Stephen Malloch
- Westmead Psychotherapy Program, School of Medicine, University of Sydney, Sydney, NSW, Australia
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| | - Ulla Holck
- Music Therapy, Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Monika Geretsegger
- The Grieg Academy Music Therapy Research Centre, NORCE Norwegian Research Centre, Bergen, Norway
| | - Suzi Tortora
- Dancing Dialogue, LCAT, New York, NY, United States
| | - Nigel Osborne
- Department of Music, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjaman Schögler
- Perception Movement Action Research Consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Sabine Koch
- Research Institute for Creative Arts Therapies, Alanus University, Alfter, Germany
- School of Therapy Sciences, Creative Arts Therapies, SRH University Heidelberg, Heidelberg, Germany
| | - Judit Elias-Masiques
- BCU Health Board (NHS), Bangor, United Kingdom
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | | | | | - Karrie Swan
- Department of Counseling, Leadership, and Special Education, Missouri State University, Springfield, MO, United States
| | - Magali J. Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Katharine Forster
- BCU Health Board (NHS), Bangor, United Kingdom
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Pat Amos
- Independent Researcher, Ardmore, PA, United States
| |
Collapse
|
19
|
Cho AB, Otte K, Baskow I, Ehlen F, Maslahati T, Mansow-Model S, Schmitz-Hübsch T, Behnia B, Roepke S. Motor signature of autism spectrum disorder in adults without intellectual impairment. Sci Rep 2022; 12:7670. [PMID: 35538115 PMCID: PMC9090847 DOI: 10.1038/s41598-022-10760-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
Motor signs such as dyspraxia and abnormal gait are characteristic features of autism spectrum disorder (ASD). However, motor behavior in adults with ASD has scarcely been quantitatively characterized. In this pilot study, we aim to quantitatively examine motor signature of adults with ASD without intellectual impairment using marker-less visual-perceptive motion capture. 82 individuals (37 ASD and 45 healthy controls, HC) with an IQ > 85 and aged 18 to 65 years performed nine movement tasks and were filmed by a 3D-infrared camera. Anatomical models were quantified via custom-made software and resulting kinematic parameters were compared between individuals with ASD and HCs. Furthermore, the association between specific motor behaviour and severity of autistic symptoms (Autism Diagnostic Observation Schedule 2, Autism Spectrum Quotient) was explored. Adults with ASD showed a greater mediolateral deviation while walking, greater sway during normal, tandem and single leg stance, a reduced walking speed and cadence, a greater arrhythmicity during jumping jack tasks and an impaired manual dexterity during finger tapping tasks (p < 0.05 and |D|> 0.48) compared to HC. Furthermore, in the ASD group, some of these parameters correlated moderately to severity of ASD symptoms. Adults with ASD seem to display a specific motor signature in this disorder affecting movement timing and aspects of balance. The data appear to reinforce knowledge about motor signs reported in children and adolescents with ASD. Also, quantitative motor assessment via visual-perceptive computing may be a feasible instrument to detect subtle motor signs in ASD and perhaps suitable in the diagnosis of ASD in the future.
Collapse
Affiliation(s)
- An Bin Cho
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Karen Otte
- Motognosis GmbH, Schönhauser Allee 177, 10119, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Irina Baskow
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Felicitas Ehlen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Jüdisches Krankenhaus Berlin, Heinz-Galinski-Str. 1, 13347, Berlin, Germany
| | - Tolou Maslahati
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | | | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Behnoush Behnia
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Roepke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
20
|
McKinney WS, Kelly SE, Unruh KE, Shafer RL, Sweeney JA, Styner M, Mosconi MW. Cerebellar Volumes and Sensorimotor Behavior in Autism Spectrum Disorder. Front Integr Neurosci 2022; 16:821109. [PMID: 35592866 PMCID: PMC9113114 DOI: 10.3389/fnint.2022.821109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sensorimotor issues are common in autism spectrum disorder (ASD), though their neural bases are not well understood. The cerebellum is vital to sensorimotor control and reduced cerebellar volumes in ASD have been documented. Our study examined the extent to which cerebellar volumes are associated with multiple sensorimotor behaviors in ASD. Materials and Methods Fifty-eight participants with ASD and 34 typically developing (TD) controls (8-30 years) completed a structural MRI scan and precision grip testing, oculomotor testing, or both. Force variability during precision gripping as well as absolute error and trial-to-trial error variability of visually guided saccades were examined. Volumes of cerebellar lobules, vermis, and white matter were quantified. The relationships between each cerebellar region of interest (ROI) and force variability, saccade error, and saccade error variability were examined. Results Relative to TD controls, individuals with ASD showed increased force variability. Individuals with ASD showed a reduced volume of cerebellar vermis VI-VII relative to TD controls. Relative to TD females, females with ASD showed a reduced volume of bilateral cerebellar Crus II/lobule VIIB. Increased volume of Crus I was associated with increased force variability. Increased volume of vermal lobules VI-VII was associated with reduced saccade error for TD controls but not individuals with ASD. Increased right lobule VIII and cerebellar white matter volumes as well as reduced right lobule VI and right lobule X volumes were associated with greater ASD symptom severity. Reduced volumes of right Crus II/lobule VIIB were associated with greater ASD symptom severity in only males, while reduced volumes of right Crus I were associated with more severe restricted and repetitive behaviors only in females. Conclusion Our finding that increased force variability in ASD is associated with greater cerebellar Crus I volumes indicates that disruption of sensory feedback processing supported by Crus I may contribute to skeletomotor differences in ASD. Results showing that volumes of vermal lobules VI-VII are associated with saccade precision in TD but not ASD implicates atypical organization of the brain systems supporting oculomotor control in ASD. Associations between volumes of cerebellar subregions and ASD symptom severity suggest cerebellar pathological processes may contribute to multiple developmental challenges in ASD.
Collapse
Affiliation(s)
- Walker S. McKinney
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Shannon E. Kelly
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| | - Kathryn E. Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - Robin L. Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Martin Styner
- Department of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
21
|
Parvez MSA, Ohtsuki G. Acute Cerebellar Inflammation and Related Ataxia: Mechanisms and Pathophysiology. Brain Sci 2022; 12:367. [PMID: 35326323 PMCID: PMC8946185 DOI: 10.3390/brainsci12030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.
Collapse
Affiliation(s)
- Md. Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
| |
Collapse
|
22
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
23
|
Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L. Cerebellar and Striatal Implications in Autism Spectrum Disorders: From Clinical Observations to Animal Models. Int J Mol Sci 2022; 23:2294. [PMID: 35216408 PMCID: PMC8874522 DOI: 10.3390/ijms23042294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex conditions that stem from a combination of genetic, epigenetic and environmental influences during early pre- and postnatal childhood. The review focuses on the cerebellum and the striatum, two structures involved in motor, sensory, cognitive and social functions altered in ASD. We summarize clinical and fundamental studies highlighting the importance of these two structures in ASD. We further discuss the relation between cellular and molecular alterations with the observed behavior at the social, cognitive, motor and gait levels. Functional correlates regarding neuronal activity are also detailed wherever possible, and sexual dimorphism is explored pointing to the need to apprehend ASD in both sexes, as findings can be dramatically different at both quantitative and qualitative levels. The review focuses also on a set of three recent papers from our laboratory where we explored motor and gait function in various genetic and environmental ASD animal models. We report that motor and gait behaviors can constitute an early and quantitative window to the disease, as they often correlate with the severity of social impairments and loss of cerebellar Purkinje cells. The review ends with suggestions as to the main obstacles that need to be surpassed before an appropriate management of the disease can be proposed.
Collapse
Affiliation(s)
- Mathieu Thabault
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Valentine Turpin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Matthieu Egloff
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laurie Galvan
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| |
Collapse
|
24
|
Kim HY, Lee YJ, Kim SJ, Lee JD, Kim S, Ko MJ, Kim JW, Shin CY, Kim KB. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1-13. [PMID: 34445937 DOI: 10.1080/15287394.2021.1967821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Yong-Jae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sun Jae Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Republic of Korea
| | - Mee Jung Ko
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chan Young Shin
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| |
Collapse
|
25
|
Yang X, Yin H, Wang X, Sun Y, Bian X, Zhang G, Li A, Cao A, Li B, Ebrahimi-Fakhari D, Yang Z, Meisler MH, Liu Q. Social Deficits and Cerebellar Degeneration in Purkinje Cell Scn8a Knockout Mice. Front Mol Neurosci 2022; 15:822129. [PMID: 35557557 PMCID: PMC9087741 DOI: 10.3389/fnmol.2022.822129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SCN8A gene encoding the voltage-gated sodium channel α-subunit Nav1. 6 have been reported in individuals with epilepsy, intellectual disability and features of autism spectrum disorder. SCN8A is widely expressed in the central nervous system, including the cerebellum. Cerebellar dysfunction has been implicated in autism spectrum disorder. We investigated conditional Scn8a knockout mice under C57BL/6J strain background that specifically lack Scn8a expression in cerebellar Purkinje cells (Scn8a flox/flox , L7Cre + mice). Cerebellar morphology was analyzed by immunohistochemistry and MR imaging. Mice were subjected to a battery of behavioral tests including the accelerating rotarod, open field, elevated plus maze, light-dark transition box, three chambers, male-female interaction, social olfaction, and water T-maze tests. Patch clamp recordings were used to evaluate evoked action potentials in Purkinje cells. Behavioral phenotyping demonstrated that Scn8a flox/flox , L7Cre + mice have impaired social interaction, motor learning and reversal learning as well as increased repetitive behavior and anxiety-like behaviors. By 5 months of age, Scn8a flox/flox , L7Cre + mice began to exhibit cerebellar Purkinje cell loss and reduced molecular thickness. At 9 months of age, Scn8a flox/flox , L7Cre + mice exhibited decreased cerebellar size and a reduced number of cerebellar Purkinje cells more profoundly, with evidence of additional neurodegeneration in the molecular layer and deep cerebellar nuclei. Purkinje cells in Scn8a flox/flox , L7Cre + mice exhibited reduced repetitive firing. Taken together, our experiments indicated that loss of Scn8a expression in cerebellar Purkinje cells leads to cerebellar degeneration and several ASD-related behaviors. Our study demonstrated the specific contribution of loss of Scn8a in cerebellar Purkinje cells to behavioral deficits characteristic of ASD. However, it should be noted that our observed effects reported here are specific to the C57BL/6 genome type.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hongqiang Yin
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China.,Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Xiaojing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yueqing Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xianli Bian
- Department of Neurology, Second Hospital of Shandong University, Jinan, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihua Cao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| |
Collapse
|
26
|
Soria-Ortiz MB, Reyes-Ortega P, Martínez-Torres A, Reyes-Haro D. A Functional Signature in the Developing Cerebellum: Evidence From a Preclinical Model of Autism. Front Cell Dev Biol 2021; 9:727079. [PMID: 34540842 PMCID: PMC8448387 DOI: 10.3389/fcell.2021.727079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.
Collapse
Affiliation(s)
- María Berenice Soria-Ortiz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Pamela Reyes-Ortega
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
27
|
Bennett HJ, Jones T, Valenzuela KA, Haegele JA. Coordination variability during running in adolescents with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1201-1215. [PMID: 34519564 DOI: 10.1177/13623613211044395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT Walking and running are popular forms of physical activity that involve the whole body (pelvis/legs and arms/torso) and are coordinated by the neuromuscular system, generally without much conscious effort. However, autistic persons tend not to engage in sufficient amounts of these activities to enjoy their health benefits. Recent reports indicate that autistic individuals tend to experience altered coordination patterns and increased variability during walking tasks when compared to non-autistic controls. Greater stride-to-stride coordination variability, when the task has not changed (i.e. walking at same speed and on same surface), is likely indicative of motor control issues and is more metabolically wasteful. To date, although, research examining running is unavailable in any form for this population. This study aimed to determine if coordination variability during running differs between autistic adolescents and age, sex, and body mass index matched non-autistic controls. This study found that increased variability exists throughout the many different areas of the body (foot-leg, left/right thighs, and opposite arm-opposite thigh) for autistic adolescents compared to controls. Along with previous research, these findings indicate autistic persons exhibit motor control issues across both forms of locomotion (walking and running) and at multiple speeds. These findings highlight issues with motor control that can be addressed by therapeutic/rehabilitative programming. Reducing coordination variability, inherently lessening metabolic inefficiency, may be an important step toward encouraging autistic youth to engage in sufficient physical activity (i.e. running) to enjoy physiological and psychological benefits.
Collapse
|
28
|
Shafer RL, Wang Z, Bartolotti J, Mosconi MW. Visual and somatosensory feedback mechanisms of precision manual motor control in autism spectrum disorder. J Neurodev Disord 2021; 13:32. [PMID: 34496766 PMCID: PMC8427856 DOI: 10.1186/s11689-021-09381-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) show deficits processing sensory feedback to reactively adjust ongoing motor behaviors. Atypical reliance on visual and somatosensory feedback each have been reported during motor behaviors in ASD suggesting that impairments are not specific to one sensory domain but may instead reflect a deficit in multisensory processing, resulting in reliance on unimodal feedback. The present study tested this hypothesis by examining motor behavior across different visual and somatosensory feedback conditions during a visually guided precision grip force test. METHODS Participants with ASD (N = 43) and age-matched typically developing (TD) controls (N = 23), ages 10-20 years, completed a test of precision gripping. They pressed on force transducers with their index finger and thumb while receiving visual feedback on a computer screen in the form of a horizontal bar that moved upwards with increased force. They were instructed to press so that the bar reached the level of a static target bar and then to hold their grip force as steadily as possible. Visual feedback was manipulated by changing the gain of the force bar. Somatosensory feedback was manipulated by applying 80 Hz tendon vibration at the wrist to disrupt the somatosensory percept. Force variability (standard deviation) and irregularity (sample entropy) were examined using multilevel linear models. RESULTS While TD controls showed increased force variability with the tendon vibration on compared to off, individuals with ASD showed similar levels of force variability across tendon vibration conditions. Individuals with ASD showed stronger age-associated reductions in force variability relative to controls across conditions. The ASD group also showed greater age-associated increases in force irregularity relative to controls, especially at higher gain levels and when the tendon vibrator was turned on. CONCLUSIONS Our findings that disrupting somatosensory feedback did not contribute to changes in force variability or regularity among individuals with ASD suggests a reduced ability to integrate somatosensory feedback information to guide ongoing precision manual motor behavior. We also document stronger age-associated gains in force control in ASD relative to TD suggesting delayed development of multisensory feedback control of motor behavior.
Collapse
Affiliation(s)
- Robin L Shafer
- Life Span Institute, University of Kansas, Lawrence, KS, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - James Bartolotti
- Life Span Institute, University of Kansas, Lawrence, KS, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, USA.
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
29
|
Payne M, Mali I, McKinnell ZE, Vangsness L, Shrestha TB, Bossmann SH, Plakke B. Increased volumes of lobule VI in a valproic acid model of autism are associated with worse set-shifting performance in male Long-Evan rats. Brain Res 2021; 1765:147495. [PMID: 33894224 PMCID: PMC8205983 DOI: 10.1016/j.brainres.2021.147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a skewed sex-based diagnostic ratio. While males are at a higher risk for ASD, it is critical to understand the neurobiology of the disorder to develop better treatments for both males and females. Our prior work has demonstrated that VPA (valproic acid) treated offspring had impaired performance on an attentional set-shifting task. The current study used MRI and regions of interest analyses to measure the volumes of cerebellar subregions in VPA and controls rats that had participated in the attentional set-shifting task. VPA males had significantly more volume in lobule VI compared to male controls. VPA female rats had significantly less volume in lobules I, IV and X compared to female controls. In addition, it was revealed that decreases in volume for VPA females was associated with worse performance. Males with increases in lobule VI were also impaired on the set-shifting task. Similar volumetric differences within the cerebellum have been observed in humans with ASD, which suggests that the VPA model is capturing some of the same brain changes observed in humans with ASD, and that these changes in volume may be impacting cognition.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Zach E McKinnell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Lisa Vangsness
- Department of Psychology, Wichita State University, Wichita, KS, USA
| | - Tej B Shrestha
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State-NICKS, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
30
|
Flace P, Livrea P, Basile GA, Galletta D, Bizzoca A, Gennarini G, Bertino S, Branca JJV, Gulisano M, Bianconi S, Bramanti A, Anastasi G. The Cerebellar Dopaminergic System. Front Syst Neurosci 2021; 15:650614. [PMID: 34421548 PMCID: PMC8375553 DOI: 10.3389/fnsys.2021.650614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
In the central nervous system (CNS), dopamine (DA) is involved in motor and cognitive functions. Although the cerebellum is not been considered an elective dopaminergic region, studies attributed to it a critical role in dopamine deficit-related neurological and psychiatric disorders [e.g., Parkinson's disease (PD) and schizophrenia (SCZ)]. Data on the cerebellar dopaminergic neuronal system are still lacking. Nevertheless, biochemical studies detected in the mammalians cerebellum high dopamine levels, while chemical neuroanatomy studies revealed the presence of midbrain dopaminergic afferents to the cerebellum as well as wide distribution of the dopaminergic receptor subtypes (DRD1-DRD5). The present review summarizes the data on the cerebellar dopaminergic system including its involvement in associative and projective circuits. Furthermore, this study also briefly discusses the role of the cerebellar dopaminergic system in some neurologic and psychiatric disorders and suggests its potential involvement as a target in pharmacologic and non-pharmacologic treatments.
Collapse
Affiliation(s)
- Paolo Flace
- Medical School, University of Bari ‘Aldo Moro', Bari, Italy
| | | | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Galletta
- Unit of Psychiatry and Psychology, Federico II University Hospital, Naples, Italy
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simona Bianconi
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital “G. Martino”, Messina, Italy
| | - Alessia Bramanti
- Scientific Institute for Research, Hospitalization and Health Care IRCCS “Centro Neurolesi Bonino Pulejo”, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Stoodley CJ, Tsai PT. Adaptive Prediction for Social Contexts: The Cerebellar Contribution to Typical and Atypical Social Behaviors. Annu Rev Neurosci 2021; 44:475-493. [PMID: 34236892 DOI: 10.1146/annurev-neuro-100120-092143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social interactions involve processes ranging from face recognition to understanding others' intentions. To guide appropriate behavior in a given context, social interactions rely on accurately predicting the outcomes of one's actions and the thoughts of others. Because social interactions are inherently dynamic, these predictions must be continuously adapted. The neural correlates of social processing have largely focused on emotion, mentalizing, and reward networks, without integration of systems involved in prediction. The cerebellum forms predictive models to calibrate movements and adapt them to changing situations, and cerebellar predictive modeling is thought to extend to nonmotor behaviors. Primary cerebellar dysfunction can produce social deficits, and atypical cerebellar structure and function are reported in autism, which is characterized by social communication challenges and atypical predictive processing. We examine the evidence that cerebellar-mediated predictions and adaptation play important roles in social processes and argue that disruptions in these processes contribute to autism.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Departments of Neuroscience and Psychology, American University, Washington, DC 20016, USA
| | - Peter T Tsai
- Departments of Neurology, Neuroscience, Psychiatry, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
32
|
Jeong S, Yu H, Park J, Kang K. Quantitative gait analysis of idiopathic normal pressure hydrocephalus using deep learning algorithms on monocular videos. Sci Rep 2021; 11:12368. [PMID: 34117275 PMCID: PMC8196211 DOI: 10.1038/s41598-021-90524-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
A vision-based gait analysis method using monocular videos was proposed to estimate temporo-spatial gait parameters by leveraging deep learning algorithms. This study aimed to validate vision-based gait analysis using GAITRite as the reference system and analyze relationships between Frontal Assessment Battery (FAB) scores and gait variability measured by vision-based gait analysis in idiopathic normal pressure hydrocephalus (INPH) patients. Gait data from 46 patients were simultaneously collected from the vision-based system utilizing deep learning algorithms and the GAITRite system. There was a strong correlation in 11 gait parameters between our vision-based gait analysis method and the GAITRite gait analysis system. Our results also demonstrated excellent agreement between the two measurement systems for all parameters except stride time variability after the cerebrospinal fluid tap test. Our data showed that stride time and stride length variability measured by the vision-based gait analysis system were correlated with FAB scores. Vision-based gait analysis utilizing deep learning algorithms can provide comparable data to GAITRite when assessing gait dysfunction in INPH. Frontal lobe functions may be associated with gait variability measurements using vision-based gait analysis for INPH patients.
Collapse
Affiliation(s)
- Sungmoon Jeong
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, South Korea.,Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Hosang Yu
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaechan Park
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, South Korea. .,Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Kyunghun Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
33
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
35
|
Reframing Psychiatry for Precision Medicine. J Pers Med 2020; 10:jpm10040144. [PMID: 32992686 PMCID: PMC7711577 DOI: 10.3390/jpm10040144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
The art of observing and describing behaviors has driven diagnosis and informed basic science in psychiatry. In recent times, studies of mental illness are focused on understanding the brain's neurobiology but there is a paucity of information on the potential contributions from peripheral activity to mental health. In precision medicine, this common practice leaves a gap between bodily behaviors and genomics that we here propose to address with a new layer of inquiry that includes gene expression on tissues inclusive of brain, heart, muscle-skeletal and organs for vital bodily functions. We interrogate gene expression on human tissue as a function of disease-associated genes. By removing genes linked to disease from the typical human set, and recomputing gene expression on the tissues, we can compare the outcomes across mental illnesses, well-known neurological conditions, and non-neurological conditions. We find that major neuropsychiatric conditions that are behaviorally defined today (e.g., autism, schizophrenia, and depression) through DSM-observation criteria have strong convergence with well-known neurological conditions (e.g., ataxias and Parkinson's disease), but less overlap with non-neurological conditions. Surprisingly, tissues majorly involved in the central control, coordination, adaptation and learning of movements, emotion and memory are maximally affected in psychiatric diagnoses along with peripheral heart and muscle-skeletal tissues. Our results underscore the importance of considering both the brain-body connection and the contributions of the peripheral nervous systems to mental health.
Collapse
|
36
|
Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice LC, Ren C, Escamilla CO, Gibson JM, Sajadi S, Pendry RJ, Tan T, Ellegood J, Basson MA, Blakely RD, Dindot SV, Golzio C, Hahn MK, Katsanis N, Robins DM, Silverman JL, Singh KK, Wevrick R, Taylor MJ, Hammill C, Anagnostou E, Pfeiffer BE, Stoodley CJ, Lerch JP, du Lac S, Tsai PT. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci 2020; 23:1102-1110. [PMID: 32661395 PMCID: PMC7483861 DOI: 10.1038/s41593-020-0665-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fantao Meng
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hirofumi Fujita
- Departments of Otolaryngology-Head and Neck Surgery, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Morgado
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Mouse Imaging Centre, Toronto Hospital for Sick Children, Toronto, ON, Canada
| | - Yasaman Kazemi
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura C Rice
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Chongyu Ren
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine Ochoa Escamilla
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer M Gibson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sanaz Sajadi
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Pendry
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tommy Tan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Hospital for Sick Children, Toronto, ON, Canada
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Scott V Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique; Institut National de la Santé et de la Recherche Médicale; Université de Strasbourg, Illkirch, France
| | - Maureen K Hahn
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Nicholas Katsanis
- ACT-GeM, Department of Human Genetics at Stanley Manne Children's Research Institute; Department of Pediatrics and Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Diane M Robins
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USA
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Margot J Taylor
- Department of Medical Imaging and Psychology, University of Toronto; Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, USA
| | - Christopher Hammill
- Mouse Imaging Centre, Toronto Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Department of Pediatrics, University of Toronto, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, USA
| | - Brad E Pfeiffer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine J Stoodley
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Mouse Imaging Centre, Toronto Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Sascha du Lac
- Departments of Otolaryngology-Head and Neck Surgery, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter T Tsai
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Brain structural correlates of familial risk for mental illness: a meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders. Neuropsychopharmacology 2020; 45:1369-1379. [PMID: 32353861 PMCID: PMC7297956 DOI: 10.1038/s41386-020-0687-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable psychiatric disorders with partially overlapping genetic liability. Shared and disorder-specific neurobiological abnormalities associated with familial risk for developing mental illnesses are largely unknown. We performed a meta-analysis of structural brain imaging studies in relatives of patients with SCZ, BD, and MDD to identify overlapping and discrete brain structural correlates of familial risk for mental disorders. Search for voxel-based morphometry studies in relatives of patients with SCZ, BD, and MDD in PubMed and Embase identified 33 studies with 2292 relatives and 2052 healthy controls (HC). Seed-based d Mapping software was used to investigate global differences in gray matter volumes between relatives as a group versus HC, and between those of each psychiatric disorder and HC. As a group, relatives exhibited gray matter abnormalities in left supramarginal gyrus, right striatum, right inferior frontal gyrus, left thalamus, bilateral insula, right cerebellum, and right superior frontal gyrus, compared with HC. Decreased right cerebellar gray matter was the only abnormality common to relatives of all three conditions. Subgroup analyses showed disorder-specific gray matter abnormalities in left thalamus and bilateral insula associated with risk for SCZ, in left supramarginal gyrus and right frontal regions with risk for BD, and in right striatum with risk for MDD. While decreased gray matter in right cerebellum might be a common brain structural abnormality associated with shared risk for SCZ, BD, and MDD, regional gray matter abnormalities in neocortex, thalamus, and striatum appear to be disorder-specific.
Collapse
|
38
|
Caballero C, Mistry S, Torres EB. Age-Dependent Statistical Changes of Involuntary Head Motion Signatures Across Autism and Controls of the ABIDE Repository. Front Integr Neurosci 2020; 14:23. [PMID: 32625069 PMCID: PMC7311771 DOI: 10.3389/fnint.2020.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
The DSM-5 definition of autism spectrum disorders includes sensory issues and part of the sensory information that the brain continuously receives comes from kinesthetic reafference, in the form of self-generated motions, including those that the nervous systems produce at rest. Some of the movements that we self-generate are deliberate, while some occur spontaneously, consequentially following those that we can control. Yet, some motions occur involuntarily, largely beneath our awareness. We do not know much about involuntary motions across development, but these motions typically manifest during resting state in fMRI studies. Here we ask in a large data set from the Autism Brain Imaging Exchange repository, whether the stochastic signatures of variability in the involuntary motions of the head typically shift with age. We further ask if those motions registered from individuals with autism show a significant departure from the normative data as we examine different age groups selected at random from cross-sections of the population. We find significant shifts in statistical features of typical levels of involuntary head motions for different age groups. Further, we find that in autism these changes also manifest in non-uniform ways, and that they significantly differ from their age-matched groups. The results suggest that the levels of random involuntary motor noise are elevated in autism across age groups. This calls for the use of different age-appropriate statistical models in research that involves dynamically changing signals self-generated by the nervous systems.
Collapse
Affiliation(s)
- Carla Caballero
- Sports Research Center, Sports Sciences Department, Miguel Hernández University of Elche, Elche, Spain.,Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Sejal Mistry
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Elizabeth B Torres
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Computer Science, Center for Computational Biomedicine Imaging and Modeling, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Center for Cognitive Science, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
39
|
Akula SK, McCullough KB, Weichselbaum C, Dougherty JD, Maloney SE. The trajectory of gait development in mice. Brain Behav 2020; 10:e01636. [PMID: 32333523 PMCID: PMC7303394 DOI: 10.1002/brb3.1636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Gait irregularities are prevalent in neurodevelopmental disorders (NDDs). However, there is a paucity of information on gait phenotypes in NDD experimental models. This is in part due to the lack of understanding of the normal developmental trajectory of gait maturation in the mouse. MATERIALS AND METHODS Using the DigiGait system, we have developed a quantitative, standardized, and reproducible assay of developmental gait metrics in commonly used mouse strains that can be added to the battery of mouse model phenotyping. With this assay, we characterized the trajectory of gait in the developing C57BL/6J and FVB/AntJ mouse lines. RESULTS In both lines, a mature stride consisted of 40% swing and 60% stance in the forelimbs, which mirrors the mature human stride. In C57BL/6J mice, developmental trajectories were observed for stance width, paw overlap distance, braking and propulsion time, rate of stance loading, peak paw area, and metrics of intraindividual variability. In FVB/AntJ mice, developmental trajectories were observed for percent shared stance, paw overlap distance, rate of stance loading, and peak paw area, although in different directions than C57 mice. By accounting for the impact of body length on stride measurements, we demonstrate the importance of considering body length when interpreting gait metrics. CONCLUSION Overall, our results show that aspects of mouse gait development parallel a timeline of normal human gait development, such as the percent of stride that is stance phase and swing phase. This study may be used as a standard reference for developmental gait phenotyping of murine models, such as models of neurodevelopmental disease.
Collapse
Affiliation(s)
- Shyam K Akula
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Claire Weichselbaum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Torres EB, Caballero C, Mistry S. Aging with Autism Departs Greatly from Typical Aging. SENSORS 2020; 20:s20020572. [PMID: 31968701 PMCID: PMC7014496 DOI: 10.3390/s20020572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
Autism has been largely portrayed as a psychiatric and childhood disorder. However, autism is a lifelong neurological condition that evolves over time through highly heterogeneous trajectories. These trends have not been studied in relation to normative aging trajectories, so we know very little about aging with autism. One aspect that seems to develop differently is the sense of movement, inclusive of sensory kinesthetic-reafference emerging from continuously sensed self-generated motions. These include involuntary micro-motions eluding observation, yet routinely obtainable in fMRI studies to rid images of motor artifacts. Open-access repositories offer thousands of imaging records, covering 5-65 years of age for both neurotypical and autistic individuals to ascertain the trajectories of involuntary motions. Here we introduce new computational techniques that automatically stratify different age groups in autism according to probability distance in different representational spaces. Further, we show that autistic cross-sectional population trajectories in probability space fundamentally differ from those of neurotypical controls and that after 40 years of age, there is an inflection point in autism, signaling a monotonically increasing difference away from age-matched normative involuntary motion signatures. Our work offers new age-appropriate stochastic analyses amenable to redefine basic research and provide dynamic diagnoses as the person's nervous systems age.
Collapse
Affiliation(s)
- Elizabeth B. Torres
- Psychology Department Center for Biomedicine Imaging and Modelling, CS Department and Rutgers Center for Cognitive Science, Rutgers University, Camden, NJ 08854, USA
- Correspondence: ; Tel.: +1-732-208-3158
| | - Carla Caballero
- Sports Science Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain;
| | - Sejal Mistry
- Biomathematics Department, Rutgers University, Camden, NJ 08854, USA;
| |
Collapse
|
41
|
Torres EB, Rai R, Mistry S, Gupta B. Hidden Aspects of the Research ADOS Are Bound to Affect Autism Science. Neural Comput 2020; 32:515-561. [PMID: 31951797 DOI: 10.1162/neco_a_01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The research-grade Autism Diagnostic Observational Schedule (ADOS) is a broadly used instrument that informs and steers much of the science of autism. Despite its broad use, little is known about the empirical variability inherently present in the scores of the ADOS scale or their appropriateness to define change and its rate, to repeatedly use this test to characterize neurodevelopmental trajectories. Here we examine the empirical distributions of research-grade ADOS scores from 1324 records in a cross-section of the population comprising participants with autism between five and 65 years of age. We find that these empirical distributions violate the theoretical requirements of normality and homogeneous variance, essential for independence between bias and sensitivity. Further, we assess a subset of 52 typical controls versus those with autism and find a lack of proper elements to characterize neurodevelopmental trajectories in a coping nervous system changing at nonuniform, nonlinear rates. Repeating the assessments over four visits in a subset of the participants with autism for whom verbal criteria retained the same appropriate ADOS modules over the time span of the four visits reveals that switching the clinician changes the cutoff scores and consequently influences the diagnosis, despite maintaining fidelity in the same test's modules, room conditions, and tasks' fluidity per visit. Given the changes in probability distribution shape and dispersion of these ADOS scores, the lack of appropriate metric spaces to define similarity measures to characterize change and the impact that these elements have on sensitivity-bias codependencies and on longitudinal tracking of autism, we invite a discussion on readjusting the use of this test for scientific purposes.
Collapse
Affiliation(s)
- Elizabeth B Torres
- Psychology Department; Computer Science, Center for Biomedical Imagining and Modeling; and Rutgers University Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Richa Rai
- Psychology Department, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Sejal Mistry
- Mathematics Department, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Brenda Gupta
- Montclair State University, Montclair, NJ 07043, U.S.A.
| |
Collapse
|
42
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Schmitt LM, Wang J, Pedapati EV, Thurman AJ, Abbeduto L, Erickson CA, Sweeney JA. A neurophysiological model of speech production deficits in fragile X syndrome. Brain Commun 2019; 2. [PMID: 32924010 PMCID: PMC7425415 DOI: 10.1093/braincomms/fcz042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome is the most common inherited intellectual disability and monogenic cause of autism spectrum disorder. Expressive language deficits, especially in speech production, are nearly ubiquitous among individuals with fragile X, but understanding of the neurological bases for these deficits remains limited. Speech production depends on feedforward control and the synchronization of neural oscillations between speech-related areas of frontal cortex and auditory areas of temporal cortex. Interaction in this circuitry allows the corollary discharge of intended speech generated from an efference copy of speech commands to be compared against actual speech sounds, which is critical for making adaptive adjustments to optimize future speech. We aimed to determine whether alterations in coherence between frontal and temporal cortices prior to speech production are present in individuals with fragile X and whether they relate to expressive language dysfunction. Twenty-one participants with full-mutation fragile X syndrome (aged 7-55 years, eight females) and 20 healthy controls (matched on age and sex) completed a talk/listen paradigm during high-density EEG recordings. During the talk task, participants repeated pronounced short vocalizations of 'Ah' every 1-2 s for a total of 180 s. During the listen task, participants passively listened to their recordings from the talk task. We compared pre-speech event-related potential activity, N1 suppression to speech sounds, single trial gamma power and fronto-temporal coherence between groups during these tasks and examined their relation to performance during a naturalistic language task. Prior to speech production, fragile X participants showed reduced pre-speech negativity, reduced fronto-temporal connectivity and greater frontal gamma power compared to controls. N1 suppression during self-generated speech did not differ between groups. Reduced pre-speech activity and increased frontal gamma power prior to speech production were related to less intelligible speech as well as broader social communication deficits in fragile X syndrome. Our findings indicate that coordinated pre-speech activity between frontal and temporal cortices is disrupted in individuals with fragile X in a clinically relevant way and represents a mechanism contributing to prominent speech production problems in the disorder.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ernest V Pedapati
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angela John Thurman
- Psychiatry and Behavioral Sciences, University of California, Davis, MIND Institute, Sacramento, CA, USA
| | - Leonard Abbeduto
- Psychiatry and Behavioral Sciences, University of California, Davis, MIND Institute, Sacramento, CA, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
44
|
Quantitative Gait Analysis and Cerebrospinal Fluid Tap Test for Idiopathic Normal-pressure Hydrocephalus. Sci Rep 2019; 9:16255. [PMID: 31700018 PMCID: PMC6838166 DOI: 10.1038/s41598-019-52448-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022] Open
Abstract
We investigated gait performance utilizing a quantitative gait analysis for 2 groups: (1) idiopathic normal-pressure hydrocephalus (INPH) patients who had a positive response to the cerebrospinal fluid tap test (CSFTT) and (2) healthy controls. The aims of the study were (1) to analyze the characteristics of gait features, (2) to characterize changes in gait parameters before and after the CSFTT, and (3) to determine whether there was any relationship between stride time and stride length variability and Frontal Assessment Battery (FAB) scores in INPH patients. Twenty-three INPH patients and 17 healthy controls were included in this study. Compared with healthy controls, the gait of INPH patients was characterized by lower velocity, shorter stride length, and more broad-based gait. Patients with INPH had a longer stance phase with increased double-limb support. Variability in stride time and stride length was increased in INPH patients. Stride time and stride length variability were correlated with FAB score. After the CSFTT, gait velocity, stride length, and step width significantly improved. There were significant decreases in stride time and stride length variability. These results suggest that the CSFTT for INPH patients might improve the so-called balance-related gait parameter (ie, step width) as well. Stride time and stride length variability also responded to the CSFTT. Association between FAB scores and both stride time and stride length variability suggests involvement of similar circuits producing gait variability and frontal lobe functions in INPH patients.
Collapse
|
45
|
Patterns of Cerebellar Connectivity with Intrinsic Connectivity Networks in Autism Spectrum Disorders. J Autism Dev Disord 2019; 49:4498-4514. [DOI: 10.1007/s10803-019-04168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Modi ME, Sahin M. A unified circuit for social behavior. Neurobiol Learn Mem 2019; 165:106920. [PMID: 30149055 PMCID: PMC6387844 DOI: 10.1016/j.nlm.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Recent advances in circuit manipulation technologies have enabled the association of distinct neural circuits with complex social behaviors. The brain areas identified through historical anatomical characterizations as mediators of sexual and parental behaviors can now be functionally linked to adult social behaviors within a unified circuit. In vivo electrophysiology, optogenetics and chemogenetics have been used to follow the processing of social sensory stimuli from perception by the olfactory system to valence detection by the amygdala and mesolimbic dopamine system to integration by the cerebral and cerebellar cortices under modulation of hypothalamic neuropeptides. Further, these techniques have been able to identify the distinct functional changes induced by social as opposed to non-social stimuli. Together this evidence suggests that there is a distinct, functionally coupled circuit that is selectively activated by social stimuli. A unified social circuit provides a new framework against which synaptopathic autism related mutations can be considered and novel pharmacotherapeutic strategies can be developed.
Collapse
Affiliation(s)
- Meera E Modi
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States
| | - Mustafa Sahin
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
47
|
Convergence of three parcellation approaches demonstrating cerebellar lobule volume deficits in Alcohol Use Disorder. NEUROIMAGE-CLINICAL 2019; 24:101974. [PMID: 31419768 PMCID: PMC6704050 DOI: 10.1016/j.nicl.2019.101974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
Recent advances in robust and reliable methods of MRI-derived cerebellar lobule parcellation volumetry present the opportunity to assess effects of Alcohol Use Disorder (AUD) on selective cerebellar lobules and relations with indices of nutrition and motor functions. In pursuit of this opportunity, we analyzed high-resolution MRI data acquired in 24 individuals with AUD and 20 age- and sex-matched controls with a 32-channel head coil using three different atlases: the online automated analysis pipeline volBrain Ceres, SUIT, and the Johns Hopkins atlas. Participants had also completed gait and balance examination and hematological analysis of nutritional and liver status, enabling testing of functional meaningfulness of each cerebellar parcellation scheme. Compared with controls, each quantification approach yielded similar patterns of group differences in regional volumes: All three approaches identified AUD-related deficits in total tissue and total gray matter, but only Ceres identified a total white matter volume deficit. Convergent volume differences occurred in lobules I-V, Crus I, VIIIB, and IX. Coefficients of variation (CVs) were <20% for 46 of 56 regions measured and in general were graded: Ceres<SUIT<Hopkins. The most robust correlations were identified between poorer stability in balancing on one leg and smaller lobule VI and Crus I volumes from the Ceres atlas. Lower values of two essential vitamins-thiamine (vitamin B1) and serum folate (vitamin B9)-along with lower red blood cell count, which are dependent on adequate levels of B vitamins, correlated with smaller gray matter volumes of lobule VI and Crus I. Higher γ-glutamyl transferase (GGT) levels, possibly reflecting compromised liver function, correlated with smaller volumes of lobules VI and X. These initial results based on high resolution data produced with clinically practical imaging procedures hold promise for expanding our knowledge about the relevance of focal cerebellar morphology in AUD and other neuropsychiatric conditions.
Collapse
|
48
|
Spisák T, Román V, Papp E, Kedves R, Sághy K, Csölle CK, Varga A, Gajári D, Nyitrai G, Spisák Z, Kincses ZT, Lévay G, Lendvai B, Czurkó A. Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism. Sci Rep 2019; 9:9225. [PMID: 31239528 PMCID: PMC6592903 DOI: 10.1038/s41598-019-45667-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/12/2019] [Indexed: 02/03/2023] Open
Abstract
While cerebellar alterations may play a crucial role in the development of core autism spectrum disorder (ASD) symptoms, their pathophysiology on the function of cerebrocerebellar circuit loops is largely unknown. We combined multimodal MRI (9.4 T) brain assessment of the prenatal rat valproate (VPA) model and correlated immunohistological analysis of the cerebellar Purkinje cell number to address this question. We hypothesized that a suitable functional MRI (fMRI) paradigm might show some altered activity related to disrupted cerebrocerebellar information processing. Two doses of maternal VPA (400 and 600 mg/kg, s.c.) were used. The higher VPA dose induced 3% smaller whole brain volume, the lower dose induced 2% smaller whole brain volume and additionally a focal gray matter density decrease in the cerebellum and brainstem. Increased cortical BOLD responses to whisker stimulation were detected in both VPA groups, but it was more pronounced and extended to cerebellar regions in the 400 mg/kg VPA group. Immunohistological analysis revealed a decreased number of Purkinje cells in both VPA groups. In a detailed analysis, we revealed that the Purkinje cell number interacts with the cerebral BOLD response distinctively in the two VPA groups that highlights atypical function of the cerebrocerebellar circuit loops with potential translational value as an ASD biomarker.
Collapse
Affiliation(s)
- Tamás Spisák
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Viktor Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Edit Papp
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Kedves
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Katalin Sághy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | - Anita Varga
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Dávid Gajári
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gabriella Nyitrai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsófia Spisák
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsigmond Tamás Kincses
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - György Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary.
| |
Collapse
|
49
|
Wang C, Pan YH, Wang Y, Blatt G, Yuan XB. Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum. Mol Brain 2019; 12:40. [PMID: 31046797 PMCID: PMC6498582 DOI: 10.1186/s13041-019-0461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
Collapse
Affiliation(s)
- Chunlei Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Gene Blatt
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
50
|
Hyperexcitability and Hyperplasticity Disrupt Cerebellar Signal Transfer in the IB2 KO Mouse Model of Autism. J Neurosci 2019; 39:2383-2397. [PMID: 30696733 DOI: 10.1523/jneurosci.1985-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD.SIGNIFICANCE STATEMENT This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.
Collapse
|