1
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
2
|
Yata VK. Ex vivo and miniaturized in vitro models to study microbiota-gut-brain axis. 3 Biotech 2024; 14:280. [PMID: 39464520 PMCID: PMC11502650 DOI: 10.1007/s13205-024-04126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The microbiota-gut-brain axis involves complex bidirectional communication through neural, immune, and endocrine pathways. Microbial metabolites, such as short-chain fatty acids, influence gut motility and brain function by interacting with gut receptors and modulating hormone release. Additionally, microbial components such as lipopolysaccharides and cytokines can cross the gut epithelium and the blood-brain barrier, impacting immune responses and cognitive function. Ex vivo models, which preserve gut tissue and neural segments, offer insight into localized gut-brain communication by allowing for detailed study of nerve excitability in response to microbial signals, but they are limited in systemic complexity. Miniaturized in vitro models, including organ-on-chip platforms, enable precise control of the cellular environment and simulate complex microbiota-host interactions. These systems allow for the study of microbial metabolites, immune responses, and neuronal activity, providing valuable insights into gut-brain communication. Despite challenges such as replicating long-term biological processes and integrating immune and hormonal systems, advancements in bioengineered platforms are enhancing the physiological relevance of these models, offering new opportunities for understanding the mechanisms of the microbiota-gut-brain axis. This review aims to describe the ex vivo and miniaturized in vitro models which are used to mimic the in vivo conditions and facilitate more precise studies of gut brain communication.
Collapse
Affiliation(s)
- Vinod Kumar Yata
- Department of Molecular Biology, Central University of Andhrapradesh, Ananthapuramu - 515701, Andhrapradesh, India
| |
Collapse
|
3
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
4
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
5
|
Joyce SA, O'Malley D. Bile acids, bioactive signalling molecules in interoceptive gut-to-brain communication. J Physiol 2022; 600:2565-2578. [PMID: 35413130 PMCID: PMC9325455 DOI: 10.1113/jp281727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Aside from facilitating solubilisation and absorption of dietary lipids and lipid-soluble vitamins, amphipathic bile acids (BAs) also act as bioactive signalling molecules. A plethora of conjugated or unconjugated primary and bacterially modified secondary BA moieties have been identified, with significant divergence between species. These molecules are excreted into the external environment of the intestinal lumen, yet nuclear and membrane receptors that are sensitive to BAs are expressed internally in the liver, intestinal and neural tissues, amongst others. The diversity of BAs and receptors underpins the multitude of distinct bioactive functions attributed to BAs, but also hampers elucidation of the physiological mechanisms underpinning these actions. In this Topical Review, we have considered the potential of BAs as cross-barrier signalling molecules that contribute to interoceptive pathways informing the central nervous system of environmental changes in the gut lumen. Activation of BAs on FGF19 -secreting enterocytes, enteroendocrine cells coupled to sensory nerves or intestinal immune cells would facilitate indirect signalling, whereas direct activation of BA receptors in the brain is likely to occur primarily under pathophysiological conditions when concentrations of BAs are elevated.
Collapse
Affiliation(s)
- Susan A. Joyce
- School of Biochemistry and Cell BiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Dervla O'Malley
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of PhysiologyCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
6
|
Ní Dhonnabháín R, Xiao Q, O’Malley D. Aberrant Gut-To-Brain Signaling in Irritable Bowel Syndrome - The Role of Bile Acids. Front Endocrinol (Lausanne) 2021; 12:745190. [PMID: 34917022 PMCID: PMC8669818 DOI: 10.3389/fendo.2021.745190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Functional bowel disorders such as irritable bowel syndrome (IBS) are common, multifactorial and have a major impact on the quality of life of individuals diagnosed with the condition. Heterogeneity in symptom manifestation, which includes changes in bowel habit and visceral pain sensitivity, are an indication of the complexity of the underlying pathophysiology. It is accepted that dysfunctional gut-brain communication, which incorporates efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones and local paracrine and neurocrine factors, such as host and microbially-derived signaling molecules, underpins symptom manifestation. This review will focus on the potential role of hepatic bile acids in modulating gut-to-brain signaling in IBS patients. Bile acids are amphipathic molecules synthesized in the liver, which facilitate digestion and absorption of dietary lipids. They are also important bioactive signaling molecules however, binding to bile acid receptors which are expressed on many different cell types. Bile acids have potent anti-microbial actions and thereby shape intestinal bacterial profiles. In turn, bacteria with bile salt hydrolase activity initiate the critical first step in transforming primary bile acids into secondary bile acids. Individuals with IBS are reported to have altered microbial profiles and modified bile acid pools. We have assessed the evidence to support a role for bile acids in the pathophysiology underlying the manifestation of IBS symptoms.
Collapse
Affiliation(s)
- Róisín Ní Dhonnabháín
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Qiao Xiao
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dervla O’Malley
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Nagahawatte ND, Paskaranandavadivel N, Cheng LK. Characterization of Slow Wave Activity in Ex-vivo Porcine Small Intestine Segments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7296-7299. [PMID: 34892783 DOI: 10.1109/embc46164.2021.9630710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The motility of the gut is central to digestion and is coordinated, in part, by bioelectrical events known as slow waves. While the nature of these events is well defined in-vivo, the temporal response of ex-vivo gastrointestinal myoelectrical activity without perfusion is poorly understood. To achieve a fundamental understanding of ex-vivo electrophysiology, slow wave activity was measured from excised porcine intestinal segments and characterized over time. In this study, slow wave frequencies and amplitudes, along with the duration of sustained activity were quantified. Slow wave amplitudes and frequencies decreased from initial values of 46 ± 34 µV and 9.6 ± 5.9 cpm to electrical quiescence over a period of 12.2 ± 2.3 minutes. Mean slow wave amplitude and frequency uniformly declined before electrical quiescence was reached. This study demonstrated the successful acquisition of gastrointestinal myoelectrical activity in excised tissue segments without perfusion. Key slow wave characteristics may contribute to future diagnostics, transplantations and treatments for motility disorders.Clinical Relevance- The ability to characterize excised slow wave activity in organs lacking perfusion will be a critical advancement in developing clinical solutions. Findings will assist in establishing the efficacy of bioelectrical activity in excised tissue samples for organ transplantation. In addition, the ex-vivo setting can be used to represent compromised electrophysiological states to evaluate novel therapies.
Collapse
|
8
|
O'Brien R, Buckley MM, O'Malley D. Divergent effects of exendin-4 and interleukin-6 on rat colonic secretory and contractile activity are associated with changes in regional vagal afferent signaling. Neurogastroenterol Motil 2021; 33:e14160. [PMID: 33945195 DOI: 10.1111/nmo.14160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pro-inflammatory cytokine, interleukin (IL)-6 is elevated in individuals with the functional bowel disorder, irritable bowel syndrome (IBS). IL-6 can independently modify intestinal secreto-motor function, thereby contributing to IBS pathophysiology. Additionally, hormonal changes may underlie symptom flares. Post-prandial exacerbation of IBS symptoms has been linked to secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), which can also influence colonic secreto-motor activity. This study aimed to ascertain if the effects of GLP-1 on colonic secretory and contractile activity was impacted by elevated IL-6 levels and if sensory signals regarding such changes were reflected in altered vagal afferent activity. METHODS Colonic secretory currents and circular muscle contractile activity was investigated in Sprague Dawley rats using Ussing chamber and organ bath electrophysiology. Regional afferent signaling was assessed using extracellular electrophysiological recordings from colonic vagal afferents. KEY RESULTS Application of the GLP-1 receptor agonist, exendin-4 (Ex-4) in the presence of IL-6 potentiated colonic secretory currents and transepithelial resistance. Vagal afferent fibers originating in the submucosal layer exhibited larger responses to Ex-4 when IL-6 was also present. In contrast, co-application of Ex-4 and IL-6 to gut-bath chambers suppressed circular muscle contractile activity. The activity in extrinsic afferents originating in the colonic myenteric layer was similarly suppressed. CONCLUSIONS & INFERENCES Application of Ex-4 in the presence of IL-6 had divergent modulatory effects on colonic secretion and contractile activity. Similar patterns were observed in vagal afferent signaling originating in the submucosal and myenteric neuronal layers, indicating regional afferent activity reflected immune- and endocrine-mediated changes in colonic function.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Kuwahara A, Matsuda K, Kuwahara Y, Asano S, Inui T, Marunaka Y. Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed Res 2021; 41:199-216. [PMID: 33071256 DOI: 10.2220/biomedres.41.199] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The microbiota-gut-brain axis transmits bidirectional communication between the gut and the central nervous system and links the emotional and cognitive centers of the brain with peripheral gut functions. This communication occurs along the axis via local, paracrine, and endocrine mechanisms involving a variety of gut-derived peptide/amine produced by enteroendocrine cells. Neural networks, such as the enteric nervous system, and the central nervous system, including the autonomic nervous system, also transmit information through the microbiota-gut-brain axis. Recent advances in research have described the importance of the gut microbiota in influencing normal physiology and contributing to disease. We are only beginning to understand this bidirectional communication system. In this review, we summarize the available data supporting the existence of these interactions, highlighting data related to the contribution of enteroendocrine cells and the enteric nervous system as an interface between the gut microbiota and brain.
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University
| | - Kyoko Matsuda
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yuko Kuwahara
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association
| |
Collapse
|
10
|
Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020; 11:1203-1219. [PMID: 32401136 PMCID: PMC7524279 DOI: 10.1080/19490976.2020.1758008] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) is not only a nutrient enhancer but also has systemic effects. Trp metabolites signaling through the well-known aryl hydrocarbon receptor (AhR) constitute the interface of microbiome-gut-brain axis. However, the pathway through which Trp metabolites affect central nervous system (CNS) function have not been fully elucidated. AhR participates in a broad variety of physiological and pathological processes that also highly relevant to intestinal homeostasis and CNS diseases. Via the AhR-dependent mechanism, Trp metabolites connect bidirectional signaling between the gut microbiome and the brain, mediated via immune, metabolic, and neural (vagal) signaling mechanisms, with downstream effects on behavior and CNS function. These findings shed light on the complex Trp regulation of microbiome-gut-brain axis and add another facet to our understanding that dietary Trp is expected to be a promising noninvasive approach for alleviating systemic diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing100193, China
| |
Collapse
|
11
|
Buckley MM, O’Brien R, Brosnan E, Ross RP, Stanton C, Buckley JM, O’Malley D. Glucagon-Like Peptide-1 Secreting L-Cells Coupled to Sensory Nerves Translate Microbial Signals to the Host Rat Nervous System. Front Cell Neurosci 2020; 14:95. [PMID: 32425756 PMCID: PMC7203556 DOI: 10.3389/fncel.2020.00095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
An intact gut epithelium preserves the immunological exclusion of "non-self" entities in the external environment of the gut lumen. Nonetheless, information flows continuously across this interface, with the host immune, endocrine, and neural systems all involved in monitoring the luminal environment of the gut. Both pathogenic and commensal gastrointestinal (GI) bacteria can modulate centrally-regulated behaviors and brain neurochemistry and, although the vagus nerve has been implicated in the microbiota-gut-brain signaling axis, the cellular and molecular machinery that facilitates this communication is unclear. Studies were carried out in healthy Sprague-Dawley rats to understand cross-barrier communication in the absence of disease. A novel colonic-nerve electrophysiological technique was used to examine gut-to-brain vagal signaling by bacterial products. Calcium imaging and immunofluorescent labeling were used to explore the activation of colonic submucosal neurons by bacterial products. The findings demonstrate that the neuromodulatory molecule, glucagon-like peptide-1 (GLP-1), secreted by colonic enteroendocrine L-cells in response to the bacterial metabolite, indole, stimulated colonic vagal afferent activity. At a local level indole modified the sensitivity of submucosal neurons to GLP-1. These findings elucidate a cellular mechanism by which sensory L-cells act as cross-barrier signal transducers between microbial products in the gut lumen and the host peripheral nervous system.
Collapse
Affiliation(s)
- Maria M. Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rebecca O’Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Eilish Brosnan
- Department of Physiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Julliette M. Buckley
- Department of Surgery, University College Cork, Cork, Ireland
- Mater Private Hospital, Cork, Ireland
| | - Dervla O’Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Singh A, de la Serre C, de Lartigue G. Gut microbiota sPARk vagus nerve excitation. J Physiol 2020; 598:2043-2044. [PMID: 32187377 DOI: 10.1113/jp279763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Claire de la Serre
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Buckley MM, O'Brien R, Buckley JM, O'Malley D. GHSR-1 agonist sensitizes rat colonic intrinsic and extrinsic neurons to exendin-4: A role in the manifestation of postprandial gastrointestinal symptoms in irritable bowel syndrome? Neurogastroenterol Motil 2019; 31:e13684. [PMID: 31311066 DOI: 10.1111/nmo.13684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) may experience postprandial symptom exacerbation. Nutrients stimulate intestinal release of glucagon-like peptide 1 (GLP-1), an incretin hormone with known gastrointestinal effects. However, prior to the postprandial rise in GLP-1, levels of the hunger hormone, ghrelin, peak. The aims of this study were to determine if ghrelin sensitizes colonic intrinsic and extrinsic neurons to the stimulatory actions of a GLP-1 receptor agonist, and if this differs in a rat model of IBS. METHODS Calcium imaging of enteric neurons was compared between Sprague Dawley and Wistar Kyoto rats. Colonic contractile activity and vagal nerve recordings were also compared between strains. KEY RESULTS Circulating GLP-1 concentrations differ between IBS subtypes. Mechanistically, we have provided evidence that calcium responses evoked by exendin-4, a GLP-1 receptor agonist, are potentiated by a ghrelin receptor (GHSR-1) agonist, in both submucosal and myenteric neurons. Although basal patterns of colonic contractility varied between Sprague Dawley and Wister Kyoto rats, the capacity of exendin-4 to alter smooth muscle function was modified by a GHSR-1 agonist in both strains. Gut-brain signaling via GLP-1-mediated activation of vagal afferents was also potentiated by the GHSR-1 agonist. CONCLUSIONS & INFERENCES These findings support a temporal interaction between ghrelin and GLP-1, where the preprandial peak in ghrelin may temporarily sensitize colonic intrinsic and extrinsic neurons to the neurostimulatory actions of GLP-1. While the sensitizing effects of the GHSR-1 agonist were identified in both rat strains, in the rat model of IBS, underlying contractile activity was aberrant.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Julliette M Buckley
- Department of Surgery, University College Cork, Cork, and Mater Private Hospital, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Sumantran VN, Nair PP. Can the vagus nerve serve as biomarker for vata dosha activity? J Ayurveda Integr Med 2019; 10:146-151. [PMID: 31138487 PMCID: PMC6599167 DOI: 10.1016/j.jaim.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
This 'discussion paper' raises 'provocative questions' to identify physiological systems underlying vata dosha and candidate biomarkers for vata activity. We explained the strong correlations between survival and homeostatic functions of the parasympathetic vagus nerve, and functions governed by the five major sub-types of vata dosha (Praana, Udana, Vyaana, Samaana, and Apana). Four reasons were provided to hypothesize that vagal activity is a reliable candidate biomarker of important vata dosha functions. First, normal vata dosha and the vagus maintain neural, respiratory, and digestive homeostasis, and dysfunctions in both entities cause very similar diseases. Second, vata dosha regulates higher neural functions such as mental health and behaviour, and the 'polyvagal theory' proposes similar functions for the vagus. Third, the similar roles of vata dosha and vagus in maintaining gut homeostasis, suggest that vagal activity in the 'gut-brain' link is a candidate biomarker of pakwashaya (lower gut), a primary regulatory site for vata dosha. Fourth, the vagus is the only vital nerve whose activity can be reliably measured and manipulated. Indeed, vagal nerve stimulation is a USA-FDA approved therapy for certain ailments attributed to impaired vata dosha. No other nerve or dosha, has such multi-functional and life-sustaining properties. These arguments position vagal activity as a suitable candidate biomarker for certain functions of vata dosha.
Collapse
Affiliation(s)
- Venil N Sumantran
- Dr. A.P.J. Abdul Kalam Centre for Excellence in Innovation & Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Deemed University, Maduravoyal, Chennai, 600095, India.
| | - Pratibha P Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Cheruthuruthy, Thrissur District, Kerala, 679531, India
| |
Collapse
|
15
|
O'Malley D. Endocrine regulation of gut function - a role for glucagon-like peptide-1 in the pathophysiology of irritable bowel syndrome. Exp Physiol 2019; 104:3-10. [PMID: 30444291 DOI: 10.1113/ep087443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the topic of this review? Pathophysiological changes linked to irritable bowel syndrome (IBS) include stress and immune activation, changes in gastrointestinal microbial and bile acid profiles and sensitization of extrinsic and intrinsic gut neurons. This review explores the potential role for L-cells in these pathophysiological changes. What advances does it highlight? L-cells, which secrete glucagon-like peptide-1 in response to nutrients, microbial factors, bile acids and short-chain fatty acids, may sense IBS-related changes in the luminal environment. Glucagon-like peptide-1 can act as a hormone, a paracrine factor or a neuromodulatory factor and, through its actions on central or peripheral neurons, may play a role in gastrointestinal dysfunction. ABSTRACT The prevalent and debilitating functional bowel disorder, irritable bowel syndrome (IBS), is characterized by symptoms that include abdominal pain, bloating, diarrhoea and/or constipation. The heterogeneity of IBS underscores a complex multifactorial pathophysiology, which is not completely understood but involves dysfunction of the bi-directional signalling axis between the brain and the gut. This axis incorporates efferent and afferent branches of the autonomic nervous system, circulating endocrine hormones and immune factors, local paracrine and neurocrine factors and microbial metabolites. L-cells, which are electrically excitable biosensors embedded in the gastrointestinal epithelium, secrete glucagon-like peptide-1 (GLP-1) in response to nutrients in the small intestine. However, they appear to function in a different manner more distally in the gastrointestinal tract, where they are activated by luminal factors including short-chain fatty acids, bile acids and microbial metabolic products, all of which are altered in IBS patients. Glucagon-like peptide-1 can also interact with the hypothalamic-pituitary-adrenal stress axis and the immune system, both of which are activated in IBS. Given that a GLP-1 mimetic has been found to alleviate acute pain symptoms in IBS patients, GLP-1 might be important in the manifestation of IBS symptoms. This review assesses the current knowledge about the role of GLP-1 in IBS pathophysiology and its potential role as a signal transducer in the microbiome-gut-brain signalling axis.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Brierley SM, Hibberd TJ, Spencer NJ. Spinal Afferent Innervation of the Colon and Rectum. Front Cell Neurosci 2018; 12:467. [PMID: 30564102 PMCID: PMC6288476 DOI: 10.3389/fncel.2018.00467] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite their seemingly elementary roles, the colon and rectum undertake a variety of key processes to ensure our overall wellbeing. Such processes are coordinated by the transmission of sensory signals from the periphery to the central nervous system, allowing communication from the gut to the brain via the "gut-brain axis". These signals are transmitted from the peripheral terminals of extrinsic sensory nerve fibers, located within the wall of the colon or rectum, and via their axons within the spinal splanchnic and pelvic nerves to the spinal cord. Recent studies utilizing electrophysiological, anatomical and gene expression techniques indicate a surprisingly diverse set of distinct afferent subclasses, which innervate all layers of the colon and rectum. Combined these afferent sub-types allow the detection of luminal contents, low- and high-intensity stretch or contraction, in addition to the detection of inflammatory, immune, and microbial mediators. To add further complexity, the proportions of these afferents vary within splanchnic and pelvic pathways, whilst the density of the splanchnic and pelvic innervation also varies along the colon and rectum. In this review we traverse this complicated landscape to elucidate afferent function, structure, and nomenclature to provide insights into how the extrinsic sensory afferent innervation of the colon and rectum gives rise to physiological defecatory reflexes and sensations of discomfort, bloating, urgency, and pain.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
17
|
A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat Commun 2018; 9:4403. [PMID: 30353009 PMCID: PMC6199302 DOI: 10.1038/s41467-018-06895-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerves are anisotropic and heterogeneous neural tissues. Their complex physiology restricts realistic in vitro models, and high resolution and selective probing of axonal activity. Here, we present a nerve-on-a-chip platform that enables rapid extracellular recording and axonal tracking of action potentials collected from tens of myelinated fibers. The platform consists of microfabricated stimulation and recording microchannel electrode arrays. First, we identify conduction velocities of action potentials traveling through the microchannel and propose a robust data-sorting algorithm using velocity selective recording. We optimize channel geometry and electrode spacing to enhance the algorithm reliability. Second, we demonstrate selective heat-induced neuro-inhibition of peripheral nerve activity upon local illumination of a conjugated polymer (P3HT) blended with a fullerene derivative (PCBM) coated on the floor of the microchannel. We demonstrate the nerve-on-a-chip platform is a versatile tool to optimize the design of implantable peripheral nerve interfaces and test selective neuromodulation techniques ex vivo. Peripheral nerves have a complex physiology and it is therefore difficult to measure axonal activity in vitro. Here the authors make a nerve-on-a-chip platform to align peripheral nerves and permit measurement of conduction amplitude and velocity along several axons in a single experiment.
Collapse
|
18
|
Opportunities and Challenges for Single-Unit Recordings from Enteric Neurons in Awake Animals. MICROMACHINES 2018; 9:mi9090428. [PMID: 30424361 PMCID: PMC6187697 DOI: 10.3390/mi9090428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.
Collapse
|