1
|
Chen J, Shi Z, Chen Y, Xiong K, Wang Y, Zhang H. A CoQ10 analog ameliorates cognitive impairment and early brain injury after subarachnoid hemorrhage by regulating ferroptosis and neuroinflammation. Redox Biol 2025; 84:103684. [PMID: 40398356 DOI: 10.1016/j.redox.2025.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a stroke subtype that can lead to prolonged cognitive deficits as well as death or disability. Prior investigation has suggested that CoQ10 analogs can mitigate oxidative stress and inflammation and promote mitochondrial biogenesis in the context of brain injury and neurodegenerative disorders. However, the precise mechanisms underlying early brain injury (EBI) following SAH remain incompletely understood, and the detailed molecular processes have yet to be completely clarified. This investigation examined the neuroprotective properties of a CoQ10 analog concerning EBI post-SAH and identified potential mechanistic pathways. Our findings indicate that SAH led to alterations in innate and learned behaviors in aged C57BL/6J mice while also triggering ferroptosis and neuroinflammation within hippocampal neurons. Additionally, SAH was associated with reduced ferroptosis-related proteins, exacerbation of iron accumulation, elevation of lipid ROS, and decreased FSP1, HO-1, and NQO1 levels. The CoQ10 analog idebenone (IDB) demonstrated a capacity to alleviate EBI, as evidenced by improvements in both innate and learned behaviors, alongside a reduction in ferroptosis-related gene/protein expression. Silencing of FSP1 exacerbated EBI, ferroptosis, and neuroinflammation, and partially counteracted the neuroprotective effects of the CoQ10 analog. These results suggest that IDB may enhance the recovery from SAH-induced EBI in aged mice by modulating FSP1 protein stability via NMT-mediated N-myristoylation, thereby inhibiting both ferroptosis and neuroinflammation. The potential therapeutic application of IDB as a clinical intervention for EBI following SAH is also highlighted.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China; Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Zhonghua Shi
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Yuhua Chen
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Research Team of Regulation of Cellular Senescence and Death, Hainan University, Hainan, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China.
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
2
|
Hara Y, Jha MK, Huang JY, Han Y, Langohr IM, Gaglia G, Zhu C, Piepenhagen P, Gayvert K, Lim WK, Asrat S, Nash S, Jacob‐Nara JA, Orengo JM, Bangari DS, de Rinaldis E, Mattoo H, Hicks A. The IL-4-IL-4Rα axis modulates olfactory neuroimmune signaling to induce loss of smell. Allergy 2025; 80:440-461. [PMID: 39418114 PMCID: PMC11804309 DOI: 10.1111/all.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
IL-4 and IL-13 have non-redundant effects in olfaction, with loss of smell in mice evoked only by intranasal administration of IL-4, but not IL-13. IL-4-evoked pathophysiological effects on olfaction is independent of compromised structural integrity of the olfactory neuroepithelium. IL-4-IL-4Rα signaling modulates neuronal crosstalk with immune cells, suggesting a functional link between olfactory impairment and neuroinflammation. Abbreviations: IL, interleukin; KO, knock-out; wk, week; WT, wild-type.
Collapse
Affiliation(s)
- Yannis Hara
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Mithilesh Kumar Jha
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Jeremy Y. Huang
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Yingnan Han
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Giorgio Gaglia
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Cheng Zhu
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Kaitlyn Gayvert
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Wei Keat Lim
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Seblewongel Asrat
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Scott Nash
- Medical Affairs, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | - Jamie M. Orengo
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | | | - Hamid Mattoo
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Alexandra Hicks
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Vereertbrugghen A, Pizzano M, Cernutto A, Sabbione F, Keitelman IA, Aguilar DV, Podhorzer A, Fuentes F, Corral-Vázquez C, Guzmán M, Giordano MN, Trevani A, de Paiva CS, Galletti JG. CD4 + T cells drive corneal nerve damage but not epitheliopathy in an acute aqueous-deficient dry eye model. Proc Natl Acad Sci U S A 2024; 121:e2407648121. [PMID: 39560641 PMCID: PMC11621630 DOI: 10.1073/pnas.2407648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Dry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4+ T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice. We observed that adaptive immune-deficient mice developed all aspects of DED comparably to WT mice except for the absence of functional and morphological corneal nerve changes, nerve damage-associated transcriptomic signature in the trigeminal ganglia, and sustained tear cytokine levels. Adoptive transfer of CD4+ T cells from WT DED mice to T cell-deficient mice reproduced corneal nerve damage but not epitheliopathy. Conversely, T cell-deficient mice reconstituted solely with naïve CD4+ T cells developed corneal nerve impairment and epitheliopathy upon DED induction, thus replicating the WT DED phenotype. Collectively, our data show that while corneal neuropathy is driven by CD4+ T cells in DED, corneal epithelial damage develops independently of the adaptive immune response. These findings have implications for T cell-targeting therapies currently in use for DED.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Irene A. Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Ariel Podhorzer
- Flow Cytometry Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Celia Corral-Vázquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mauricio Guzmán
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mirta N. Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | | | - Jeremías G. Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| |
Collapse
|
4
|
Ruggiero-Ruff RE, Villa PA, Hijleh SA, Avalos B, DiPatrizio NV, Haga-Yamanaka S, Coss D. Increased body weight in mice with fragile X messenger ribonucleoprotein 1 (Fmr1) gene mutation is associated with hypothalamic dysfunction. Sci Rep 2023; 13:12666. [PMID: 37542065 PMCID: PMC10403586 DOI: 10.1038/s41598-023-39643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sarah Abu Hijleh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell, and Systems Biology, College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Espinasa L, Diamant R, Vinepinsky E, Espinasa M. Evolutionary modifications of Astyanax larval prey capture (LPC) in a dark environment. Zool Res 2023; 44:750-760. [PMID: 37464932 PMCID: PMC10415770 DOI: 10.24272/j.issn.2095-8137.2022.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Feeding strategies of an organism depend on the multimodal sensory processing that most efficiently integrates available visual, chemosensory, and/or mechanoreceptive cues as part of their environmental adaptation. The blind cavefish morph of Astyanax mexicanus has developed sensory-dependent behaviors to find food more efficiently than their eyed, surface-morph counterparts while in darkness. In the absence of light, adult cavefish have evolved enhanced behaviors, such as vibration attraction behavior (VAB), and changes in feeding angle. Here, we identified evolved differences in cavefish larval prey capture (LPC) behavior. In the dark, LPC is more efficient in cavefish than in surface fish. Furthermore, different cave populations express laterality in their LPC and strike towards prey preferentially located on their left or right sides. This suggests the occurrence, to some extent, of divergent LPC evolution among cave populations. While LPC can be triggered exclusively by a vibration stimulus in both surface and cavefish, we provide evidence that LPC is, at least partially, a multimodal sensory process different from adult VAB. We also found that a lack of food may exacerbate the laterality of LPC. Thus, we proposed a mathematical model for explaining laterality based on a balance between: (1) enlarged range of foraging field (behavioral or perceptive) due to asymmetry, (2) food abundance, and (3) disadvantages caused by laterality (unequal lateral hydrodynamic resistance when swimming, allocation of resources for the brain and receptors, and predator escape).
Collapse
Affiliation(s)
- Luis Espinasa
- School of Science, Marist College, Poughkeepsie, NY 12601, USA. E-mail:
| | - Ruth Diamant
- Depto. de Física, Universidad Autónoma Metropolitana - Iztapalapa, Ciudad de México C.P. 09310, México
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | |
Collapse
|
6
|
Villanueva CB, Stephensen HJT, Mokso R, Benraiss A, Sporring J, Goldman SA. Astrocytic engagement of the corticostriatal synaptic cleft is disrupted in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2023; 120:e2210719120. [PMID: 37279261 PMCID: PMC10268590 DOI: 10.1073/pnas.2210719120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.
Collapse
Affiliation(s)
- Carlos Benitez Villanueva
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
| | - Hans J. T. Stephensen
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Rajmund Mokso
- Faculty of Engineering, Division of Solid Mechanics, Lund University, Lund22100, Sweden
| | - Abdellatif Benraiss
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| |
Collapse
|
7
|
D'Acquisto F, D'Addario C, Cooper D, Pallanti S, Blacksell I. Peripheral control of psychiatric disorders: Focus on OCD. Are we there yet? Compr Psychiatry 2023; 123:152388. [PMID: 37060625 DOI: 10.1016/j.comppsych.2023.152388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
"We are all in this together" - we often hear this phrase when we want to flag up a problem that is not for a single individual but concerns us all. A similar reflection has been recently made in the field of mental disorders where brain-centric scientists have started to zoom out their brain-focused graphical representations of the mechanisms regulating psychiatric diseases to include other organs or mediators that did not belong historically to the world of neuroscience. The brain itself - that has long been seen as a master in command secluded in its fortress (the blood brain barrier), has now become a collection of Airbnb(s) where all sorts of cells come in and out and sometimes even rearrange the furniture! Under this new framework of reference, mental disorders have become multisystem pathologies where different biological systems - not just the CNS -contribute 'all together' to the development and severity of the disease. In this narrative review article, we will focus on one of the most popular biological systems that has been shown to influence the functioning of the CNS: the immune system. We will specifically highlight the two main features of the immune system and the CNS that we think are important in the context of mental disorders: plasticity and memory.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- School of Life and Health Science, University of Roehampton, London, UK.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefano Pallanti
- Albert Einstein College of Medicine,New York, USA; Istituto di Neuroscienze, Florence, Italy
| | - Isobel Blacksell
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Olfactory impairment in psychiatric disorders: Does nasal inflammation impact disease psychophysiology? Transl Psychiatry 2022; 12:314. [PMID: 35927242 PMCID: PMC9352903 DOI: 10.1038/s41398-022-02081-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Olfactory impairments contribute to the psychopathology of mental illnesses such as schizophrenia and depression. Recent neuroscience research has shed light on the previously underappreciated olfactory neural circuits involved in regulation of higher brain functions. Although environmental factors such as air pollutants and respiratory viral infections are known to contribute to the risk for psychiatric disorders, the role of nasal inflammation in neurobehavioral outcomes and disease pathophysiology remains poorly understood. Here, we will first provide an overview of published findings on the impact of nasal inflammation in the olfactory system. We will then summarize clinical studies on olfactory impairments in schizophrenia and depression, followed by preclinical evidence on the neurobehavioral outcomes produced by olfactory dysfunction. Lastly, we will discuss the potential impact of nasal inflammation on brain development and function, as well as how we can address the role of nasal inflammation in the pathophysiological mechanisms underlying psychiatric disorders. Considering the current outbreak of Coronavirus Disease 2019 (COVID-19), which often causes nasal inflammation and serious adverse effects for olfactory function that might result in long-lasting neuropsychiatric sequelae, this line of research is particularly critical to understanding of the potential significance of nasal inflammation in the pathophysiology of psychiatric disorders.
Collapse
|
9
|
Exploring the Origin and Physiological Significance of DNA Double Strand Breaks in the Developing Neuroretina. Int J Mol Sci 2022; 23:ijms23126449. [PMID: 35742893 PMCID: PMC9224223 DOI: 10.3390/ijms23126449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mosaicism is an intriguing physiological feature of the mammalian brain that generates altered genetic information and provides cellular, and prospectively functional, diversity in a manner similar to that of the immune system. However, both its origin and its physiological significance remain poorly characterized. Most, if not all, cases of somatic mosaicism require prior generation and repair of DNA double strand breaks (DSBs). The relationship between DSB generation, neurogenesis, and early neuronal cell death revealed by our studies in the developing retina provides new perspectives on the different mechanisms that contribute to DNA rearrangements in the developing brain. Here, we speculate on the physiological significance of these findings.
Collapse
|
10
|
Rebeca H, Karen PA, Elva A, Carmen C, Fernando P. Main Olfactory Bulb Reconfiguration by Prolonged Passive Olfactory Experience Correlates with Increased Brain‐Derived Neurotrophic Factor and Improved Innate Olfaction. Eur J Neurosci 2022; 55:1141-1161. [DOI: 10.1111/ejn.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hernández‐Soto Rebeca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Pimentel‐Farfan Ana Karen
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Adan‐Castro Elva
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Clapp Carmen
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Peña‐Ortega Fernando
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| |
Collapse
|
11
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
12
|
Deng I, Wiese MD, Zhou XF, Bobrovskaya L. The efficacy of systemic administration of lipopolysaccharide in modelling pre-motor Parkinson's disease in C57BL/6 mice. Neurotoxicology 2021; 85:254-264. [PMID: 34097939 DOI: 10.1016/j.neuro.2021.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/28/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterised by the loss of dopaminergic neurons in the substantia nigra. Mounting evidence indicates a crucial role of inflammation and concomitant oxidative stress in the disease progression. Therefore, the aim of this study was to investigate the ability of systemically administered lipopolysaccharide (LPS) to induce motor and non-motor symptoms of PD, inflammation, oxidative stress and major neuropathological hallmarks of the disease in regions postulated to be affected, including the olfactory bulb, hippocampus, midbrain and cerebellum. Twenty-one male C57BL/6 mice, approximately 20 weeks old, received a dose of 0.3 mg/kg/day of LPS systemically on 4 consecutive days and behavioural testing was conducted on days 14-18 post-treatment, followed by tissue collection. Systemically administered LPS increased latency time in the buried food seeking test (indicative of olfactory impairment), and decreased time spent in central zone of the open field (anxiety-like behaviour). However, there was no change in latency time in the rotarod test or the expression of tyrosine hydroxylase (TH) in the midbrain. Systemically administered LPS induced increased glial markers GFAP and Iba-1 and oxidative stress marker 3-nitrotyrosine (3-NT) in the olfactory bulb, hippocampus, midbrain and cerebellum, and there were region specific changes in the expression of NFκB, IL-1β, α-synuclein, TH and BDNF proteins. The model could be useful to further elucidate early non-motor aspects of PD and the possible mechanisms contributing to the non-motor deficits.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
13
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
14
|
Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev 2021; 20:102792. [PMID: 33610751 PMCID: PMC7892316 DOI: 10.1016/j.autrev.2021.102792] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Autoimmunity may be generated by a variety of factors by creating a hyper-stimulated state of the immune system. It had been established long ago that viruses are a substantial component of environmental factors that contribute to the production of autoimmune antibodies, as well as autoimmune diseases. Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) are viruses that withhold these autoimmune abilities. In a similar manner, SARS-CoV-2 may be counted to similar manifestations, as numerous records demonstrating the likelihood of COVID-19 patients to develop multiple types of autoantibodies and autoimmune diseases. In this review, we focused on the association between COVID-19 and the immune system concerning the tendency of patients to develop over 15 separate types of autoantibodies and above 10 distinct autoimmune diseases. An additional autoimmunity manifestation may be one of the common initial symptoms in COVID-19 patients, anosmia, the complete loss of the ability to sense smell, and other olfactory alterations. We summarize current knowledge on principal mechanisms that may contribute to the development of autoimmunity in the disease: the ability of SARS-CoV-2 to hyper-stimulate the immune system, induce excessive neutrophil extracellular traps formation with neutrophil-associated cytokine responses and the molecular resemblance between self-components of the host and the virus. Additionally, we will examine COVID-19 potential risk on the new-onsets of autoimmune diseases, such as antiphospholipid syndrome, Guillain-Barré syndrome, Kawasaki disease and numerous others. It is of great importance to recognize those autoimmune manifestations of COVID-19 in order to properly cope with their outcomes in the ongoing pandemic and the long-term post-pandemic period. Lastly, an effective vaccine against SARS-CoV-2 may be the best solution in dealing with the ongoing pandemic. We will discuss the new messenger RNA vaccination strategy with an emphasis on autoimmunity implications.
Collapse
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel. Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and cell signaling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; Federation Hospital-University (FHU) OMICARE, Federation of Translational Medicine of Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Italy
| | - Paula David
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel. Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel. Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel. Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg 199034, Russian Federation.
| |
Collapse
|
15
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Jeuthe S, Kemna J, Kemna CP, Zocholl D, Klopfleisch R, Palme R, Kirschbaum C, Thoene-Reineke C, Kammertoens T. Stress hormones or general well-being are not altered in immune-deficient mice lacking either T- and B- lymphocytes or Interferon gamma signaling if kept under specific pathogen free housing conditions. PLoS One 2020; 15:e0239231. [PMID: 32997686 PMCID: PMC7526874 DOI: 10.1371/journal.pone.0239231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
It is controversially discussed whether immune-deficient mice experience severity in the absence of infection. Because a comprehensive analysis of the well-being of immune-deficient mice under specific pathogen free conditions is missing, we used a multi-parametric test analyzing, corticosterone, weight, nest building and facial expression over a period of 9 month to determine the well-being of two immune-deficient mouse lines (recombination activating gene 2- and interferon gamma receptor-deficient mice). We do not find evidence for severity when comparing immune-deficient mice to their heterozygous immune-competent littermates. Our data challenge the assumption that immune-deficiency per se regardless of housing conditions causes severity. Based on our study we propose to use objective non-invasive parameters determined by laboratory animal science for decisions concerning severity of immune-deficient mice.
Collapse
Affiliation(s)
- Sarah Jeuthe
- Animal Facility of the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Josephine Kemna
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| | | | - Dario Zocholl
- Institut für Biometrie und Klinische Epidemiologie, Charité Campus Mitte, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Christa Thoene-Reineke
- Department of Veterinary Medicine, Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University, Berlin, Germany
| | - Thomas Kammertoens
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| |
Collapse
|
17
|
Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, Mancuso R, Tito RY, Kouser L, Callaerts-Vegh Z, de la Fuente AG, Prezzemolo T, Mascali LG, Brajic A, Whyte CE, Yshii L, Martinez-Muriana A, Naughton M, Young A, Moudra A, Lemaitre P, Poovathingal S, Raes J, De Strooper B, Fitzgerald DC, Dooley J, Liston A. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell 2020; 182:625-640.e24. [PMID: 32702313 PMCID: PMC7427333 DOI: 10.1016/j.cell.2020.06.026] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023]
Abstract
The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. Video Abstract
Residential CD4 T cells are present in the healthy mouse and human brain Brain residency is a transient program initiated in situ and lasting weeks CD4 T cell entry around birth drives a transcriptional maturation step in microglia Absence of CD4 T cells results in defective synaptic pruning and behavior
Collapse
Affiliation(s)
- Emanuela Pasciuto
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Oliver T Burton
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Carlos P Roca
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Vasiliki Lagou
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Wenson D Rajan
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosurgery, UZ Leuven, Leuven 3000, Belgium
| | - Renzo Mancuso
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Raul Y Tito
- Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Lubna Kouser
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Teresa Prezzemolo
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Loriana G Mascali
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Carly E Whyte
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Lidia Yshii
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Anna Martinez-Muriana
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Andrew Young
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alena Moudra
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | | | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium; Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - James Dooley
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Adrian Liston
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
18
|
3Rs-based optimization of mice behavioral testing: The habituation/dishabituation olfactory test. J Neurosci Methods 2020; 332:108550. [PMID: 31838181 DOI: 10.1016/j.jneumeth.2019.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is clear evidence that most of the paradigms that are used in the field of behavioral neuroscience suffer from a lack of reliability mainly because of oversimplification of both testing procedures and interpretations. In the present study we show how an already existing behavioral test, the olfactory habituation / dishabituation task, can be optimized in such a way that animal number and animal distress could be minimized, number/confidence of behavioral outcomes and number of explored behavioral dimensions could be increased. NEW METHOD We used ethologically relevant technical and procedural changes associated with videotracking-based automated quantification of sniffing behavior to validate our new setup. Mainly internal and construct validity were challenged through the implementation of a series of simple experiments. RESULTS We show that the new version of the test: 1) has very good within and inter laboratory replicability, 2) is sensitive to some environmental / experimental factors while insensitive to others, 3) allows investigating hedonism, both state and trait anxiety, efficacy of anxiolytic molecules, acute stress, mental retardation-related social impairments and learning and memory. 4) We also show that interest for both nonsocial and social odors is stable over time which makes repetitive testing possible. CONCLUSIONS This work paves the way for future studies showing how behavioral tests / procedures may be improved by using ethologically relevant changes, in order to question laboratory animals more adequately. Refining behavioral tests may considerably increase predictivity of preclinical tests and, ultimately, help reinforcing translational research.
Collapse
|
19
|
Lu Y, Chen L, Ye J, Chen C, Zhou Y, Li K, Zhang Z, Peng M. Surgery/Anesthesia disturbs mitochondrial fission/fusion dynamics in the brain of aged mice with postoperative delirium. Aging (Albany NY) 2020; 12:844-865. [PMID: 31929114 PMCID: PMC6977661 DOI: 10.18632/aging.102659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
Postoperative delirium (POD) is a common complication following surgery and anesthesia (Surgery/Anesthesia). Mitochondrial dysfunction, which is demonstrated by energy deficits and excessively activated oxidative stress, has been reported to contribute to POD. The dynamic balance between mitochondrial fusion and fission processes is critical in regulating mitochondrial function. However, the impact of Surgery/Anesthesia on mitochondrial fusion/fission dynamics remains unclear. Here, we evaluate the effects of laparotomy under 1.4% isoflurane anesthesia for 2 hours on mitochondrial fission/fusion dynamics in the brain of aged mice. Mice in Surgery/Anesthesia group showed unbalanced fission/fusion dynamics, with decreased DISC1 expression and increased expression of Drp1 and Mfn2 in the mitochondrial fraction, leading to excessive mitochondrial fission and disturbed mitochondrial morphogenesis in the hippocampus and prefrontal cortex. In addition, surgical mice presented mitochondrial dysfunction, demonstrated by abnormally activated oxidative stress (increased ROS level, decreased SOD level) and energy deficits (decreased levels of ATP and MMP). Surgery/Anesthesia also decreased the expression of neuronal/synaptic plasticity-related proteins such as PSD-95 and BDNF. Furthermore, Surgery/Anesthesia induced delirium-like behavior in aged mice. In conclusion, Surgery/Anesthesia disturbed mitochondrial fission/fusion dynamics and then impaired mitochondrial function in the brain of aged mice; these effects may be involved in the underlying mechanism of POD.
Collapse
Affiliation(s)
- Yayuan Lu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jishi Ye
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Álvarez-Lindo N, Baleriola J, de Los Ríos V, Suárez T, de la Rosa EJ. RAG-2 deficiency results in fewer phosphorylated histone H2AX foci, but increased retinal ganglion cell death and altered axonal growth. Sci Rep 2019; 9:18486. [PMID: 31811168 PMCID: PMC6898044 DOI: 10.1038/s41598-019-54873-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs), selectively visualized as γ-H2AX+ foci, occur during the development of the central nervous system, including the retina, although their origin and biological significance are poorly understood. Mutant mice with DSB repair mechanism defects exhibit increased numbers of γ-H2AX+ foci, increased cell death during neural development, and alterations in axonogenesis in the embryonic retina. The aim of this study was to identify putative sources of DSBs. One of the identified DSBs sources is LINE-1 retrotransposition. While we did not detect changes in LINE-1 DNA content during the early period of cell death associated with retinal neurogenesis, retinal development was altered in mice lacking RAG-2, a component of the RAG-1,2-complex responsible for initiating somatic recombination in lymphocytes. Although γ-H2AX+ foci were less abundant in the rag2−/− mouse retina, retinal ganglion cell death was increased and axonal growth and navigation were impaired in the RAG-2 deficient mice, a phenotype shared with mutant mice with defective DNA repair mechanisms. These findings demonstrate that RAG-2 is necessary for proper retinal development, and suggest that both DSB generation and repair are genuine processes intrinsic to neural development.
Collapse
Affiliation(s)
- Noemí Álvarez-Lindo
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Jimena Baleriola
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Laboratory of local translation in neurons and glia, Achucarro Basque Center for Neuroscience; Department of Cell Biology and Histology, University of the Basque Country, Leioa; and Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Vivian de Los Ríos
- Proteomics and Genomics, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Teresa Suárez
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Enrique J de la Rosa
- 3D Lab: Development, Differentiation & Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.
| |
Collapse
|
21
|
Hornoiu I, Gigg J, Talmi D. Quantifying how much attention rodents allocate to motivationally-salient objects with a novel object preference test. Behav Brain Res 2019; 380:112389. [PMID: 31783088 DOI: 10.1016/j.bbr.2019.112389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022]
Abstract
The allocation of attention can be modulated by the emotional value of a stimulus. In order to understand the biasing influence of emotion on attention allocation further, we require an animal test of how motivational salience modulates attention. In mice, female odour triggers arousal and elicits emotional responses in males. Here, we determined the extent to which objects labelled with female odour modulated the attention of C57BL/6J male mice. Seven experiments were conducted, using a modified version of the spontaneous Novel Object Recognition task. Attention was operationalised as differential exploration time of identical objects that were labelled with either female mouse odour (O+), a non-social odour, almond odour (Oa) or not labelled with any odour (O-). In some experiments we tested trial unique (novel) objects than never carried an odour (X-). Using this novel object preference test we found that when single objects were presented, as well as when two objects were presented simultaneously (so competed with each other for attention), O+ received preferential attention compared to O-. This result was independent of whether O+ was at a novel or familiar location. When compared with Oa at a novel location, O+ at a familiar location attracted more attention. Compared to X-, O+ received more exploration only when placed at a novel location, but attention to O+ and X- was equivalent when they were placed in a familiar location. These results suggest that C57BL/6J male mice weigh up aspects of odour, object novelty and special novelty for motivational salience, and that, in some instances, female odour elicits more attention (object exploration) compared to other object properties. The findings of this study pave the way to using motivationally-significant odours to modulate the cognitive processes that give rise to differential attention to objects.
Collapse
Affiliation(s)
- Iasmina Hornoiu
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - John Gigg
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - Deborah Talmi
- Department of Psychology, University of Cambridge, UK.
| |
Collapse
|
22
|
Pandolfi EC, Hoffmann HM, Schoeller EL, Gorman MR, Mellon PL. Haploinsufficiency of SIX3 Abolishes Male Reproductive Behavior Through Disrupted Olfactory Development, and Impairs Female Fertility Through Disrupted GnRH Neuron Migration. Mol Neurobiol 2018; 55:8709-8727. [PMID: 29589282 PMCID: PMC6156938 DOI: 10.1007/s12035-018-1013-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Mating behavior in males and females is dependent on olfactory cues processed through both the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Signaling through the MOE is critical for the initiation of male mating behavior, and the loss of MOE signaling severely compromises this comportment. Here, we demonstrate that dosage of the homeodomain gene Six3 affects the degree of development of MOE but not the VNO. Anomalous MOE development in Six3 heterozygote mice leads to hyposmia, specifically disrupting male mounting behavior by impairing detection of volatile female estrus pheromones. Six3 is highly expressed in the MOE, main olfactory bulb (MOB), and hypothalamus; all regions essential in the proper migration of the gonadotropin-releasing hormone (GnRH) neurons, a key reproductive neuronal population that migrates along olfactory axons from the developing nose into the brain. Interestingly, we find that the reduction in Six3 expression in Six3 heterozygote mice compromises development of the MOE and MOB, resulting in mis-migration of GnRH neurons due to improper olfactory axon targeting. This reduction in the hypothalamic GnRH neuron population, by 45% in adulthood, leads to female subfertility, but does not impact male hormone levels, suggesting that male infertility is not related to GnRH neuron numbers, but exclusively linked to abnormal olfaction. We here determine that Six3 is haploinsufficient for MOE development, GnRH neuron migration, and fertility, and represents a novel candidate gene for Kallmann syndrome, a form of inherited infertility.
Collapse
Affiliation(s)
- Erica C Pandolfi
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Erica L Schoeller
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pamela L Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA.
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Hoffmann HM, Pandolfi EC, Larder R, Mellon PL. Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2 Causes Subfertility in Mice via Distinct Mechanisms. Neuroendocrinology 2018; 109:200-207. [PMID: 30261489 PMCID: PMC6437011 DOI: 10.1159/000494086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a single copy to prevent any loss of normal activity and function. Reproduction is a complex process relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found that the deletion of one allele for any of these genes in mice produces subfertility or infertility in one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review compares the subfertility phenotypes and their mechanisms.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Erica C Pandolfi
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rachel Larder
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA,
| |
Collapse
|
24
|
Lloyd E, Olive C, Stahl BA, Jaggard JB, Amaral P, Duboué ER, Keene AC. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Dev Biol 2018; 441:328-337. [PMID: 29772227 PMCID: PMC6450390 DOI: 10.1016/j.ydbio.2018.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.
Collapse
Affiliation(s)
- Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Courtney Olive
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Bombini MF, Peres FA, Lapa AT, Sinicato NA, Quental BR, Pincelli ÁDSM, Amaral TN, Gomes CC, Del Rio AP, Marques-Neto JF, Costallat LTL, Fernandes PT, Cendes F, Rittner L, Appenzeller S. Olfactory function in systemic lupus erythematosus and systemic sclerosis. A longitudinal study and review of the literature. Autoimmun Rev 2018; 17:405-412. [PMID: 29444467 DOI: 10.1016/j.autrev.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND/PURPOSE To evaluate olfactory function in systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and healthy controls over a 2-year period, and to determine the association of olfactory dysfunction with age, disease activity, disease damage, treatment, anxiety and depression symptoms and limbic structures volumes. METHODS Consecutive SLE and SSc patients were enrolled in this study. Clinical, laboratory disease activity and damage were assessed according to diseases specific guidelines. Olfactory functions were evaluated using the Sniffin' Sticks test (TDI). Volumetric magnetic resonance imaging (MRI) was obtained in a 3T Phillips scanner. Amygdalae and hippocampi volumes were analyzed using FreeSurfer® software. RESULTS We included 143 SLE, 57 SSc and 166 healthy volunteers. Olfactory dysfunction was observed in 78 (54.5%) SLE, 35 (59.3%) SSc patients and in 24 (14.45%) controls (p<0.001) at study entry. SLE and SSc patients had significantly lower mean in all three phases (TDI) of the olfactory assessment when compared with healthy volunteers. In SLE, the presence of olfactory dysfunction was associated with older age, disease activity, higher anxiety and depression symptoms score, smaller left hippocampus volume, smaller left and right amygdalae volume and the presence of anti-ribosomal P (anti-P) antibodies. In SSc the presence of olfactory impairment was associated with older age, disease activity, smaller left and right hippocampi volumes and smaller right amygdala volume. Olfactory function was repeated after a 2-year period in 90 SLE, 35 SSc and 62 controls and was stable in all three groups. CONCLUSION Both SLE and SSc patients with longstanding disease had significant reduction in all stages of TDI that maintained stable over a 2-year period. Olfactory dysfunction was associated with age, inflammation and hippocampi and amygdalae volumes. In SLE, additional association with anti-P, anxiety and depression symptoms was observed.
Collapse
Affiliation(s)
- Mariana Freschi Bombini
- Physiopathology Graduate Program, School of Medical Sciences, University of Campinas, Brazil; Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil
| | - Fernando Augusto Peres
- Medicine Graduate Program, School of Medical Sciences, University of Campinas, Brazil; Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil
| | - Aline Tamires Lapa
- Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil; Child and Adolescent Health Graduate Program, School of Medical Sciences, University of Campinas, Brazil
| | - Nailú Angélica Sinicato
- Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil; Child and Adolescent Health Graduate Program, School of Medical Sciences, University of Campinas, Brazil
| | - Beatriz Ricato Quental
- Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil
| | - Ágatha de Souza Melo Pincelli
- Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil
| | - Tiago Nardi Amaral
- Medicine Graduate Program, School of Medical Sciences, University of Campinas, Brazil; Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil; Department of Medicine, Rheumatology Unit, School of Medical Sciences, University of Campinas, Brazil
| | | | - Ana Paula Del Rio
- Department of Medicine, Rheumatology Unit, School of Medical Sciences, University of Campinas, Brazil
| | | | - Lilian T L Costallat
- Department of Medicine, Rheumatology Unit, School of Medical Sciences, University of Campinas, Brazil
| | | | - Fernando Cendes
- Medical Imaging Computing Laboratory, School of Electrical and Computer Engineering, University of Campinas, Brazil
| | - Leticia Rittner
- Department of Neurology, School of Medical Sciences, University of Campinas, Brazil
| | - Simone Appenzeller
- Rheumatology Lab, School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab School of Medical Sciences, University of Campinas, Brazil; Department of Medicine, Rheumatology Unit, School of Medical Sciences, University of Campinas, Brazil.
| |
Collapse
|
26
|
Emami A, Tepper J, Short B, Yaksh TL, Bendele AM, Ramani T, Cisternas AF, Chang JH, Mellon RD. Toxicology Evaluation of Drugs Administered via Uncommon Routes: Intranasal, Intraocular, Intrathecal/Intraspinal, and Intra-Articular. Int J Toxicol 2017; 37:4-27. [PMID: 29264927 DOI: 10.1177/1091581817741840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As the need for nasal, ocular, spinal, and articular therapeutic compounds increases, toxicology assessments of drugs administered via these routes play an important role in human safety. This symposium outlined the local and systemic evaluation to support safety during the development of these drugs in nonclinical models with some case studies. Discussions included selection of appropriate species for the intended route; conducting nonclinical studies that closely mimic the intended use with adequate duration; functional assessment, if deemed necessary; evaluation of local tissues with special histological staining procedure; and evaluations of safety margins based on local and systemic toxicity.
Collapse
Affiliation(s)
- Armaghan Emami
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | - Jeff Tepper
- 2 Tepper Nonclinical Consulting, San Carlos, CA, USA
| | - Brian Short
- 3 Brian Short Consulting, LLC, Trabuco Canyon, CA, USA
| | - Tony L Yaksh
- 4 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Jay H Chang
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
27
|
Jin YB, Yang WT, Huang KY, Chen HL, Shonyela SM, Liu J, Liu Q, Feng B, Zhou Y, Zhi SL, Jiang YL, Wang JZ, Huang HB, Shi CW, Yang GL, Wang CF. Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies. Biosci Biotechnol Biochem 2017. [PMID: 28644752 DOI: 10.1080/09168451.2017.1340086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recombination activating gene 2 (RAG2) is necessary for immature B cell differentiation. Antibodies to human and rabbit RAG2 are currently commercially available, but antibodies to swine RAG remain unavailable to date. In this study, the swine RAG2 genes sequence was synthesized and then cloned into a pET-28a vector. The recombinant fusion protein was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Tobacco Etch Virus protease. The cleaved protein was purified by molecular-exclusion chromatography and named pRAG2. We used pRAG2 to immunize rabbits, collected the serum and purified rabbit anti-pRAG2 polyclonal antibodies. The rabbit anti-pRAG2 polyclonal antibodies were tested via immunofluorescence on eukaryotic cells overexpressing pRAG2 and also able to recognize pig natural RAG2 and human RAG2 protein in western blotting. These results indicated that the prepared rabbit anti-pRAG2 polyclonal antibodies may serve as a tool to detect immature B cell differentiation of swine.
Collapse
Affiliation(s)
- Yu-Bei Jin
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Wen-Tao Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Ke-Yan Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hong-Liang Chen
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Seria-Masole Shonyela
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jing Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Qiong Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Bo Feng
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - You Zhou
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Shu-Li Zhi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Yan-Long Jiang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jian-Zhong Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hai-Bin Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Wei Shi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Gui-Lian Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Feng Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| |
Collapse
|
28
|
Editorial overview: Immunomodulation: Exploiting the circle between emotions and immunity: impact on pharmacological treatments. Curr Opin Pharmacol 2016; 29:viii-xii. [DOI: 10.1016/j.coph.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|