1
|
Rees KA, McCamy KM, Danao CI, Winzer-Serhan UH. Augmented hippocampal up-regulation of immune modulators following a peripheral immune challenge in a hemizygous mouse model of the 15q13.3 microdeletion. Cytokine 2025; 191:156951. [PMID: 40300236 DOI: 10.1016/j.cyto.2025.156951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The strongest known genetic risk factor for generalized epilepsy is the human hemizygous 15q13.3 microdeletion (MD). This 1.5 Mb MD encompasses six genes, including CHRNA7 encoding the alpha7 subunit that forms the homo-pentameric nicotinic acetylcholine receptor, a known regulator of the immune system. In the CNS, hyper activation of neuroimmune responses contributes to increased seizure susceptibility. In a mouse model with a hemizygous deletion of the orthologous region (Df(h15q13)/+) (Het), we previously demonstrated increased hippocampal expression of inflammatory cytokines compared to wildtype (WT) mice following a mild peripheral immune challenge. To further characterize neuroimmune responses, hippocampal mRNA expression of the chemokines CXCL2 and CXCL10, and the Gap junction protein connexin 43 (GJA1), all of which are implicated in neuronal hyperexcitability, were determined along with additional immune related targets. Three hours after a lipopolysaccharide (LPS, 0.1 mg/kg) or polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg) injection (i.p.), hippocampi were collected, mRNA extracted, and cDNA prepared for qPCR. The results demonstrate extensive upregulation of CXCL2 and CXCL10 expression by LPS and Poly(I:C) (up to 200-fold CXCL2, up to 600-fold CXCL10) (p < 0.0001) with genotype x treatment interactions for CXCL2 by LPS (p < 0.007). Responses to treatment were far smaller in magnitude for all other targets. LPS and Poly(I:C) induced statistically similar increases for Toll-like receptor (TLR)2, TLR4, HMGB1, and C3, but Poly(I:C) had stronger effects on GJA1, TLR3, C1qA and MARCO expression. Remarkably, TLR3 was the only target with significant downregulation of expression after Poly(I:C) (p < 0.0001). In addition, genotype x treatment interactions were detected for TLR3, TLR4, HMGB1, and C1qA (p < 0.02). Thus, a peripheral immune challenge caused extensive increases for CXCL2 and CXCL10, and the genotype-treatment interactions that was seen for several targets, underscored the augmented neuroinflammatory response in mice carrying the MD. Of note is the dramatic upregulation of CXCL10 by low dose Poly(I:C). CXCL10 causes hyperexcitability via neuronal CXCR3 activation. Thus, even an asymptomatic viral infection may increase seizure susceptibility. In summary, a peripheral immune challenge causes strong upregulation of hippocampal inflammatory mediators implicated in neuronal excitability which is particularly detrimental for individuals with high seizure susceptibility, such as carriers of the 15q13.3 MD.
Collapse
Affiliation(s)
- Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Conner I Danao
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
2
|
Leser FS, Júnyor FDS, Pagnoncelli IB, Delgado AB, Medeiros I, Nóbrega ACC, Andrade BDS, de Lima MN, da Silva NE, Jacob L, Boyé K, Geraldo LHM, de Souza AMT, Maron-Gutierrez T, Castro-Faria-Neto H, Follmer C, Braga C, Neves GA, Eichmann A, Romão LF, Lima FRS. CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. J Neuroinflammation 2025; 22:31. [PMID: 39894839 PMCID: PMC11789347 DOI: 10.1186/s12974-024-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the central nervous system associated with neuroinflammation and microglial cell activation. Chemokine signaling regulates neuron-glia communication and triggers a microglial inflammatory profile. Herein, we identified the neuronal chemokine CCL21 as a major cause of microglial cell imbalance through the CCR7 receptor pathway with therapeutic implications for PD. In humans, we found that CCL21 transcript expression was increased in dopaminergic neurons (DANs) of the substantia nigra in PD patients. CCL21 and CCR7 expressions were spatially associated with brain regional vulnerability to synucleinopathies, as well as with the expression of microglial activation, neuroinflammation, and degeneration-related genes. Also, in mouse models of PD, we showed that CCL21 was overexpressed in DANs in vivo and in vitro. Mechanistically, neuronal CCL21 was shown to regulate microglial cell migration, proliferation, and activation in a CCR7-dependent manner through both canonical (PI3K/AKT) and non-canonical (ERK1/2/JNK) signaling pathways. Finally, we demonstrated that navarixin, a clinically relevant chemokine inhibitor with high affinity for the CCR7 receptor, could block CCL21 effects on microglia and prevent neurodegeneration and behavioral deficits in two mouse models of PD induced with either α-synuclein oligomers (αSynO) or 3,4-dihydroxyphenylacetaldehyde (DOPAL). Altogether, our data indicate that navarixin blocks CCL21/CCR7-mediated neuron-microglia communication and could be used as a therapeutic strategy against PD.
Collapse
Affiliation(s)
- Felipe Saceanu Leser
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Flavio de Souza Júnyor
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Iohanna Bianca Pagnoncelli
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anna Beatriz Delgado
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Isabelle Medeiros
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Ana Clara Campanelli Nóbrega
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Brenda da Silva Andrade
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Maiara Nascimento de Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nícolas Emanoel da Silva
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Laurent Jacob
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Kevin Boyé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Luiz Henrique Medeiros Geraldo
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA
| | - Alessandra Mendonça Teles de Souza
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Cristian Follmer
- Laboratory of Physical Chemistry of Proteins and Peptides (Lafipp), Chemistry Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisas em Biologia, NUMPEX-Bio, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brasil
| | - Gilda Angela Neves
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anne Eichmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France.
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA.
| | - Luciana Ferreira Romão
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Flavia Regina Souza Lima
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
3
|
Konat GW. Neuroplasticity elicited by peripheral immune challenge with a viral mimetic. Brain Res 2025; 1846:149239. [PMID: 39284559 DOI: 10.1016/j.brainres.2024.149239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Peripheral viral infections are well known to profoundly alter brain function; however detailed mechanisms of this immune-to-brain communication have not been deciphered. This review focuses on studies of cerebral effects of peripheral viral challenge employing intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). In this paradigm, PIC challenge induces the acute phase response (APR) characterized by a transient surge of circulating inflammatory factors, primarily IFNβ, IL-6 and CXCL10. The blood-borne factors, in turn, elicit the generation of CXCL10 by hippocampal neurons. Neurons also express the cognate receptor of CXCL10, i.e., CXCR3 implicating the existence of autocrine/paracrine signaling. The CXCL10/CXCR3 axis mediates the ensuing neuroplastic changes manifested as neuronal hyperexcitability, seizure hypersusceptibility, and sickness behavior. Electrophysiological studies revealed that the neuroplastic changes entail the potentiation of excitatory synapses likely at both pre- and postsynaptic loci. Excitatory synaptic transmission is further augmented by PIC challenge-induced elevation of extracellular glutamate that is mediated by astrocytes. In addition, the hyperexcitability of neuronal circuits might involve the repression of inhibitory signaling. Accordingly, CXCL10 released by neurons activates microglia whose processes invade perisomatic inhibitory synapses, resulting in a partial detachment of the presynaptic terminals, and thus, de-inhibition. This process might be facilitated by the cerebral complement system, which is also upregulated and activated by PIC challenge. Moreover, CXCL10 stimulates the expression of neuronal c-fos protein, another index of hyperexcitability. The reviewed studies form a foundation for full elucidation of the fascinating intersection between peripheral viral infections and neuroplasticity. Because the activation of such pathways may constitute a serious comorbidity factor for neuropathological conditions, this research would advance the development of preventive strategies.
Collapse
Affiliation(s)
- Gregory W Konat
- Department of Biochemistry and Molecular Medicine, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
4
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Vavougios GD, Mavridis T, Doskas T, Papaggeli O, Foka P, Hadjigeorgiou G. SARS-CoV-2-Induced Type I Interferon Signaling Dysregulation in Olfactory Networks Implications for Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4565-4579. [PMID: 38785545 PMCID: PMC11119810 DOI: 10.3390/cimb46050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer's. Previous works from our group have proposed a model where peripheral induction of IFN-I may be relayed to the CNS, even in the absence of fulminant infection. The aim of our study was to identify significantly enriched IFN-I signatures and genes along the transolfactory route, utilizing published datasets of the nasal mucosa and olfactory bulb amygdala transcriptomes of COVID-19 patients. We furthermore sought to identify these IFN-I signature gene networks associated with Alzheimer's disease pathology and risk. Gene expression data involving the nasal epithelium, olfactory bulb, and amygdala of COVID-19 patients and transcriptomic data from Alzheimer's disease patients were scrutinized for enriched Type I interferon pathways. Gene set enrichment analyses and gene-Venn approaches were used to determine genes in IFN-I enriched signatures. The Agora web resource was used to identify genes in IFN-I signatures associated with Alzheimer's disease risk based on its aggregated multi-omic data. For all analyses, false discovery rates (FDR) <0.05 were considered statistically significant. Pathways associated with type I interferon signaling were found in all samples tested. Each type I interferon signature was enriched by IFITM and OAS family genes. A 14-gene signature was associated with COVID-19 CNS and the response to Alzheimer's disease pathology, whereas nine genes were associated with increased risk for Alzheimer's disease based on Agora. Our study provides further support to a type I interferon signaling dysregulation along the extended olfactory network as reconstructed herein, ranging from the nasal epithelium and extending to the amygdala. We furthermore identify the 14 genes implicated in this dysregulated pathway with Alzheimer's disease pathology, among which HLA-C, HLA-B, HLA-A, PSMB8, IFITM3, HLA-E, IFITM1, OAS2, and MX1 as genes with associated conferring increased risk for the latter. Further research into its druggability by IFNb therapeutics may be warranted.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children’s Hospital (AMNCH), D24 NR0A Dublin, Ireland;
| | | | - Olga Papaggeli
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece; (O.P.); (P.F.)
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece; (O.P.); (P.F.)
| | | |
Collapse
|
6
|
Hermans EC, Donega V, Heijnen CJ, de Theije CGM, Nijboer CH. CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain. Stem Cell Res Ther 2024; 15:134. [PMID: 38715091 PMCID: PMC11077865 DOI: 10.1186/s13287-024-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.
Collapse
Affiliation(s)
- Eva C Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Vanessa Donega
- Anatomy & Neurosciences, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cobi J Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands.
| |
Collapse
|
7
|
Vavougios GD, Tseriotis VS, Liampas A, Mavridis T, de Erausquin GA, Hadjigeorgiou G. Type I interferon signaling, cognition and neurodegeneration following COVID-19: update on a mechanistic pathogenetic model with implications for Alzheimer's disease. Front Hum Neurosci 2024; 18:1352118. [PMID: 38562226 PMCID: PMC10982434 DOI: 10.3389/fnhum.2024.1352118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | | | - Andreas Liampas
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | - Theodore Mavridis
- Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | - Gabriel A. de Erausquin
- Laboratory of Brain Development, Modulation and Repair, The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe R. and Teresa Lozano Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
8
|
Baker TL, Wright DK, Uboldi AD, Tonkin CJ, Vo A, Wilson T, McDonald SJ, Mychasiuk R, Semple BD, Sun M, Shultz SR. A pre-existing Toxoplasma gondii infection exacerbates the pathophysiological response and extent of brain damage after traumatic brain injury in mice. J Neuroinflammation 2024; 21:14. [PMID: 38195485 PMCID: PMC10775436 DOI: 10.1186/s12974-024-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, , The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
9
|
Liang P, Zhang X, Zhang Y, Wu Y, Song Y, Wang X, Chen T, Liu W, Peng B, Yin J, He F, Fan Y, Han S, He X. Neurotoxic A1 astrocytes promote neuronal ferroptosis via CXCL10/CXCR3 axis in epilepsy. Free Radic Biol Med 2023; 195:329-342. [PMID: 36610561 DOI: 10.1016/j.freeradbiomed.2023.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Epilepsy is a common neurological disorder with a complex etiology. Ferroptosis, a new form of programmed cell death, is characterized by the accumulation of lipid peroxides and associated with seizures. However, the underlying mechanism of ferroptosis in epilepsy remains elusive. Here, we found that GPX4-GSH-dependent neuronal ferroptosis was detected in epileptic mice, which was attenuated with ferroptosis inhibitors. Moreover, activated neurotoxic A1 astrocytes facilitated seizure-related neuronal ferroptosis in epileptic brains. Inhibition of ferroptosis blocked A1 astrocyte-induced neurotoxicity. A1 astrocyte-secreted CXCL10 enhanced STAT3 phosphorylation but suppressed SLC7A11 in neurons via CXCR3, leading to ferroptosis-associated lipid peroxidation in a GPX4-dependent manner. This was in line with clinical findings, showing a significant correlation between neuronal ferroptosis and A1 astrocytes in epileptic patients. In summary, the present data show that A1 astrocyte-induced neuronal ferroptosis contributes to the pathogenesis of epilepsy, which offers a novel therapeutic target for precision medicine.
Collapse
Affiliation(s)
- Peiyu Liang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinyi Zhang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yahui Zhang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifan Wu
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinghao Song
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xueyang Wang
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Taoxiang Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fanggang He
- Institute of Forensic Medicine, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Song Han
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xiaohua He
- Department of Pathophysiology, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Chen Z, Hu W, Mendez MJ, Gossman ZC, Chomyk A, Boylan BT, Kidd GJ, Phares TW, Bergmann CC, Trapp BD. Neuroprotection by Preconditioning in Mice is Dependent on MyD88-Mediated CXCL10 Expression in Endothelial Cells. ASN Neuro 2023; 15:17590914221146365. [PMID: 36591943 PMCID: PMC9810995 DOI: 10.1177/17590914221146365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023] Open
Abstract
The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown. A fundamental question is whether LPS penetrates the CNS or acts on the luminal surface of brain endothelial cells, thereby triggering an indirect parenchymal neuroprotective response. The present study shows that a low-dose intraperitoneal LPS treatment increases brain endothelial cell activation markers CD54, but does not open the blood-brain barrier or alter brain endothelial cell tight junctions as assessed by electron microscopy. NanoString nCounter transcript analyses of CD31-positive brain endothelial cells further revealed significant upregulation of Cxcl10, C3, Ccl2, Il1β, Cxcl2, and Cxcl1, consistent with identification of myeloid differentiation primary response 88 (MyD88) as a regulator of these transcripts by pathway analysis. Conditional genetic endothelial cell gene ablation approaches demonstrated that both MyD88-dependent Toll-like receptor 4 (TLR4) signaling and Cxcl10 expression are essential for LPS-induced neuroprotection and microglial activation. These results suggest that C-X-C motif chemokine ligand 10 (CXCL10) production by endothelial cells in response to circulating TLR ligands may directly or indirectly signal to CXCR3 on neurons and/or microglia. Targeted activation of brain endothelial receptors may thus provide an attractive approach for inducing transient neuroprotection.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Weiwei Hu
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
- Department of Pharmacology, School of Basic Medical Sciences,
Zhejiang
University, Hangzhou, China
| | - Mynor J. Mendez
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Zachary C. Gossman
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Anthony Chomyk
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of
Medicine, Cleveland, OH, USA
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Timothy W. Phares
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute,
Cleveland
Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Wang W, Li Q, Zhao Z, Liu Y, Wang Y, Xiong H, Mei Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front Pharmacol 2022; 12:805222. [PMID: 35095512 PMCID: PMC8794748 DOI: 10.3389/fphar.2021.805222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Qiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Yutong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
12
|
Abstract
Neuropsychiatric diseases have traditionally been studied from brain, and mind-centric perspectives. However, mounting epidemiological and clinical evidence shows a strong correlation of neuropsychiatric manifestations with immune system activation, suggesting a likely mechanistic interaction between the immune and nervous systems in mediating neuropsychiatric disease. Indeed, immune mediators such as cytokines, antibodies, and complement proteins have been shown to affect various cellular members of the central nervous system in multitudinous ways, such as by modulating neuronal firing rates, inducing cellular apoptosis, or triggering synaptic pruning. These observations have in turn led to the exciting development of clinical therapies aiming to harness this neuro-immune interaction for the treatment of neuropsychiatric disease and symptoms. Besides the clinic, important theoretical fundamentals can be drawn from the immune system and applied to our understanding of the brain and neuropsychiatric disease. These new frameworks could lead to novel insights in the field and further potentiate the development of future therapies to treat neuropsychiatric disease.
Collapse
|
13
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
14
|
Petrisko TJ, Konat GW. Peripheral viral challenge increases c-fos level in cerebral neurons. Metab Brain Dis 2021; 36:1995-2002. [PMID: 34406561 DOI: 10.1007/s11011-021-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Peripheral viral infection can substantially alter brain function. We have previously shown that intraperitoneal (i.p.) injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC), engenders hyperexcitability of cerebral neurons. Because neuronal activity is invariably associated with their expression of the Cfos gene, the present study was undertaken to determine whether PIC challenge also increases neuronal c-fos protein level. Female C57BL/6 mice were i.p. injected with PIC, and neuronal c-fos was analyzed in the motor cortex by immunohistochemistry. PIC challenge instigated a robust increase in the number of c-fos-positive neurons. This increase reached approximately tenfold over control at 24 h. Also, the c-fos staining intensity of individual neurons increased. AMG-487, a specific inhibitor of the chemokine receptor CXCR3, profoundly attenuated the accumulation of neuronal c-fos, indicating the activation of CXCL10/CXCR3 axis as the trigger of the process. Together, these results show that the accumulation of c-fos is a viable readout to assess the response of cerebral neurons to peripheral PIC challenge, and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tiffany J Petrisko
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Gregory W Konat
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Biochemistry, West Virginia University School of Medicine, 4052 HSCN, P.O. Box 9128, Morgantown, WV, 26506-9128, USA.
| |
Collapse
|
15
|
Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021; 7:e07456. [PMID: 34296005 PMCID: PMC8282984 DOI: 10.1016/j.heliyon.2021.e07456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, Qassim University, Buraydah, Saudi Arabia
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Lauren N. Woodie
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manal A. Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Shanese L. Jasper
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Martha Escobar
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
16
|
Nieves MD, Furmanski O, Doughty ML. Sensorimotor dysfunction in a mild mouse model of cortical contusion injury without significant neuronal loss is associated with increases in inflammatory proteins with innate but not adaptive immune functions. J Neurosci Res 2020; 99:1533-1549. [PMID: 33269491 DOI: 10.1002/jnr.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury is a leading cause of mortality and morbidity in the United States. Acute trauma to the brain triggers chronic secondary injury mechanisms that contribute to long-term neurological impairment. We have developed a single, unilateral contusion injury model of sensorimotor dysfunction in adult mice. By targeting a topographically defined neurological circuit with a mild impact, we are able to track sustained behavioral deficits in sensorimotor function in the absence of tissue cavitation or neuronal loss in the contused cortex of these mice. Stereological histopathology and multiplex enzyme-linked immunosorbent assay proteomic screening confirm contusion resulted in chronic gliosis and the robust expression of innate immune cytokines and monocyte attractant chemokines IL-1β, IL-5, IL-6, TNFα, CXCL1, CXCL2, CXCL10, CCL2, and CCL3 in the contused cortex. In contrast, the expression of neuroinflammatory proteins with adaptive immune functions was not significantly modulated by injury. Our data support widespread activation of innate but not adaptive immune responses, confirming an association between sensorimotor dysfunction with innate immune activation in the absence of tissue or neuronal loss in our mice.
Collapse
Affiliation(s)
- Michael D Nieves
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|