1
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|
2
|
Wei L, Wang J, Wu J, Li X, Zhou Q, Sun M, Peng B, Chen J, Sun B. Cyclometalated ruthenium (II) complex-based nanoparticles for enhanced microRNAs detection and imaging in living cells. Biosens Bioelectron 2025; 272:117090. [PMID: 39752890 DOI: 10.1016/j.bios.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
MicroRNA (miRNA) imaging in living cells is paramount for comprehending its dynamic functions and profiles, offering valuable insights into miRNA-related cellular processes. However, this remains challenging due to limited transfection agents and the low abundance of miRNAs. Herein, a smart nanosystem was proposed for miRNA imaging in living cells by ingeniously integrating cyclometalated ruthenium (II) nanoparticles (RuNPs) with a catalyzed hairpin assembly (CHA) strategy. Three cyclometalated ruthenium (II) complexes were synthesized and employed self-assembly technology to construct RuNPs. After evaluating their loading efficiency (LE), fluorescence quenching rates (QE), and fluorescence recovery rates (RE) for Hairpins, RuNPs-1 was selected to construct the Hairpins@RuNPs-1 nanosystem. With a detection limit of 1.5 pM, the Hairpins@RuNPs-1 nanosystem demonstrated high sensitivity for miR-25, live cell imaging confirmed its ability to detect intracellular miR-25 and differentiate its expression in various cells with excellent biocompatibility. We believe it has the potential to become an effective tool for nucleic acid research and would be poised to significantly influence the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Lintao Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianhao Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xidong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianying Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengxu Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Jun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Cheon J, Jung H, Kang BY, Kim M. Impact of potential biomarkers, SNRPE, COX7C, and RPS27, on idiopathic Parkinson's disease. Genes Genomics 2025; 47:47-57. [PMID: 39467967 DOI: 10.1007/s13258-024-01591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neuro-degenerative disorder most common in older adults which is associated with impairments in movement and other body functions. Most PD cases are classified as idiopathic PD (IPD), meaning that the etiology remains unidentified. OBJECTIVE To identify key genes and molecular mechanisms to identify biomarkers applicable to IPD. METHODS We applied a bioinformatics approach using a gene expression in whole blood dataset to pinpoint differentially expressed genes (DEGs) and pathways involved in IPD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs were subsequently performed. A protein-protein interaction (PPI) network was then constructed to select hub genes that may influence IPD. We further investigated the levels of differentially methylated regions (DMRs) and differentially expressed microRNA (DEMs) of whole blood of patients with IPD to validate hub genes. Additionally, we examined the hub gene expression patterns in the substantia nigra (STN) using single-cell RNA sequencing datasets. RESULTS In total, we identified 124 DEGs in the blood samples of patients with IPD, with GO and KEGG analyses highlighting their significant enrichment. Analysis of PPI networks revealed three major clusters and hub genes: small nuclear ribonucleoprotein polypeptide E (SNRPE), cytochrome C oxidase subunit 7 C (COX7C), and ribosomal protein S27 (RPS27). DMRs and DEMs analyses revealed hub gene regulation via epigenetic and RNA interference. In particular, SNRPE and RPS27 showed identically regulated gene expression in the STN. CONCLUSION This study suggests that SNRPE, COX7C, and RPS27 in whole-blood samples derived from patients may be useful biomarkers for IPD.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical Science, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarang-ro 815, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Haejin Jung
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea
| | - Byung Yong Kang
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea.
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarang-ro 815, Nowon-gu, Seoul, 01795, Republic of Korea.
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
5
|
Hwang JS, Kim SG, George NP, Kwon M, Jang YE, Lee SS, Lee G. Biological Function Analysis of MicroRNAs and Proteins in the Cerebrospinal Fluid of Patients with Parkinson's Disease. Int J Mol Sci 2024; 25:13260. [PMID: 39769025 PMCID: PMC11678473 DOI: 10.3390/ijms252413260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by alpha-synuclein aggregation into Lewy bodies in the neurons. Cerebrospinal fluid (CSF) is considered the most suited source for investigating PD pathogenesis and identifying biomarkers. While microRNA (miRNA) profiling can aid in the investigation of post-transcriptional regulation in neurodegenerative diseases, information on miRNAs in the CSF of patients with PD remains limited. This review combines miRNA analysis with proteomic profiling to explore the collective impact of CSF miRNAs on the neurodegenerative mechanisms in PD. We constructed separate networks for altered miRNAs and proteomes using a bioinformatics method. Altered miRNAs were poorly linked to biological functions owing to limited information; however, changes in protein expression were strongly associated with biological functions. Subsequently, the networks were integrated for further analysis. In silico prediction from the integrated network revealed relationships between miRNAs and proteins, highlighting increased reactive oxygen species generation, neuronal loss, and neurodegeneration and suppressed ATP synthesis, mitochondrial function, and neurotransmitter release in PD. The approach suggests the potential of miRNAs as biomarkers for critical mechanisms underlying PD. The combined strategy could enhance our understanding of the complex biochemical networks of miRNAs in PD and support the development of diagnostic and therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Hemedan AA, Satagopam V, Schneider R, Ostaszewski M. Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression. iScience 2024; 27:110956. [PMID: 39429779 PMCID: PMC11489052 DOI: 10.1016/j.isci.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
de Abreu FMC, de Oliveira DA, de Araujo Romero Ferrari SS, E Silva KHCV, Titze-de-Almeida R, Titze-de-Almeida SS. Exploring circular RNAs as biomarkers for Parkinson's disease and their expression changes after aerobic exercise rehabilitation. Funct Integr Genomics 2024; 24:130. [PMID: 39069524 DOI: 10.1007/s10142-024-01409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Circular RNAs (circRNAs) are circularized single-stranded ribonucleic acids that interacts with DNA, RNA, and proteins to play critical roles in cell biology. CircRNAs regulate microRNA content, gene expression, and may code for specific peptides. Indeed, circRNAs are differentially expressed in neurodegenerative disorders like Parkinson's disease (PD), playing a potential role in the mechanisms of brain pathology. The RNA molecules with aberrant expression in the brain can cross the blood-brain barrier and reach the bloodstream, which enable their use as non-invasive PD disease biomarker. Promising targets with valuable discriminatory ability in combined circRNA signatures include MAPK9_circ_0001566, SLAIN1_circ_0000497, SLAIN2_circ_0126525, PSEN1_circ_0003848, circ_0004381, and circ_0017204. On the other hand, regular exercises are effective therapy for mitigating PD symptoms, promoting neuroprotective effects with epigenetic modulation. Aerobic exercises slow symptom progression in PD by improving motor control, ameliorating higher functions, and enhancing brain activity and neuropathology. These improvements are accompanied by changes circRNA expression, including hsa_circ_0001535 (circFAM13B) and hsa_circ_0000437 (circCORO1C). The sensitivity of current methods for detecting circulating circRNAs is considered a limitation. While amplification kits already exist for low-abundant microRNAs, similar kits are needed for circRNAs. Alternatively, the use of digital PCR can help overcome this constraint. The current review examines the potential use of circRNAs as non-invasive biomarkers of PD and to assess the effects of rehabilitation. Although circRNAs hold promise as targets for PD diagnosis and therapeutics, further validation is needed before their clinical implementation.
Collapse
Affiliation(s)
- Flávia Maria Campos de Abreu
- Graduate Program in Gerontology, Campus Taguatinga, Universidade Católica de Brasília, Brasília DF, Brazil
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
| | - Deborah Almeida de Oliveira
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Sabrina Simplício de Araujo Romero Ferrari
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | | | - Ricardo Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Simoneide Souza Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil.
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil.
| |
Collapse
|
8
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
10
|
Bougea A, Georgakopoulou VE, Lempesis IG, Fotakopoulos G, Papalexis P, Sklapani P, Trakas N, Spandidos DA, Angelopoulou E. Role of microRNAs in cognitive decline related to COVID‑19 (Review). Exp Ther Med 2024; 27:139. [PMID: 38476899 PMCID: PMC10928821 DOI: 10.3892/etm.2024.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The likelihood and severity of cognitive decline related to coronavirus disease 2019 (COVID-19) have been shown to be reflected by the severity of the infection and concomitant alterations in specific biomarkers. The present review discusses the role of microRNAs (miRNAs/miRs) as biomarkers in COVID-19 and the potential molecular mechanisms of cognitive dysfunction related to COVID-19. A systematic search of published articles was carried out from January 31, 2000 to December 31, 2022 using the PubMed, ProQuest, Science Direct and Google Scholar databases, combining the following terms: 'COVID-19' OR 'SARS-CoV-2' OR 'post-COVID-19 effects' OR 'cognitive decline' OR 'neurodegeneration' OR 'microRNAs'. The quality of the evidence was evaluated as high, moderate, low, or very low based on the GRADE rating. A total of 36 studies were identified which demonstrated reduced blood levels of miR-146a, miR-155, Let-7b, miR 31 and miR-21 in patients with COVID-19 in comparison with a healthy group. The overexpression of the Let-7b may result in the downregulation of BCL-2 during COVID-9 by adjusting the immune responses between chronic inflammatory disease, type 2 diabetes, COVID-19 and cognitive impairment. The reduced expression of miR-31 is associated with cognitive dysfunction and increased microcoagulability in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). miR-155 mediates synaptic dysfunction and the dysregulation of neurotransmitters due to acute inflammation, leading to brain atrophy and a subcortical cognitive profile. The downregulation of miR-21 in patients with COVID-19 aggravates systemic inflammation, mediating an uncontrollable immune response and the failure of T-cell function, provoking cognitive impairment in patients with SARS-CoV-2. On the whole, the present review indicates that dysregulated levels of miR-146a, miR-155, Let-7b, miR-31, and miR-21 in the blood of individuals with COVID-19 are associated with cognitive decline, the chronic activation of immune mechanisms, the cytokine storm, and the vicious cycle of damage and systemic inflammation.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
11
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
12
|
Alkharobi H. Exploring Various Transfection Approaches and Their Applications in Studying the Regenerative Potential of Dental Pulp Stem Cells. Curr Issues Mol Biol 2023; 45:10026-10040. [PMID: 38132472 PMCID: PMC10742526 DOI: 10.3390/cimb45120626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Transfection is a contemporary approach for introducing foreign genetic material into target cells. The effective transport of genetic materials into cells is mostly influenced by (a) the characteristics of the genetic material (quantity and quality), (b) the transfection procedure (incubation time, ratio of the reagents to the introduced genetic material, and components of cell culture), and (c) targeted cells for transfection (cell origin and cell type). This review summarizes the findings of different studies focusing on various transfection approaches and their applications to explore the regenerative potential of dental pulp stem cells (DPSCs). Several databases, including Scopus, Google Scholar, and PubMed, were searched to obtain the literature for the current review. Different keywords were used as key terms in the search. Approximately 200 articles were retained after removing duplicates from different databases. Articles published in English that discussed different transfection approaches were included. Several sources were excluded because they did not meet the inclusion criteria. Approximately 70 relevant published sources were included in the final stage to achieve the study objectives. This review demonstrated that no single transfection system is applicable to all cases and the various cell types with no side effects. Further studies are needed to focus on optimizing process parameters, decreasing the toxicity and side effects of available transfection techniques, and increasing their efficiencies. Moreover, this review sheds light on the impact of using different valuable transfection approaches to investigate the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Hanaa Alkharobi
- Department of Oral Biology, College of Dentistry, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Hu R, Liu Y, Wang G, Lv J, Yang J, Xiao H, Liu Y, Zhang B. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip. Anal Chim Acta 2023; 1280:341870. [PMID: 37858557 DOI: 10.1016/j.aca.2023.341870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.
Collapse
Affiliation(s)
- Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Manenti I, Viola I, Ala U, Cornale P, Macchi E, Toschi P, Martignani E, Baratta M, Miretti S. Adaptation Response in Sheep: Ewes in Different Cortisol Clusters Reveal Changes in the Expression of Salivary miRNAs. Animals (Basel) 2023; 13:3273. [PMID: 37893997 PMCID: PMC10603754 DOI: 10.3390/ani13203273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Farm procedures have an impact on animal welfare by activating the hypothalamic-pituitary-adrenal axis that induces a wide array of physiological responses. This adaptive system guarantees that the animal copes with environmental variations and it induces metabolic and molecular changes that can be quantified. MicroRNAs (miRNAs) play a key role in the regulation of homeostasis and emerging evidence has identified circulating miRNAs as promising biomarkers of stress-related disorders in animals. Based on a clustering analysis of salivary cortisol trends and levels, 20 ewes were classified into two different clusters. The introduction of a ram in the flock was identified as a common farm practice and reference time point to collect saliva samples. Sixteen miRNAs related to the adaptation response were selected. Among them, miR-16b, miR-21, miR-24, miR-26a, miR-27a, miR-99a, and miR-223 were amplified in saliva samples. Cluster 1 was characterized by a lower expression of miR-16b and miR-21 compared with Cluster 2 (p < 0.05). This study identified for the first time several miRNAs expressed in sheep saliva, pointing out significant differences in the expression patterns between the cortisol clusters. In addition, the trend analyses of these miRNAs resulted in clusters (p = 0.017), suggesting the possible cooperation of miR-16b and -21 in the integrated stress responses, as already demonstrated in other species as well. Other research to define the role of these miRNAs is needed, but the evaluation of the salivary miRNAs could support the selection of ewes for different profiles of response to sources of stressors common in the farm scenario.
Collapse
Affiliation(s)
- Isabella Manenti
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Irene Viola
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Paolo Cornale
- Department of Agricultural, Forestry and Food Sciences (DISAFA), Animal Production Unit, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Elisabetta Macchi
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Paola Toschi
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Mario Baratta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy;
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| |
Collapse
|
15
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
O’Connor LM, O’Connor BA, Zeng J, Lo CH. Data Mining of Microarray Datasets in Translational Neuroscience. Brain Sci 2023; 13:1318. [PMID: 37759919 PMCID: PMC10527016 DOI: 10.3390/brainsci13091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Data mining involves the computational analysis of a plethora of publicly available datasets to generate new hypotheses that can be further validated by experiments for the improved understanding of the pathogenesis of neurodegenerative diseases. Although the number of sequencing datasets is on the rise, microarray analysis conducted on diverse biological samples represent a large collection of datasets with multiple web-based programs that enable efficient and convenient data analysis. In this review, we first discuss the selection of biological samples associated with neurological disorders, and the possibility of a combination of datasets, from various types of samples, to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the examined biological system. We then summarize key approaches and studies that have made use of the data mining of microarray datasets to obtain insights into translational neuroscience applications, including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mechanisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray and sequencing studies to improve the utilization and combination of different types of datasets, together with experimental validation, for more comprehensive analyses. We conclude by providing future perspectives on integrating multi-omics, to advance precision phenotyping and personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lance M. O’Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Blake A. O’Connor
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| |
Collapse
|
17
|
Li Z, Wang X, Wang X, Yi X, Wong YK, Wu J, Xie F, Hu D, Wang Q, Wang J, Zhong T. Research progress on the role of extracellular vesicles in neurodegenerative diseases. Transl Neurodegener 2023; 12:43. [PMID: 37697342 PMCID: PMC10494410 DOI: 10.1186/s40035-023-00375-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, affect millions of people worldwide. Tremendous efforts have been put into disease-related research, but few breakthroughs have been made in diagnostic and therapeutic approaches. Extracellular vesicles (EVs) are heterogeneous cell-derived membrane structures that arise from the endosomal system or are directly separated from the plasma membrane. EVs contain many biomolecules, including proteins, nucleic acids, and lipids, which can be transferred between different cells, tissues, or organs, thereby regulating cross-organ communication between cells during normal and pathological processes. Recently, EVs have been shown to participate in various aspects of neurodegenerative diseases. Abnormal secretion and levels of EVs are closely related to the pathogenesis of neurodegenerative diseases and contribute to disease progression. Numerous studies have proposed EVs as therapeutic targets or biomarkers for neurodegenerative diseases. In this review, we summarize and discuss the advanced research progress on EVs in the pathological processes of several neurodegenerative diseases. Moreover, we outline the latest research on the roles of EVs in neurodegenerative diseases and their therapeutic potential for the diseases.
Collapse
Affiliation(s)
- Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yin Kwan Wong
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Jigang Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
18
|
Fischetti F, Poli L, De Tommaso M, Paolicelli D, Greco G, Cataldi S. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front Physiol 2023; 14:1241010. [PMID: 37654673 PMCID: PMC10466047 DOI: 10.3389/fphys.2023.1241010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Physical activity (PA), which includes exercise, can reduce the risk of developing various non-communicable diseases, including neurodegenerative diseases (NDs), and mitigate their adverse effects. However, the mechanisms underlying this ability are not yet fully understood. Among several possible mechanisms proposed, such as the stimulation of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), the possible involvement of particular vesicular structures enclosed in lipid membranes known as extracellular vesicles (EVs) has recently been investigated. These EVs would appear to exert a paracrine and systemic action through their ability to carry various molecules, particularly so-called microRNAs (miRNAs), performing a function as mediators of intercellular communication. Interestingly, EVs and miRNAs are differentially expressed following PA, but evidence on how different exercise parameters may differentially affect EVs and the miRNAs they carry is still scarce. In this review we summarized the current human findings on the effects of PA and different exercise parameters exerted on EVs and their cargo, focusing on miRNAs molecules, and discussing how this may represent one of the biological mechanisms through which exercise contributes to preventing and slowing NDs.
Collapse
Affiliation(s)
- Francesco Fischetti
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Luca Poli
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Marina De Tommaso
- Applied Neurophysiology and Pain Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Damiano Paolicelli
- Neurophysiology Operative Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| |
Collapse
|
19
|
Aguilar MA, Ebanks S, Markus H, Lewis MM, Midya V, Vrana K, Huang X, Hall MA, Kawasawa YI. Neuronally enriched microvesicle RNAs are differentially expressed in the serums of Parkinson's patients. Front Neurosci 2023; 17:1145923. [PMID: 37483339 PMCID: PMC10357515 DOI: 10.3389/fnins.2023.1145923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background Circulating small RNAs (smRNAs) originate from diverse tissues and organs. Previous studies investigating smRNAs as potential biomarkers for Parkinson's disease (PD) have yielded inconsistent results. We investigated whether smRNA profiles from neuronally-enriched serum exosomes and microvesicles are altered in PD patients and discriminate PD subjects from controls. Methods Demographic, clinical, and serum samples were obtained from 60 PD subjects and 40 age- and sex-matched controls. Exosomes and microvesicles were extracted and isolated using a validated neuronal membrane marker (CD171). Sequencing and bioinformatics analyses were used to identify differentially expressed smRNAs in PD and control samples. SmRNAs also were tested for association with clinical metrics. Logistic regression and random forest classification models evaluated the discriminative value of the smRNAs. Results In serum CD171 enriched exosomes and microvesicles, a panel of 29 smRNAs was expressed differentially between PD and controls (false discovery rate (FDR) < 0.05). Among the smRNAs, 23 were upregulated and 6 were downregulated in PD patients. Pathway analysis revealed links to cellular proliferation regulation and signaling. Least absolute shrinkage and selection operator adjusted for the multicollinearity of these smRNAs and association tests to clinical parameters via linear regression did not yield significant results. Univariate logistic regression models showed that four smRNAs achieved an AUC ≥ 0.74 to discriminate PD subjects from controls. The random forest model had an AUC of 0.942 for the 29 smRNA panel. Conclusion CD171-enriched exosomes and microvesicles contain the differential expression of smRNAs between PD and controls. Future studies are warranted to follow up on the findings and understand the scientific and clinical relevance.
Collapse
Affiliation(s)
- Morris A. Aguilar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Shauna Ebanks
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Havell Markus
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Mechelle M. Lewis
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kent Vrana
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Xuemei Huang
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Molly A. Hall
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Institute for Personalized Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
20
|
Hou X, Wong G. Nomogram for Early Prediction of Parkinson's Disease Based on microRNA Profiles and Clinical Variables. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225080. [PMID: 37212072 DOI: 10.3233/jpd-225080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Few efficient and simple models for the early prediction of Parkinson's disease (PD) exists. OBJECTIVE To develop and validate a novel nomogram for early identification of PD by incorporating microRNA (miRNA) expression profiles and clinical indicators. METHODS Expression levels of blood-based miRNAs and clinical variables from 1,284 individuals were downloaded from the Parkinson's Progression Marker Initiative database on June 1, 2022. Initially, the generalized estimating equation was used to screen candidate biomarkers of PD progression in the discovery phase. Then, the elastic net model was utilized for variable selection and a logistics regression model was constructed to establish a nomogram. Additionally, the receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves were utilized to evaluate the performance of the nomogram. RESULTS An accurate and externally validated nomogram was constructed for predicting prodromal and early PD. The nomogram is easy to utilize in a clinical setting since it consists of age, gender, education level, and transcriptional score (calculated by 10 miRNA profiles). Compared with the independent clinical model or 10 miRNA panel separately, the nomogram was reliable and satisfactory because the area under the ROC curve achieved 0.72 (95% confidence interval, 0.68-0.77) and obtained a superior clinical net benefit in DCA based on external datasets. Moreover, calibration curves also revealed its excellent prediction power. CONCLUSION The constructed nomogram has potential for large-scale early screening of PD based upon its utility and precision.
Collapse
Affiliation(s)
- Xiangqing Hou
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau S.A.R., China
| | - Garry Wong
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau S.A.R., China
| |
Collapse
|
21
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
23
|
Bougea A, Stefanis L. microRNA and circRNA in Parkinson's Disease and atypical parkinsonian syndromes. Adv Clin Chem 2023; 115:83-133. [PMID: 37673523 DOI: 10.1016/bs.acc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are atypical parkinsonian syndromes (APS) with various clinical phenotypes and considerable clinical overlap with idiopathic Parkinson's disease (iPD). This disease heterogeneity makes ante-mortem diagnosis extremely challenging with up to 24% of patients misdiagnosed. Because diagnosis is predominantly clinical, there is great interest in identifying biomarkers for early diagnosis and differentiation of the different types of parkinsonism. Compared to protein biomarkers, microRNAs (miRNAs) and circularRNAs (circRNAs) are stable tissue-specific molecules that can be accurately measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This chapter critically reviews miRNAs and circRNAs as diagnostic biomarkers and therapeutics to differentiate atypical parkinsonian disorders and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB, Khatri DK. Integration of miRNA's Theranostic Potential with Nanotechnology: Promises and Challenges for Parkinson's Disease Therapeutics. Mech Ageing Dev 2023; 211:111800. [PMID: 36958539 DOI: 10.1016/j.mad.2023.111800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Despite the wide research going on in Parkinson's disease (PD), the burden of PD still remains high and continues to increase. The current drugs available for the treatment of PD are only aimed at symptomatic control. Hence, research is mainly focused on identifying the novel therapeutic targets that can be effectively targeted in order to slow down or culminate the disease progression. Recently the role of microRNAs (miRNAs) in the regulation of various pathological mechanisms of PD has been thoroughly explored and many of them were found to be dysregulated in the biological samples of PD patients. These miRNAs can be used as diagnostic markers and novel therapeutic options to manage PD. The delivery of miRNAs to the target site in brain is a challenging job owing to their nature of degradability by endonucleases as well as poor blood brain barrier (BBB) permeability. Nanoparticles appear to be the best solution to effectively encase the miRNA in their core as well as cross the BBB to deliver them into brain. Functionalisation of these nanoparticles further enhances the site-specific delivery.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Naitik Jain
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Paras Famta
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Saurabh Srivastava
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| |
Collapse
|
25
|
Cao LP, Li CM, Zhen SJ, Huang CZ. A General Signal Amplifier of Self-Assembled DNA Micelles for Sensitive Quantification of Biomarkers. Anal Chem 2023; 95:1794-1800. [PMID: 36633481 DOI: 10.1021/acs.analchem.2c05415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Owing to the excellent structural rigidity and programmable reaction sites, DNA nanostructures are more and more widely used, but they are limited by high cost, strict sequence requirements, and time-consuming preparation. Herein, a general signal amplifier based on a micelle-supported entropy-driven circuit (MEDC) was designed and prepared for sensitive quantification of biomarkers. By modifying a hydrophobic cholesterol molecule onto a hydrophilic DNA strand, the amphiphilic DNA strand was first prepared and then self-assembled into DNA micelles (DMs) driven by hydrophobic effects. The as-developed DM showed unique advantages of sequence-independence, easy preparation, and low cost. Subsequently, amplifier units DMF and DMTD were successfully fabricated by connecting fuel strands and three-strand duplexes (TDs) to DMs, respectively. Finally, the MEDC was triggered by microRNA-155 (miR-155), which herein acted as a model analyte, resulting in dynamic self-assembly of poly-DNA micelles (PDMs) and causing the recovery of cyanine 3 (Cy3) fluorescence as the DMTD dissociated. Benefiting from the "diffusion effect", the MEDC herein had a nearly 2.9-fold increase in sensitivity and a nearly 97-fold reduction in detection limit compared to conventional EDC. This amplifier exhibited excellent sensitivity of microRNAs, such as miR-155 detection in a dynamic range from 0.05 to 4 nM with a detection limit of 3.1 pM, and demonstrated outstanding selectivity with the distinguishing ability of a single-base mismatched sequence of microRNAs. Overall, the proposed strategy demonstrated that this sequence-independent DNA nanostructure improved the performance of traditional DNA probes and provided a versatile method for the development of DNA nanotechnology in biosensing.
Collapse
Affiliation(s)
- Li Ping Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
26
|
Aggio-Bruce R, Schumann U, Cioanca AV, Chen FK, McLenachan S, Heath Jeffery RC, Das S, Natoli R. Serum miRNA modulations indicate changes in retinal morphology. Front Mol Neurosci 2023; 16:1130249. [PMID: 36937046 PMCID: PMC10020626 DOI: 10.3389/fnmol.2023.1130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of vision loss in the developed world and the detection of its onset and progression are based on retinal morphological assessments. MicroRNA (miRNA) have been explored extensively as biomarkers for a range of neurological diseases including AMD, however differences in experimental design and the complexity of human biology have resulted in little overlap between studies. Using preclinical animal models and clinical samples, this study employs a novel approach to determine a serum signature of AMD progression. Methods Serum miRNAs were extracted from mice exposed to photo-oxidative damage (PD; 0, 1, 3 and 5 days), and clinical samples from patients diagnosed with reticular pseudodrusen or atrophic AMD. The expression of ~800 miRNAs was measured using OpenArray™, and differential abundance from controls was determined using the HTqPCR R package followed by pathway analysis with DAVID. MiRNA expression changes were compared against quantifiable retinal histological indicators. Finally, the overlap of miRNA changes observed in the mouse model and human patient samples was investigated. Results Differential miRNA abundance was identified at all PD time-points and in clinical samples. Importantly, these were associated with inflammatory pathways and histological changes in the retina. Further, we were able to align findings in the mouse serum to those of clinical patients. Conclusion In conclusion, serum miRNAs are a valid tool as diagnostics for the early detection of retinal degeneration, as they reflect key changes in retinal health. The combination of pre-clinical animal models and human patient samples led to the identification of a preliminary serum miRNA signature for AMD. This study is an important platform for the future development of a diagnostic serum miRNA panel for the early detection of retinal degeneration.
Collapse
Affiliation(s)
- Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The School of Medicine and Psychology, Acton, ACT, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrian V. Cioanca
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Fred K. Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Samuel McLenachan
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Rachael C. Heath Jeffery
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Shannon Das
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The School of Medicine and Psychology, Acton, ACT, Australia
- *Correspondence: Riccardo Natoli,
| |
Collapse
|
27
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022; 15:191-202. [DOI: 10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
28
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: https://doi.org/10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
29
|
Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH, Vakili O, Taheri-Anganeh M, Karima S, Movahedpour A. A review of highly sensitive electrochemical genosensors for microRNA detection: A novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem 2022. [PMID: 36445196 DOI: 10.1002/bab.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.
Collapse
Affiliation(s)
- Mehrnoosh Azimi Sanavi
- Department of Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Mahdavian
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Sari, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, Vienna, Austria
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
30
|
Yang YL, Lin TK, Huang YH. MiR-29a inhibits MPP + - Induced cell death and inflammation in Parkinson's disease model in vitro by potential targeting of MAVS. Eur J Pharmacol 2022; 934:175302. [PMID: 36174668 DOI: 10.1016/j.ejphar.2022.175302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) primarily affects the motor system and is the second most common age-related neurodegenerative disorder after Alzheimer's disease. Mitochondrial complex I deficiency and functional abnormalities are implicated in the development of PD. MicroRNA-29a (miR-29a) has emerged as a critical miRNA in PD. This study aims to investigate the protective role of miR-29a in MPP+ in SH-SY5Y cell lines in vitro PD model by targeting mitochondrial antiviral signaling protein (MAVS). Administration of MPP + inhibited miR-29a expression in SH-SY5Y cell lines. Our findings prove that miR-29a mimic treatment decreased cell death, ROS production, MAVS, p-IRF3, p-NFκBp65, IL-6, cleaved caspase-3, cleaved-PARP, LC3BII, and death while increasing glutathione peroxidase 1 and manganese superoxide dismutase after MPP + treatment in SH-SY5Y cells. Furthermore, MAVS expression was significantly corrected with the above genes in our in vitro model of PD. Luciferase activity analysis also confirmed that miR-29a specific binding 3'UTR of MAVS repressed expression. In conclusion, this research provides novel insight into a neuroprotective pathway of miR-29a and could thus serve as a possible therapeutic target for improving the treatment of PD.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
31
|
Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D, van Herwijnen MHM, Lundh T, Bergdahl IA, Kyrtopoulos SA, de Kok TM, Smeets HJM, Briedé JJ, Krauskopf J. Lead-exposure associated miRNAs in humans and Alzheimer's disease as potential biomarkers of the disease and disease processes. Sci Rep 2022; 12:15966. [PMID: 36153426 PMCID: PMC9509380 DOI: 10.1038/s41598-022-20305-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that eventually affects memory and behavior. The identification of biomarkers based on risk factors for AD provides insight into the disease since the exact cause of AD remains unknown. Several studies have proposed microRNAs (miRNAs) in blood as potential biomarkers for AD. Exposure to heavy metals is a potential risk factor for onset and development of AD. Blood cells of subjects that are exposed to lead detected in the circulatory system, potentially reflect molecular responses to this exposure that are similar to the response of neurons. In this study we analyzed blood cell-derived miRNAs derived from a general population as proxies of potentially AD-related mechanisms triggered by lead exposure. Subsequently, we analyzed these mechanisms in the brain tissue of AD subjects and controls. A total of four miRNAs were identified as lead exposure-associated with hsa-miR-3651, hsa-miR-150-5p and hsa-miR-664b-3p being negatively and hsa-miR-627 positively associated. In human brain derived from AD and AD control subjects all four miRNAs were detected. Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant differential expression in AD brains versus controls, in accordance with the change direction of lead exposure. The miRNAs' gene targets were validated for expression in the human brain and were found enriched in AD-relevant pathways such as axon guidance. Moreover, we identified several AD relevant transcription factors such as CREB1 associated with the identified miRNAs. These findings suggest that the identified miRNAs are involved in the development of AD and might be useful in the development of new, less invasive biomarkers for monitoring of novel therapies or of processes involved in AD development.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Julia Czuryło
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | - Ingvar A Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
32
|
Rahimpour A, Heidarzadehpilehrood R, Abdollahi S, Ranjbari H, Shams Z, Ghasemi SA, Najmaei S, Pirhoushiaran M. A comprehensive bioinformatic analysis revealed novel MicroRNA biomarkers of Parkinson's disease. Cell Biol Int 2022; 46:1841-1851. [PMID: 36098337 DOI: 10.1002/cbin.11869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is categorized as a neurodegenerative disorder. Different studies have focused on the role of microRNAs (miRNAs) on PD progression. Due to its complexity in initiation and progression, a considerable requirement has arisen to identify novel miRNA biomarkers in a noninvasive manner. In silico analysis has been used to select differentially expressed miRNAs (DE-miRNAs) and key pathways in this disease. In this manner, several data sets of different neurodegenerative diseases have been analyzed to purify the findings of the present study. Totally, 15 DE miRNAs showed significant changes compared to healthy controls and other neurodegenerative diseases. Then, the targets of the miRNAs were predicted through miRTarBase and TargetScan databases. Besides, enrichment analysis was implemented for predicted target genes. Most of the target genes were enriched in the TRAIL signaling pathway, Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, protein serine/threonine kinase activity, and Cytoplasm. Moreover, a protein-protein interaction network was constructed to find the most key DE miRNAs and targets in this disease. The results of the present study may help researchers shed light on the discovery of novel biomarkers for PD.
Collapse
Affiliation(s)
- Alireza Rahimpour
- Islamic Azad University of science and research branch Tehran, Tehran, Iran
| | - Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haidar Ranjbari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zinat Shams
- Department of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyed Abbas Ghasemi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Shima Najmaei
- University of Rostock, Institute of Biological Sciences, Division of Microbiology, A.-Einstein-Str. 3, Rostock, Germany
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Kang Q, Chen B, He M, Hu B. Simple Amplifier Coupled with a Lanthanide Labeling Strategy for Multiplexed and Specific Quantification of MicroRNAs. Anal Chem 2022; 94:12934-12941. [PMID: 36070565 DOI: 10.1021/acs.analchem.2c03234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inductively coupled plasma-mass spectrometry (ICP-MS) with elemental labeling is a promising strategy for multiplex microRNA (miRNA) analysis. However, it is still challenging for specific analysis of multiple miRNAs with high homology, and the development of multiplex assays is always limited by the complexity of the sequence design. Herein, a simple and direct ICP-MS-based assay was developed for the simultaneous detection of three miRNAs by combining the lanthanide labeling strategy with entropy-driven catalytic (EDC) amplification. Owing to the specificity of EDC for nucleic acid recognition, it is able to differentiate miRNAs with single-base mutation in each EDC circuit. A universal biotin-labeled DNA strand was designed to hybridize with the DNA substrates for three EDC circuits, targeting miRNA-21, miRNA-155, and miRNA-10b, respectively. All the substrates were loaded on the surface of streptavidin magnetic beads. In the presence of target miRNA, the EDC reaction was initiated, and EDC substrates were dissociated, continuously releasing reporter strands that were labeled with lanthanides (Tb/Ho/Lu). After magnetic separation, the supernatant containing the released reporter strands was introduced into an ICP-MS system for simultaneous detection of 159Tb/165Ho/175Lu and quantification of miRNA-21, miRNA-155, and miRNA-10b, respectively. The limits of detection were 7.4, 7.5, and 11 pmol L-1 for miRNA-21, miRNA-155, and miRNA-10b, respectively. Overall, this study provides a powerful strategy for simultaneous quantification of multiple miRNAs, with the advantages of flexible probe design, good sensitivity, and excellent specificity.
Collapse
Affiliation(s)
- Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
35
|
Mallette TL, Lakin MR. Protecting Heterochiral DNA Nanostructures against Exonuclease-Mediated Degradation. ACS Synth Biol 2022; 11:2222-2228. [PMID: 35749687 DOI: 10.1021/acssynbio.2c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterochiral DNA nanotechnology employs nucleic acids of both chiralities to construct nanoscale devices for applications in the intracellular environment. Interacting directly with cellular nucleic acids can be done most easily using D-DNA of the naturally occurring right-handed chirality; however, D-DNA is more vulnerable to degradation than enantiometric left-handed L-DNA. Here we report a novel combination of D-DNA and L-DNA nucleotides in triblock heterochiral copolymers, where the L-DNA domains act as protective caps on D-DNA domains. We demonstrate that the D-DNA components of strand displacement-based molecular circuits constructed using this technique resist exonuclease-mediated degradation during extended incubations in serum-supplemented media more readily than similar devices without the L-DNA caps. We show that this protection can be applied to both double-stranded and single-stranded circuit components. Our work enhances the state of the art for robust heterochiral circuit design and could lead to practical applications such as in vivo biomedical diagnostics.
Collapse
Affiliation(s)
- Tracy L Mallette
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Matthew R Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Kakouri AC, Koutalianos D, Koutsoulidou A, Oulas A, Tomazou M, Nikolenko N, Turner C, Roos A, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Papanicolaou EZ, Gorman G, Lochmüller H, Spyrou GM, Phylactou LA. Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biol 2022; 19:507-518. [PMID: 35388741 PMCID: PMC8993092 DOI: 10.1080/15476286.2022.2058817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.
Collapse
Affiliation(s)
- Andrea C Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Demetris Koutalianos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - George K Papadimas
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Evangelia Kararizou
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (Bist), Barcelona, Spain
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
37
|
Bougea A. MicroRNA as Candidate Biomarkers in Atypical Parkinsonian Syndromes: Systematic Literature Review. Medicina (B Aires) 2022; 58:medicina58040483. [PMID: 35454322 PMCID: PMC9025474 DOI: 10.3390/medicina58040483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives: Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are rare atypical parkinsonian syndromes, characterized by motor and cognitive symptoms. Their clinical diagnosis is challenging because there are no established biomarkers. Dysregulation of microRNAs (miRNAs/miRs) has been reported to serve an important role in neurodegenerative diseases. However, the miRNA profiles of MSA and PSP patients are rarely reported. The aim of this study was to critically review the role of miRNAs as diagnostic biomarkers to differentiate these atypical parkinsonian disorders and their role in disease pathogenesis. Materials and Methods: A systematic literature search of PubMed was conducted up to February 2022 according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 15 studies were analyzed. Three studies have shown that miR-9-3p, miR-19a, miR-19b, and miR-24 are potential biomarkers for MSA. In two studies, miR-132 was downregulated, whereas miR-147a and miR-518e were upregulated in the brain tissue of PSP patients. Conclusions: The potential of miRNA is still uncertain as a potential differential diagnostic marker to identify these disorders. Pre-analytical and analytical factors of included studies were important limitations to justify the introduction of miRNAs into clinical practice.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 72-74 Vassilisis Sofia's Avenue, 11528 Athens, Greece
| |
Collapse
|
38
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
39
|
Affiliation(s)
- Mohamed Mahameed
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, 4001 Basel, Switzerland
- Corresponding author
| |
Collapse
|
40
|
Ghit A, Deeb HE. Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson's Disease. J Mol Neurosci 2022; 72:1133-1140. [PMID: 35199307 DOI: 10.1007/s12031-022-01984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is one of the most common long-term degenerative disorders of the CNS that primarily affects the human locomotor system. Owing to the heterogeneity of PD etiology and the lack of appropriate diagnostic tests, blood-based biomarkers became the most promising method for diagnosing PD. Even though various biomarkers for PD have been found, their specificity and sensitivity are not optimum when used alone. Therefore, the aim of this study was directed to evaluate changes in a group of sensitive blood-based biomarkers in the same PD patients compared to healthy individuals. Serum samples were collected from 20 PD patients and 15 age-matched healthy controls. We analyzed serum levels of cytokines (IL10, IL12, and TNF-α), α-synuclein proteins, miRNAs (miR-214, miR-221, and miR-141), and antioxidants (UA, PON1, ARE). Our results showed an increase in sera levels of cytokines in PD patients as well as a positive correlation among them. Also, we found a significant increase in sera levels of α-synuclein protein associated with a decrease in miR-214 which regulates its gene expression. Lastly, we observed a decrease in sera levels of miR-221, miR-141, UA, PON1, and ARE, which have a prominent role against oxidative stress. Because of the many etiologies of PD, a single measure is unlikely to become a useful biomarker. Therefore, to correctly predict disease state and progression, a mix of noninvasive biomarkers is required. Although considerable work has to be done, this study sheds light on the role of certain biomarkers in the diagnosis of PD.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Hany El Deeb
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
41
|
Xu F, Qiao Z, Luo L, He X, Lei Y, Tang J, Shi H, Wang K. A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 2022; 243:123323. [PMID: 35247818 DOI: 10.1016/j.talanta.2022.123323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Herein, based on a terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly-T-templated-copper nanoparticles (poly T-CuNPs) strategy, a simple, universal and label-free fluorescent biosensor for the detection of miRNA was constructed by employing graphene oxide (GO) and DNase I. In this strategy, GO and DNase I were used as a switch and amplifier of the signal generation pathway, respectively, and the fluorescence of poly T-CuNPs was used as the signal output. In the presence of target miRNA, the DNA dissociated from the GO surface by forming a miRNA/DNA duplex and was degraded by DNase I. The short oligos with 3'-OH, the product of DNase I degradation, could be recognized by the TdT and added to a long poly-T tail. Finally, the fluorescence signal was output through the synthesis of poly T-CuNPs. As a proof of concept, let-7a was analyzed. The method showed good sensitivity and selectivity with a linear response in the 50 pM-10,000 pM let-7a concentration range and a 30 pM limit of detection (LOD = 30 pM, R2 = 0.9954, the relative standard deviation were 2.79%-5.30%). It was also successfully applied to the determination of miRNA in spiked human serum samples. It showed good linearity in the range of 500-10000 pM (R2 = 0.9969, the relative standard deviation were 1.61%-3.85%). Moreover, both the adsorption of GO and the degradation of DNase I are DNA sequence-independent; thus, this method can be applied to the detection of any miRNA simply by changing the assisted-DNA sequence.
Collapse
Affiliation(s)
- Fengzhou Xu
- Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
42
|
Xu A, Kouznetsova VL, Tsigelny IF. Alzheimer's Disease Diagnostics Using miRNA Biomarkers and Machine Learning. J Alzheimers Dis 2022; 86:841-859. [PMID: 35147545 DOI: 10.3233/jad-215502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The current standard for Alzheimer's disease (AD) diagnosis is often imprecise, as with memory tests, and invasive or expensive, as with brain scans. However, the dysregulation patterns of miRNA in blood hold potential as useful biomarkers for the non-invasive diagnosis and even treatment of AD. OBJECTIVE The goal of this research is to elucidate new miRNA biomarkers and create a machine-learning (ML) model for the diagnosis of AD. METHODS We utilized pathways and target gene networks related to confirmed miRNA biomarkers in AD diagnosis and created multiple models to use for diagnostics based on the significant differences among miRNA expression between blood profiles (serum and plasma). RESULTS The best performing serum-based ML model, trained on filtered disease-specific miRNA datasets, was able to identify miRNA biomarkers with 92.0% accuracy and the best performing plasma-based ML model, trained on filtered disease-specific miRNA datasets, was able to identify miRNA biomarkers with 90.9% accuracy. Through analysis of AD implicated miRNA, thousands of descriptors reliant on target gene and pathways were created which can then be used to identify novel biomarkers and strengthen disease diagnosis. CONCLUSION Development of a ML model including miRNA and their genomic and pathway descriptors made it possible to achieve considerable accuracy for the prediction of AD.
Collapse
Affiliation(s)
- Amy Xu
- IUL Science Internship Program, San Diego, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,BiAna, San Diego, CA, USA
| | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,BiAna, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Zhou Q, Zhang ZY, Ang XJ, Hu C, Ouyang J. Construction of five microRNAs prognostic markers and a prognostic model for clear cell renal cell carcinoma. Transl Cancer Res 2022; 10:2337-2353. [PMID: 35116550 PMCID: PMC8797919 DOI: 10.21037/tcr-21-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Background To determine the role of miRNA in the progression and outcome of renal clear cell carcinoma (ccRCC), establish a model for predicting outcome in patients with ccRCC and verify it using a Cox regression model. The miRNA target genes were predicted to understand their biological functions. Methods The microRNAs of 71 normal tissues and 545 tumor tissues were downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/). We also downloaded 537 clinical materials from this website. The miRNA difference analysis was carried out. A prognostic model was constructed using differential miRNA. The model was verified using Cox survival analysis, receiver operator characteristic (ROC), and independent predictive analysis. Results MiR-130b-3p, miR-365b-3p, miR-149-5p, miR-155-5p, and miR-144-5p can be used as independent prognostic indicators. We also analyzed the related functions of the target gene and found that target genes of miRNAs are involved in the signal pathways of some tumors, including cholesterol metabolism, HIF-1 signal pathway, focus adhesion, the Rap1 signal pathway, and hepatitis C. Conclusions The prognostic model constructed using five miRNAs is an independent and accurate factor. These miRNAs target genes are involved in regulating a variety of tumorigenesis and signal pathways. Therefore, we have reason to believe that the regulation of signal pathways by miRNA may play a critical role in the occurrence, development, and outcome of ccRCC, provide a new therapeutic target for ccRCC, and improve outcomes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Yu Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jie Ang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Can Hu
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
44
|
Tan X, Hu J, Ming F, Lv L, Yan W, Peng X, Bai R, Xiao Q, Zhang H, Tang B, Wang C, Tan J. MicroRNA-409-3p Targeting at ATXN3 Reduces the Apoptosis of Dopamine Neurons Based on the Profile of miRNAs in the Cerebrospinal Fluid of Early Parkinson's Disease. Front Cell Dev Biol 2022; 9:755254. [PMID: 35111747 PMCID: PMC8803123 DOI: 10.3389/fcell.2021.755254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Precise recognition of early Parkinson’s disease (PD) has always been a challenging task requiring more feasible biomarkers to be integrated to improve diagnostic accuracy. MicroRNAs (miRNAs) of cerebrospinal fluid (CSF) are believed to be potential and promising candidate biomarkers for PD. However, the role of altered miRNAs of CSF play in PD is unclear. Here, we recruited patients with early stages of PD and controls to analyze the expression of miRNA in CSF by the Next Generation Sequencing (NGS). Furthermore, we tested the levels of these miRNA in SH-SY5Y cells treated with MPP+ using real-time quantitative PCR. We found 21 miRNAs were upregulated in CSF of early PD patients and miR-409-3p, one of the identified 21 miRNAs, was further confirmed in SH-SY5Y cells treated with MPP+. Also, more cells survived in the overexpression of the miR-409-3p group when SH-SY5Y cells and mice were treated with MPP+ and MPTP, respectively. Mechanistically, we demonstrated the binding of miR-409-3p and 3’UTR of ATXN3 through a dual luciferase reporter gene assay. Moreover, miR-409-3p mimic reduced the aggregation of polyglutamine-expanded mutant of ATXN3 and apoptosis. Our results provide experimental evidence for miR-409-3p in CSF as a diagnostic marker of PD.
Collapse
Affiliation(s)
- Xuling Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junjian Hu
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Fengyu Ming
- Department of Neurology, The First People's Hospital of Huaihua City, HuaiHua, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Peng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Bai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qile Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
45
|
Zago E, Dal Molin A, Dimitri GM, Xumerle L, Pirazzini C, Bacalini MG, Maturo MG, Azevedo T, Spasov S, Gómez-Garre P, Periñán MT, Jesús S, Baldelli L, Sambati L, Calandra-Buonaura G, Garagnani P, Provini F, Cortelli P, Mir P, Trenkwalder C, Mollenhauer B, Franceschi C, Liò P, Nardini C. Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients. Sci Rep 2022; 12:1330. [PMID: 35079043 PMCID: PMC8789812 DOI: 10.1038/s41598-022-05227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Advanced age represents one of the major risk factors for Parkinson's Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson's Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson's Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson's Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson's Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson's Disease patients, and healthy siblings of Parkinson's Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson's Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson's Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson's Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson's Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson's Disease.
Collapse
Affiliation(s)
| | | | - Giovanna Maria Dimitri
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | | | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maria Giovanna Maturo
- Personal Genomics S.R.L., Verona, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tiago Azevedo
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Simeon Spasov
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Pietro Liò
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Christine Nardini
- Personal Genomics S.R.L., Verona, Italy.
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", 00185, Rome, Italy.
| |
Collapse
|
46
|
Nonaka W, Takata T, Iwama H, Komatsubara S, Kobara H, Kamada M, Deguchi K, Touge T, Miyamoto O, Nakamura T, Itano T, Masaki T. A cerebrospinal fluid microRNA analysis: Progressive supranuclear palsy. Mol Med Rep 2022; 25:88. [PMID: 35039873 PMCID: PMC8809115 DOI: 10.3892/mmr.2022.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative tauopathy described as a syndrome of postural instability, supranuclear vertical gaze palsy, dysarthria, dystonic rigidity of the neck and trunk, dementia, and pseudobulbar palsy. The clinical diagnosis of PSP is often difficult because there are no established biomarkers, and diagnosis is currently based on clinical and imaging findings. Furthermore, the etiology and pathogenesis of PSP remain unknown. Dysregulation of microRNAs (miRNAs/miRs) has been reported to serve an important role in neurodegenerative diseases. However, the miRNA profiles of patients with PSP are rarely reported. The present study aimed to examine cerebrospinal fluid miRNAs, which are considered to be more sensitive indicators of changes in the brain, to elucidate the pathophysiology of PSP and to establish specific biomarkers for diagnosis. The present study used a microarray chip containing 2,632 miRNAs to examine cerebrospinal fluid miRNA expression levels in 11 patients with PSP aged 68–82 years. A total of 8 age- and sex-matched controls were also included. A total of 38 miRNAs were significantly upregulated and one miRNA was significantly downregulated in the cerebrospinal fluid of patients with PSP. The patients were divided into two groups based on disease stage (early onset and advanced), and changes in miRNA expression were examined. The miRNAs that were most significantly upregulated or downregulated in the early onset group were miR-204-3p, miR-873-3p and miR-6840-5p. The target genes of these miRNAs were associated with molecules related to the ubiquitin-proteasome system and autophagy pathway. Furthermore, these miRNAs were found to target genes that have been reported to have epigenetic changes following an epigenome-wide association study of brain tissues of patients with PSP. This suggested that these miRNAs and genes may have some involvement in the pathogenesis of PSP. However, the sample size of the present study was small; therefore, a greater number of patients with PSP should be examined in future studies.
Collapse
Affiliation(s)
- Wakako Nonaka
- Department of Neurology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Tadayuki Takata
- Department of Neurology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Satoshi Komatsubara
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Masaki Kamada
- Department of Neurology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Kazushi Deguchi
- Department of Neurology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Tetsuo Touge
- Department of Health Sciences, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Osamu Miyamoto
- Department of Medical Engineering, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama 701‑0193, Japan
| | - Takehiro Nakamura
- Department of Physiology 2, Kawasaki Medical School, Kurashiki, Okayama 701‑0192, Japan
| | - Toshifumi Itano
- Department of Neurology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology, Faculty of Medicine, Kagawa University, Miki‑Cho, Kagawa 761‑0793, Japan
| |
Collapse
|
47
|
Mukherjee S, Shelar B, Krishna S. Versatile role of miR-24/24-1*/24-2* expression in cancer and other human diseases. Am J Transl Res 2022; 14:20-54. [PMID: 35173828 PMCID: PMC8829624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable proteins.
Collapse
Affiliation(s)
| | | | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR)Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
48
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
49
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 2022; 49:705-715. [PMID: 34677714 DOI: 10.1007/s11033-021-06847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
50
|
Caldi Gomes L, Galhoz A, Jain G, Roser A, Maass F, Carboni E, Barski E, Lenz C, Lohmann K, Klein C, Bähr M, Fischer A, Menden MP, Lingor P. Multi-omic landscaping of human midbrains identifies disease-relevant molecular targets and pathways in advanced-stage Parkinson's disease. Clin Transl Med 2022; 12:e692. [PMID: 35090094 PMCID: PMC8797064 DOI: 10.1002/ctm2.692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process. METHODS Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies. RESULTS Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function. CONCLUSIONS This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Department of NeurologyRechts der Isar HospitalTechnical University of MunichMünchenGermany
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Ana Galhoz
- Helmholtz Zentrum München GmbH ‐ German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Anna‐Elisa Roser
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Fabian Maass
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Eleonora Carboni
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Elisabeth Barski
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Christof Lenz
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Mathias Bähr
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Michael P. Menden
- Helmholtz Zentrum München GmbH ‐ German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Department of BiologyLudwig‐Maximilians University MunichMartinsriedGermany
- German Centre for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Paul Lingor
- Department of NeurologyRechts der Isar HospitalTechnical University of MunichMünchenGermany
- German Center for Neurodegenerative Diseases (DZNE)MünchenGermany
| |
Collapse
|