1
|
Fan W, Trobaugh JW, Zhang C, Yang D, Culver JP, Eggebrecht AT. Fundamental effects of array density and modulation frequency on image quality of diffuse optical tomography. Med Phys 2025; 52:1045-1057. [PMID: 39494917 PMCID: PMC11788260 DOI: 10.1002/mp.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Diffuse optical tomography (DOT) provides three-dimensional image reconstruction of chromophore perturbations within a turbid volume. Two leading strategies to optimize DOT image quality include, (i) arrays of regular, interlacing, high-density (HD) grids of sources and detectors with closest spacing less than 15 mm, or (ii) source modulated light of order ∼100 MHz. PURPOSE However, the general principles for how these crucial design parameters of array density and modulation frequency may interact to provide an optimal system design have yet to be elucidated. METHODS Herein, we systematically evaluated how these design parameters effect image quality via multiple key metrics. Specifically, we simulated 32 system designs with realistic measurement noise and quantified localization error, spatial resolution, signal-to-noise, and localization depth of field for each of ∼85 000 point spread functions in each model. RESULTS We found that array density had a far stronger effect on image quality metrics than modulation frequency. Additionally, model fits for image quality metrics revealed that potential improvements diminish with regular arrays denser than 9 mm closest spacing. Further, for a given array density, 300 MHz source modulation provided the deepest reliable imaging compared to other frequencies. CONCLUSIONS Our results indicate that both array density and modulation frequency affect the spatial sampling of tissue, which asymptotically saturates due to photon diffusivity within a turbid volume. In summary, our results provide comprehensive perspectives for optimizing future DOT system designs in applications from wearable functional brain imaging to breast tumor detection.
Collapse
Affiliation(s)
- Weihao Fan
- Department of PhysicsWashington UniversitySt. LouisMissouriUSA
| | - Jason W. Trobaugh
- Department of Electrical and Systems EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Chengfeng Zhang
- Department of Electrical and Systems EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Dalin Yang
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Joseph P. Culver
- Department of PhysicsWashington UniversitySt. LouisMissouriUSA
- Department of Electrical and Systems EngineeringWashington UniversitySt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
- Department of NeuroscienceWashington UniversitySt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Adam T. Eggebrecht
- Department of PhysicsWashington UniversitySt. LouisMissouriUSA
- Department of Electrical and Systems EngineeringWashington UniversitySt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
- Department of NeuroscienceWashington UniversitySt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
2
|
Kılıç A, Blaney G, Tavakoli F, Frias J, Sassaroli A, Fantini S, Koomson V. Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:114706. [PMID: 39527001 PMCID: PMC11585364 DOI: 10.1063/5.0227363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source-detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.
Collapse
Affiliation(s)
- Alper Kılıç
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Fatemeh Tavakoli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Jodee Frias
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Valencia Koomson
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
3
|
Zhang B, Phillips C, Venialgo Araujo E, Iskander-Rizk S, Pupeikis J, Willenberg B, Keller U, Bhattacharya N. Study of Time-Resolved Dynamics in Turbid Medium Using a Single-Cavity Dual-Comb Laser. ACS PHOTONICS 2024; 11:3972-3981. [PMID: 39429870 PMCID: PMC11487654 DOI: 10.1021/acsphotonics.4c00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 10/22/2024]
Abstract
In measuring cerebral blood flow (CBF) noninvasively using optical techniques, diffusing-wave spectroscopy is often combined with near-infrared spectroscopy to obtain a reliable blood flow index. Measuring the blood flow index at a determined depth remains the ultimate goal. In this study, we present a simple approach using dual-comb lasers where we simultaneously measure the absorption coefficient (μa), the reduced scattering coefficient (μs '), and dynamic properties. This system can also effectively differentiate dynamics from various depths, which is crucial for analyzing multilayer dynamics. For CBF measurements, this capability is particularly valuable as it helps mitigate the influence of the scalp and skull, thereby enhancing the specificity of deep tissue.
Collapse
Affiliation(s)
- Binbin Zhang
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Christopher Phillips
- Department
of Physics, Institute for Quantum Electronics, ETH Zurich, Zurich CH-8093, Switzerland
| | - Esteban Venialgo Araujo
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Sophinese Iskander-Rizk
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Justinas Pupeikis
- Department
of Physics, Institute for Quantum Electronics, ETH Zurich, Zurich CH-8093, Switzerland
| | - Benjamin Willenberg
- Department
of Physics, Institute for Quantum Electronics, ETH Zurich, Zurich CH-8093, Switzerland
| | - Ursula Keller
- Department
of Physics, Institute for Quantum Electronics, ETH Zurich, Zurich CH-8093, Switzerland
| | - Nandini Bhattacharya
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| |
Collapse
|
4
|
Leadley G, Cooper RJ, Austin T, Hebden JC, Bale G. Investigating the effect of limited spectral information on NIRS-derived changes in hemoglobin and cytochrome-c-oxidase concentration with a diffusion-based model. BIOMEDICAL OPTICS EXPRESS 2024; 15:5912-5931. [PMID: 39421769 PMCID: PMC11482185 DOI: 10.1364/boe.531775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024]
Abstract
This paper investigates the theoretical capability of near-infrared spectroscopy (NIRS) systems to accurately measure changes in the oxidation state of cerebral cytochrome-c-oxidase (CCO) alongside the hemoglobins, for a deeper understanding of NIRS limitations. Concentration changes of oxy and deoxyhemoglobin (HbO and HbR) indicate the oxygen status of blood vessels and correlate with several other physiological parameters across different pathologies. The oxidation state of CCO indicates cellular energy usage efficiency through oxidative metabolism, potentially serving as a biomarker for brain and other tissue disorders. This study employs an analytical model based on the diffusion equation and statistical analyses to explore the dependency of estimated concentration changes on various systematic parameters, such as choice of wavelengths, spectral bandwidth, and uncertainties in extinction coefficient (ε) and differential pathlength factor (DPF). When there is a 10% uncertainty in DPF and ε, errors were found to be highly dependent on the number of discrete wavelengths, but not on their bandwidth if appropriate considerations are taken to account for it.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
5
|
Calcaterra V, Lacerenza M, Amendola C, Buttafava M, Contini D, Rossi V, Spinelli L, Zanelli S, Zuccotti G, Torricelli A. Cerebral baseline optical and hemodynamic properties in pediatric population: a large cohort time-domain near-infrared spectroscopy study. NEUROPHOTONICS 2024; 11:045009. [PMID: 39554693 PMCID: PMC11566259 DOI: 10.1117/1.nph.11.4.045009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Significance Reference cerebral near-infrared spectroscopy (NIRS) data on the pediatric population are scarce, and in most cases, only cerebral oxygen saturation (SO 2 ) measured by continuous wave spatially resolved spectroscopy NIRS is reported. Absolute data for baseline optical and hemodynamic parameters are missing. Aim We aimed at collecting baseline cerebral optical parameters [absorption coefficient,μ a ; reduced scattering coefficient,μ s ' ; differential pathlength factor (DPF)] and hemodynamic parameters [oxy-hemoglobin content (HbO 2 ), deoxyhemoglobin content (HHb), total hemoglobin content (tHB),SO 2 ] in a large cohort of pediatric patients. The objectives are to establish reference optical values in this population and evaluate the reproducibility of a commercial time domain (TD) NIRS tissue oximeter. Approach TD NIRS measurements were performed in the prefrontal cortex at 686 and 830 nm with a 2.5-cm source-detector distance and 1-Hz acquisition rate. Five independent measurements (after probe replacement) were taken for every subject. TD NIRS data were fitted to a photon diffusion model to estimate the optical parameters. From the absorption coefficients, the hemodynamic parameters were derived by Beer's law. Auxological and physiological information was also collected to explore the potential correlations with NIRS data. Results We measured 305 patients in the age range of 2 to 18 years. Absolute values for baseline optical and hemodynamic parameters were shown as a function of age and auxological variables. From the analysis of the repositioning after probe replacement, the time-domain near-infrared spectroscopy device exhibited an average precision (intended as coefficient of variation) of < 5 % forμ s ' , DPF,HbO 2 , HHb, and tHb, whereas precision was < 2 % forSO 2 . Conclusions We provided baseline values for optical and hemodynamic parameters in a large cohort of healthy pediatric subjects with good precision, providing a foundation for future investigations into clinically relevant deviations in these parameters.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Buzzi Children’s Hospital, Pediatric Department, Milan, Italy
- University of Pavia, Pediatric and Adolescent Unit, Department of Internal Medicine, Pavia, Italy
| | | | | | | | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
| | - Virginia Rossi
- Buzzi Children’s Hospital, Pediatric Department, Milan, Italy
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| | - Sara Zanelli
- Buzzi Children’s Hospital, Pediatric Department, Milan, Italy
| | - Gianvincenzo Zuccotti
- Buzzi Children’s Hospital, Pediatric Department, Milan, Italy
- University of Milan, Department of Biomedical and Clinical Science, Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| |
Collapse
|
6
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
7
|
Jaquerod ME, Knight RS, Lintas A, Villa AEP. A Dual Role for the Dorsolateral Prefrontal Cortex (DLPFC) in Auditory Deviance Detection. Brain Sci 2024; 14:994. [PMID: 39452008 PMCID: PMC11505713 DOI: 10.3390/brainsci14100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In the oddball paradigm, the dorsolateral prefrontal cortex (DLPFC) is often associated with active cognitive responses, such as maintaining information in working memory or adapting response strategies. While some evidence points to the DLPFC's role in passive auditory deviance perception, a detailed understanding of the spatiotemporal neurodynamics involved remains unclear. METHODS In this study, event-related optical signals (EROS) and event-related potentials (ERPs) were simultaneously recorded for the first time over the prefrontal cortex using a 64-channel electroencephalography (EEG) system, during passive auditory deviance perception in 12 right-handed young adults (7 women and 5 men). In this oddball paradigm, deviant stimuli (a 1500 Hz pure tone) elicited a negative shift in the N1 ERP component, related to mismatch negativity (MMN), and a significant positive deflection associated with the P300, compared to standard stimuli (a 1000 Hz tone). RESULTS We hypothesize that the DLPFC not only participates in active tasks but also plays a critical role in processing deviant stimuli in passive conditions, shifting from pre-attentive to attentive processing. We detected enhanced neural activity in the left middle frontal gyrus (MFG), at the same timing of the MMN component, followed by later activation at the timing of the P3a ERP component in the right MFG. CONCLUSIONS Understanding these dynamics will provide deeper insights into the DLPFC's role in evaluating the novelty or unexpectedness of the deviant stimulus, updating its cognitive value, and adjusting future predictions accordingly. However, the small number of subjects could limit the generalizability of the observations, in particular with respect to the effect of handedness, and additional studies with larger and more diverse samples are necessary to validate our conclusions.
Collapse
Affiliation(s)
- Manon E. Jaquerod
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
| | - Ramisha S. Knight
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Ave., Urbana, IL 61801, USA
- Aptima, Inc., 2555 University Blvd, Fairborn, OH 45324, USA
| | - Alessandra Lintas
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
- LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland
| | - Alessandro E. P. Villa
- NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Chamberonne, 1015 Lausanne, Switzerland (A.L.)
| |
Collapse
|
8
|
Damagatla V, Boetti NG, Di Sieno L, Bargigia I, Negretti F, Pugliese D, Janner D, Spinelli L, Farina A, Pifferi A. Use of bioresorbable fibers for short-wave infrared spectroscopy using time-domain diffuse optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:5041-5052. [PMID: 39296383 PMCID: PMC11407265 DOI: 10.1364/boe.531681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 09/21/2024]
Abstract
We demonstrate the usability of bioresorbable phosphate glass fibers for time-domain diffuse optical spectroscopy (TD-DOS) in the short-wave infrared (SWIR) region of 950-1600 nm, with the use of an InGaAs detector. Bioresorbable fibers for diffuse optics present an exciting prospect due to their ability to be left implanted while retrieving optical properties from deeper regions (few cm) for monitoring treatments. Extending TD-DOS to the SWIR region could be useful to better identify biomarkers such as water, lipids and collagen, given their increase in absorption in this range. We attempt to use the bioresorbable fibers to spectrally identify these biomarkers by measuring a series of biological samples known to contain them, such as porcine muscle, porcine fat and bone. We further validate our measurements by comparing the optical properties of high-scattering solid silicone phantoms retrieved with these bioresorbable fibers with those by a standard Si fiber.
Collapse
Affiliation(s)
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, Torino, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ilaria Bargigia
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Fabio Negretti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Diego Pugliese
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy
| | - Davide Janner
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
9
|
Abdalsalam O, Howard S, O’Sullivan TD. Phase-based structured interrogation frequency-domain near-infrared spectroscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1500-1512. [PMID: 39873575 PMCID: PMC11775415 DOI: 10.1364/josaa.523194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 01/30/2025]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error. Particularly noteworthy, the phase-only component of SI FD-NIRS can quantify both the optical absorption and reduced scattering in homogeneous tissues and shows a 20% improved sensitivity to absorption changes in deeper tissues compared to conventional methods. We show that this enhanced sensitivity is promising for improving the accuracy of functional brain monitoring in the cortex of an infant with less superficial contamination.
Collapse
Affiliation(s)
- Ola Abdalsalam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Thomas D. O’Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
10
|
Rodrigues A, Shingai K, Gómez CA, Rassam P, Rozenberg D, Goligher E, Brochard L, Roblyer D, Reid WD. Continuous measurements of respiratory muscle blood flow and oxygen consumption using noninvasive frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy. J Appl Physiol (1985) 2024; 137:382-393. [PMID: 38867669 PMCID: PMC11424177 DOI: 10.1152/japplphysiol.00871.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Prior studies of muscle blood flow and muscle-specific oxygen consumption have required invasive injection of dye and magnetic resonance imaging, respectively. Such measures have limited utility for continuous monitoring of the respiratory muscles. Frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS) can provide continuous surrogate measures of blood flow index (BFi) and metabolic rate of oxygen consumption (MRO2). This study aimed to validate sternocleidomastoid FD-NIRS & DCS outcomes against electromyography (EMG) and mouth pressure (Pm) during incremental inspiratory threshold loading (ITL). Six female and six male healthy adults (means ± SD; 30 ± 7 yr, maximum inspiratory pressure 118 ± 61 cmH2O) performed incremental ITL starting at low loads (8 ± 2 cmH2O) followed by 50-g increments every 2 min until task failure. FD-NIRS & DCS continuously measured sternocleidomastoid oxygenated and deoxygenated hemoglobin + myoglobin (oxy/deoxy[Hb + Mb]), tissue saturation of oxygen (StO2), BFi, and MRO2. Ventilatory parameters including inspiratory Pm were also evaluated. Pm increased during incremental ITL (P < 0.05), reaching -47[-74 to -34] cmH2O (median [IQR: 25%-75%]) at task failure. Ventilatory parameters were constant throughout ITL (all P > 0.05). Sternocleidomastoid BFi and MRO2 increased from the start of the ITL (both P < 0.05). Deoxy[Hb + Mb] increased close to task failure, concomitantly with a constant increase in MRO2, and decreased StO2. Sternocleidomastoid deoxy[Hb + Mb], BFi, StO2, and MRO2 obtained during ITL via FD-NIRS & DCS correlated with sternocleidomastoid EMG (all P < 0.05). In healthy adults, FD-NIRS & DCS can provide continuous surrogate measures of respiratory BFi and MRO2. Increasing sternocleidomastoid oxygen consumption near task failure was associated with increased oxygen extraction and reduced tissue saturation.NEW & NOTEWORTHY This study introduces a novel approach, frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS), for noninvasive continuous monitoring of respiratory muscle blood flow and metabolic rate of oxygen consumption. Unlike prior methods involving invasive dye injection and magnetic resonance imaging, FD-NIRS & DCS offers the advantage of continuous measurement without the need for invasive procedures. It holds promise for advancing muscle physiology understanding and opens avenues for real-time monitoring of respiratory muscles.
Collapse
Affiliation(s)
- Antenor Rodrigues
- Department of Critical Care, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kazuya Shingai
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Carlos A Gómez
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Peter Rassam
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Dmitry Rozenberg
- Ajmera Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Department of Critical Care, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darren Roblyer
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - W Darlene Reid
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Pham T, Wei LL, Roblyer D. Cross-wavelength calibrating method for real-time imaging of tissue optical properties using frequency-domain diffuse optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:4963-4979. [PMID: 39346994 PMCID: PMC11427195 DOI: 10.1364/boe.529551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
Frequency-domain diffuse optical spectroscopy (FD-DOS) is a powerful non-invasive technique for assessing tissue optical properties, with applications ranging from basic research to clinical diagnosis. In this study, we introduce and validate a novel approach termed the cross-wavelength calibrating (CWC) method within the framework of TrackDOSI, a real-time FD-DOS imaging system for tissue characterization. The CWC method aims to mitigate the effects of changing optical coupling and motion artifacts encountered during probe scanning, thus enhancing the accuracy and reliability of optical property measurements. Notably, the CWC method also allows for a simpler geometry with fewer sources than traditional self-calibrating (SC) methods, reducing instrumental complexity and cost while maintaining robustness in estimating optical properties. We first validate the CWC method on solid silicone phantoms, demonstrating strong agreement with the gold standard SC method with an error of -10% and 1% for absorption and reduced scattering coefficients, respectively. Furthermore, experiments on phantom and human tissue reveal the CWC approach's ability to suppress motion artifacts and optical coupling variations, thereby improving measurement repeatability, signal fidelity, and artifact correction in dynamic imaging scenarios. Our findings underscore the potential of the CWC method to enhance the clinical utility of DOSI techniques by enabling real-time artifact correction and improving the accuracy of tissue optical property measurements.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | - Lina Lin Wei
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| |
Collapse
|
12
|
Quang T, Mostashari G, Berning E, Gopalan BP, Lizarralde-Iragorri MA, Lovins D, Shet AS, Tromberg BJ. Non-invasive optical and laboratory hematologic biomarkers correlate in patients with sickle cell disease. BIOMEDICAL OPTICS EXPRESS 2024; 15:4829-4841. [PMID: 39346999 PMCID: PMC11427197 DOI: 10.1364/boe.527770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
The goal of this study is to identify non-invasive optical hemodynamic biomarkers that can index laboratory hematology measurements in sickle cell disease (SCD). We acquired frequency-domain NIRS (FD-NIRS) and diffuse correlation spectroscopy (DCS) data from the forearms and foreheads of 17 participants in a randomized, double-blind, placebo-controlled trial evaluating effects of isoquercetin (IQ) on thromboinflammation in SCD. We observed multiple, significant correlations between optical and hematology biomarkers including cerebral tissue oxygen saturation (StO2) and hematocrit (HCT); oxyhemoglobin ([O2Hb]) recovery rate and intercellular adhesion molecule 1 (ICAM-1); and blood flow index (BFI) reperfusion rate and coagulation index (CI). The potential of these non-invasive optical biomarkers for assessing vascular pathophysiology for the management of SCD warrants further exploration.
Collapse
Affiliation(s)
- Timothy Quang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Golnar Mostashari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elise Berning
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bindu Parachalil Gopalan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Dianna Lovins
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arun S Shet
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Rathbone E, Fu D. Quantitative Optical Imaging of Oxygen in Brain Vasculature. J Phys Chem B 2024; 128:6975-6989. [PMID: 38991095 DOI: 10.1021/acs.jpcb.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The intimate relationship between neuronal activity and cerebral oxygenation underpins fundamental brain functions like cognition, sensation, and motor control. Optical imaging offers a noninvasive approach to assess brain oxygenation and often serves as an indirect proxy for neuronal activity. However, deciphering neurovascular coupling─the intricate interplay between neuronal activity, blood flow, and oxygen delivery─necessitates independent, high spatial resolution, and high temporal resolution measurements of both microvasculature oxygenation and neuronal activation. This Perspective examines the established optical techniques employed for brain oxygen imaging, specifically functional near-infrared spectroscopy, photoacoustic imaging, optical coherence tomography, and two-photon phosphorescent lifetime microscopy, highlighting their fundamental principles, strengths, and limitations. Several other emerging optical techniques are also introduced. Finally, we discuss key technological challenges and future directions for quantitative optical oxygen imaging, paving the way for a deeper understanding of oxygen metabolism in the brain.
Collapse
Affiliation(s)
- Emily Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Orcioli-Silva D, Beretta VS, Santos PCR, Rasteiro FM, Marostegan AB, Vitório R, Gobatto CA, Manchado-Gobatto FB. Cerebral and muscle tissue oxygenation during exercise in healthy adults: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:459-471. [PMID: 38462172 PMCID: PMC11184313 DOI: 10.1016/j.jshs.2024.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise. Since this technology has been growing and is now successfully used in laboratory and sports settings, this systematic review aimed to synthesize the evidence and enhance an integrative understanding of blood flow adjustments and oxygen (O2) changes (i.e., the balance between O2 delivery and O2 consumption) within the cerebral and muscle systems during exercise. METHODS A systematic review was conducted using PubMed, Embase, Scopus, and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise. This review considered manuscripts written in English and available before February 9, 2023. Each step of screening involved evaluation by 2 independent authors, with disagreements resolved by a third author. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies. RESULTS Twenty studies were included, of which 80% had good methodological quality, and involved 290 young or middle-aged adults. Different types of exercises were used to assess cerebral and muscle hemodynamic changes, such as cycling (n = 11), treadmill (n = 1), knee extension (n = 5), isometric contraction of biceps brachii (n = 3), and duet swim routines (n = 1). The cerebral hemodynamics analysis was focused on the frontal cortex (n = 20), while in the muscle, the analysis involved vastus lateralis (n = 18), gastrocnemius (n = 3), biceps brachii (n = 5), deltoid (n = 1), and intercostal muscle (n = 1). Overall, muscle deoxygenation increases during exercise, reaching a plateau in voluntary exhaustion, while in the brain, oxyhemoglobin concentration increases with exercise intensity, reaching a plateau or declining at the exhaustion point. CONCLUSION Muscle and cerebral oxygenation respond differently to exercise, with muscle increasing O2 utilization and cerebral tissue increasing O2 delivery during exercise. However, at the exhaustion point, both muscle and cerebral oxygenation become compromised. This is characterized by a reduction in blood flow and a decrease in O2 extraction in the muscle, while in the brain, oxygenation reaches a plateau or decline, potentially resulting in motor failure during exercise.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil; Posture and Gait Studies Laboratory (LEPLO), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil.
| | - Victor Spiandor Beretta
- Physical Education Department, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil
| | - Paulo Cezar Rocha Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan 5265601, Israel
| | - Felipe Marroni Rasteiro
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Anita Brum Marostegan
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| |
Collapse
|
15
|
Blaney G, Sassaroli A, Fantini S. Spatial Sensitivity to Absorption Changes for Various Near-Infrared Spectroscopy Methods: A Compendium Review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2024; 17:2430001. [PMID: 39267952 PMCID: PMC11391891 DOI: 10.1142/s1793545824300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous-wave, frequency-domain, and time-domain, each obtain different optical data-types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data-types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting 1-, 2-, and 3-dimensional sensitivity maps for different near-infrared spectroscopy methods, domains, and data-types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data-type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in the appendix, including code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.
Collapse
Affiliation(s)
- Giles Blaney
- Department of Biomedical Engineering, Tufts University 4 Colby St, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University 4 Colby St, Medford, MA 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
16
|
Roy S, Wu J, Cao J, Disu J, Bharadwaj S, Meinert-Spyker E, Grover P, Kainerstorfer JM, Wood S. Exploring the impact and influence of melanin on frequency-domain near-infrared spectroscopy measurements. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33310. [PMID: 39323492 PMCID: PMC11423252 DOI: 10.1117/1.jbo.29.s3.s33310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Significance Near-infrared spectroscopy (NIRS) is a non-invasive optical method that measures changes in hemoglobin concentration and oxygenation. The measured light intensity is susceptible to reduced signal quality due to the presence of melanin. Aim We quantify the influence of melanin concentration on NIRS measurements taken with a frequency-domain near-infrared spectroscopy system using 690 and 830 nm. Approach Using a forehead NIRS probe, we measured 35 healthy participants and investigated the correlation between melanin concentration indices, which were determined using a colorimeter, and several key metrics from the NIRS signal. These metrics include signal-to-noise ratio (SNR), two measurements of oxygen saturation (arterial oxygen saturation,SpO 2 , and tissue oxygen saturation,StO 2 ), and optical properties represented by the absorption coefficient (μ a ) and the reduced scattering coefficient (μ s ' ). Results We found a significant negative correlation between the melanin index and the SNR estimated in oxy-hemoglobin signals (r s = - 0.489 , p = 0.006 ) andSpO 2 levels (r s = - 0.413 , p = 0.023 ). However, no significant changes were observed in the optical properties andStO 2 (r s = - 0.146 , p = 0.44 ). Conclusions We found that estimated SNR andSpO 2 values show a significant decline and dependence on the melanin index, whereasStO 2 and optical properties do not show any correlation with the melanin index.
Collapse
Affiliation(s)
- Shidhartho Roy
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jiaming Cao
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Joel Disu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Sharadhi Bharadwaj
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Elizabeth Meinert-Spyker
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Pulkit Grover
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Sossena Wood
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Kan RLD, Zhang BBB, Lin TTZ, Tang AHP, Xia AWL, Qin PPI, Jin M, Fong KNK, Becker B, Yau SY, Kranz GS. Sex differences in brain excitability revealed by concurrent iTBS/fNIRS. Asian J Psychiatr 2024; 96:104043. [PMID: 38598937 DOI: 10.1016/j.ajp.2024.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Sex differences have been claimed an imperative factor in the optimization of psychiatric treatments. Intermittent theta-burst stimulation (iTBS), a patterned form of repetitive transcranial magnetic stimulation, is a promising non-invasive treatment option. Here, we investigated whether the real-time neural response to iTBS differs between men and women, and which mechanisms may mediate these differences. To this end, we capitalized on a concurrent iTBS/functional near-infrared spectroscopy setup over the left dorsolateral prefrontal cortex, a common clinical target, to test our assumptions. In a series of experiments, we show (1) a biological sex difference in absolute hemoglobin concentrations in the left dorsolateral prefrontal cortex in healthy participants; (2) that this sex difference is amplified by iTBS but not by cognitive tasks; and (3) that the sex difference amplified by iTBS is modulated by stimulation intensity. These results inform future stimulation treatment optimizations towards precision psychiatry.
Collapse
Affiliation(s)
- Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tim T Z Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Alvin H P Tang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Adam W L Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Penny P I Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Tao R, Gröhl J, Hacker L, Pifferi A, Roblyer D, Bohndiek SE. Tutorial on methods for estimation of optical absorption and scattering properties of tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:060801. [PMID: 38864093 PMCID: PMC11166171 DOI: 10.1117/1.jbo.29.6.060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Significance The estimation of tissue optical properties using diffuse optics has found a range of applications in disease detection, therapy monitoring, and general health care. Biomarkers derived from the estimated optical absorption and scattering coefficients can reflect the underlying progression of many biological processes in tissues. Aim Complex light-tissue interactions make it challenging to disentangle the absorption and scattering coefficients, so dedicated measurement systems are required. We aim to help readers understand the measurement principles and practical considerations needed when choosing between different estimation methods based on diffuse optics. Approach The estimation methods can be categorized as: steady state, time domain, time frequency domain (FD), spatial domain, and spatial FD. The experimental measurements are coupled with models of light-tissue interactions, which enable inverse solutions for the absorption and scattering coefficients from the measured tissue reflectance and/or transmittance. Results The estimation of tissue optical properties has been applied to characterize a variety of ex vivo and in vivo tissues, as well as tissue-mimicking phantoms. Choosing a specific estimation method for a certain application has to trade-off its advantages and limitations. Conclusion Optical absorption and scattering property estimation is an increasingly important and accessible approach for medical diagnosis and health monitoring.
Collapse
Affiliation(s)
- Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | | | - Darren Roblyer
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
19
|
Brothers RO, Turrentine KB, Akbar M, Triplett S, Zhao H, Urner TM, Goldman-Yassen A, Jones RA, Knight-Scott J, Milla SS, Bai S, Tang A, Brown RC, Buckley EM. The influence of voxelotor on cerebral blood flow and oxygen extraction in pediatric sickle cell disease. Blood 2024; 143:2145-2151. [PMID: 38364110 PMCID: PMC11443564 DOI: 10.1182/blood.2023022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Voxelotor is an inhibitor of sickle hemoglobin polymerization that is used to treat sickle cell disease. Although voxelotor has been shown to improve anemia, the clinical benefit on the brain remains to be determined. This study quantified the cerebral hemodynamic effects of voxelotor in children with sickle cell anemia (SCA) using noninvasive diffuse optical spectroscopies. Specifically, frequency-domain near-infrared spectroscopy combined with diffuse correlation spectroscopy were used to noninvasively assess regional oxygen extraction fraction (OEF), cerebral blood volume, and an index of cerebral blood flow (CBFi). Estimates of CBFi were first validated against arterial spin-labeled magnetic resonance imaging (ASL-MRI) in 8 children with SCA aged 8 to 18 years. CBFi was significantly positively correlated with ASL-MRI-measured blood flow (R2 = 0.651; P = .015). Next, a single-center, open-label pilot study was completed in 8 children with SCA aged 4 to 17 years on voxelotor, monitored before treatment initiation and at 4, 8, and 12 weeks (NCT05018728). By 4 weeks, both OEF and CBFi significantly decreased, and these decreases persisted to 12 weeks (both P < .05). Decreases in CBFi were significantly correlated with increases in blood hemoglobin (Hb) concentration (P = .025), whereas the correlation between decreases in OEF and increases in Hb trended toward significance (P = .12). Given that previous work has shown that oxygen extraction and blood flow are elevated in pediatric SCA compared with controls, these results suggest that voxelotor may reduce cerebral hemodynamic impairments. This trial was registered at www.ClinicalTrials.gov as #NCT05018728.
Collapse
Affiliation(s)
- Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Katherine B. Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Mariam Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Tara M. Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Adam Goldman-Yassen
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
| | - Richard A. Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Jack Knight-Scott
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Sarah S. Milla
- Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA
| | - Amy Tang
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - R. Clark Brown
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
20
|
Tripathy K, Fogarty M, Svoboda AM, Schroeder ML, Rafferty SM, Richter EJ, Tracy C, Mansfield PK, Booth M, Fishell AK, Sherafati A, Markow ZE, Wheelock MD, Arbeláez AM, Schlaggar BL, Smyser CD, Eggebrecht AT, Culver JP. Mapping brain function in adults and young children during naturalistic viewing with high-density diffuse optical tomography. Hum Brain Mapp 2024; 45:e26684. [PMID: 38703090 PMCID: PMC11069306 DOI: 10.1002/hbm.26684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 05/06/2024] Open
Abstract
Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high-density diffuse optical tomography (HD-DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD-DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations.
Collapse
Affiliation(s)
- Kalyan Tripathy
- Division of Biological and Biomedical SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Western Psychiatric HospitalUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Morgan Fogarty
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
| | - Alexandra M. Svoboda
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mariel L. Schroeder
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Sean M. Rafferty
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Edward J. Richter
- Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Christopher Tracy
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Patricia K. Mansfield
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Madison Booth
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Andrew K. Fishell
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Arefeh Sherafati
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
| | - Zachary E. Markow
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Muriah D. Wheelock
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Ana María Arbeláez
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Bradley L. Schlaggar
- Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christopher D. Smyser
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Adam T. Eggebrecht
- Division of Biological and Biomedical SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Joseph P. Culver
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
21
|
Fletcher EKS, Burma JS, Javra RM, Friesen KB, Emery CA, Dunn JF, Smirl JD. Maximizing the Reliability and Precision of Measures of Prefrontal Cortical Oxygenation Using Frequency-Domain Near-Infrared Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:2630. [PMID: 38676247 PMCID: PMC11054207 DOI: 10.3390/s24082630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.
Collapse
Affiliation(s)
- Elizabeth K. S. Fletcher
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joel S. Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raelyn M. Javra
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kenzie B. Friesen
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonathan D. Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
22
|
Ren Y, Cui G, Feng K, Zhang X, Yu C, Liu P. A scoping review of utilization of the verbal fluency task in Chinese and Japanese clinical settings with near-infrared spectroscopy. Front Psychiatry 2024; 15:1282546. [PMID: 38525251 PMCID: PMC10957746 DOI: 10.3389/fpsyt.2024.1282546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
This review targets the application of the Verbal Fluency Task (VFT) in conjunction with functional near-infrared spectroscopy (fNIRS) for diagnosing psychiatric disorders, specifically in the contexts of China and Japan. These two countries are at the forefront of integrating fNIRS with VFT in clinical psychiatry, often employing this combination as a complementary tool alongside traditional psychiatric examinations. Our study aims to synthesize research findings on the hemodynamic responses elicited by VFT task in clinical settings of the two countries, analyzing variations in task design (phonological versus semantic), stimulus modality (auditory versus visual), and the impact of language typology. The focus on China and Japan is crucial, as it provides insights into the unique applications and adaptations of VFT in these linguistically and culturally distinct environments. By exploring these specific cases, our review underscores the importance of tailoring VFT to fit the linguistic and cultural context, thereby enhancing its validity and utility in cross-cultural psychiatric assessments.
Collapse
Affiliation(s)
- Yufei Ren
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Gang Cui
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Kun Feng
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | - Xiaoqian Zhang
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | | | - Pozi Liu
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Liu SJ, Lee SY, Pivetti C, Kulubya E, Wang A, Farmer DL, Ghiasi S, Yang W. Recovering fetal signals transabdominally through interferometric near-infrared spectroscopy (iNIRS). BIOMEDICAL OPTICS EXPRESS 2023; 14:6031-6047. [PMID: 38021126 PMCID: PMC10659808 DOI: 10.1364/boe.500898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Noninvasive transabdominal fetal pulse oximetry can provide clinicians critical assessment of fetal health and potentially contribute to improved management of childbirth. Conventional pulse oximetry through continuous wave (CW) light has challenges measuring the signals from deep tissue and separating the weak fetal signal from the strong maternal signal. Here, we propose a new approach for transabdominal fetal pulse oximetry through interferometric near-infrared spectroscopy (iNIRS). This approach provides pathlengths of photons traversing the tissue, which facilitates the extraction of fetal signals by rejecting the very strong maternal signal from superficial layers. We use a multimode fiber combined with a mode-field converter at the detection arm to boost the signal of iNIRS. Together, we can detect signals from deep tissue (>∼1.6 cm in sheep abdomen and in human forearm) at merely 1.1 cm distance from the source. Using a pregnant sheep model, we experimentally measured and extracted the fetal heartbeat signals originating from deep tissue. This validated a key step towards transabdominal fetal pulse oximetry through iNIRS and set a foundation for further development of this method to measure the fetal oxygen saturation.
Collapse
Affiliation(s)
- Shing-Jiuan Liu
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Su Yeon Lee
- Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Christopher Pivetti
- Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Edwin Kulubya
- Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Diana L. Farmer
- Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Soheil Ghiasi
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Bonilauri A, Pirastru A, Sangiuliano Intra F, Isernia S, Cazzoli M, Blasi V, Baselli G, Baglio F. Surface-based integration approach for fNIRS-fMRI reliability assessment. J Neurosci Methods 2023; 398:109952. [PMID: 37625649 DOI: 10.1016/j.jneumeth.2023.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Studies integrating functional near-infrared spectroscopy (fNIRS) with functional MRI (fMRI) employ heterogeneous methods in defining common regions of interest in which similarities are assessed. Therefore, spatial agreement and temporal correlation may not be reproducible across studies. In the present work, we address this issue by proposing a novel method for integration and analysis of fNIRS and fMRI over the cortical surface. MATERIALS AND METHODS Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) performed a motor task during non-simultaneous fMRI and fNIRS acquisitions. First, fNIRS and fMRI data were integrated by projecting subject- and group-level source maps over the cortical surface mesh to define anatomically constrained functional ROIs (acfROI). Next, spatial agreement and temporal correlation were quantified as Dice Coefficient (DC) and Pearson's correlation coefficient between fNIRS-fMRI in the acfROIs. RESULTS Subject-level results revealed moderate to substantial spatial agreement (DC range 0.43 - 0.64), confirmed at the group-level only for blood oxygenation level-dependent (BOLD) signal vs. HbO2 (0.44 - 0.69), while lack of agreement was found for BOLD vs. HbR in some instances (0.05 - 0.49). Subject-level temporal correlation was moderate to strong (0.79 - 0.85 for BOLD vs. HbO2 and -0.62 to -0.72 for BOLD vs. HbR), while an overall strong correlation was found for group-level results (0.95 - 0.98 for BOLD vs. HbO2 and -0.91 to -0.94 for BOLD vs. HbR). CONCLUSION The proposed method directly compares fNIRS and fMRI by projecting individual source maps to the cortical surface. Our results indicate spatial and temporal correspondence between fNIRS and fMRI, and promotes the use of fNIRS when more ecological acquision settings are required, such as longitudinal monitoring of brain activity before and after rehabilitation.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Alice Pirastru
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy.
| | | | - Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | |
Collapse
|
25
|
Zhou X, Xia Y, Uchitel J, Collins-Jones L, Yang S, Loureiro R, Cooper RJ, Zhao H. Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3234-3258. [PMID: 37497520 PMCID: PMC10368025 DOI: 10.1364/boe.484044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems.
Collapse
Affiliation(s)
- Xinkai Zhou
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
| | - Yunjia Xia
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Julie Uchitel
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Shufan Yang
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- School of Computing, Engineering & Build Environment, Edinburgh Napier University, Edinburgh, UK
| | - Rui Loureiro
- Aspire CREATe, Department of Orthopaedics & Musculoskeletal Science, UCL, London, HA7 4LP, UK
| | - Robert J. Cooper
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Hubin Zhao
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Majeski JB, Ching-Roa VD, Giacomelli MG, Choe R. Design for a low-cost heterodyne frequency domain-diffuse optical spectroscopy system. BIOMEDICAL OPTICS EXPRESS 2023; 14:2873-2888. [PMID: 37342692 PMCID: PMC10278617 DOI: 10.1364/boe.489058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
A design for a low-cost, heterodyne, frequency domain-diffuse optical spectroscopy system is presented and validated. The system uses a single wavelength of 785 nm and a single detector to illustrate the capability, but is built in a modular fashion to make it easily expandable to additional wavelengths and detectors. The design incorporates methods to allow software-based control over the system operating frequency, laser diode output amplitude, and detector gain. Validation methods include characterization of electrical designs as well as determination of the system stability and accuracy using tissue-mimicking optical phantoms. The system requires only basic equipment for its construction and can be built for under $ 600 .
Collapse
Affiliation(s)
- Joseph B. Majeski
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Vincent D. Ching-Roa
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Michael G. Giacomelli
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Optics, University of Rochester, Rochester, New York 14620, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14620, USA
| |
Collapse
|
27
|
Tierradentro-García LO, Saade-Lemus S, Freeman C, Kirschen M, Huang H, Vossough A, Hwang M. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury. Am J Perinatol 2023; 40:475-488. [PMID: 34225373 PMCID: PMC8974293 DOI: 10.1055/s-0041-1731278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Hypoxic-ischemic encephalopathy (HIE) in infants can have long-term adverse neurodevelopmental effects and markedly reduce quality of life. Both the initial hypoperfusion and the subsequent rapid reperfusion can cause deleterious effects in brain tissue. Cerebral blood flow (CBF) assessment in newborns with HIE can help detect abnormalities in brain perfusion to guide therapy and prognosticate patient outcomes. STUDY DESIGN The review will provide an overview of the pathophysiological implications of CBF derangements in neonatal HIE, current and emerging techniques for CBF quantification, and the potential to utilize CBF as a physiologic target in managing neonates with acute HIE. CONCLUSION The alterations of CBF in infants during hypoxia-ischemia have been studied by using different neuroimaging techniques, including nitrous oxide and xenon clearance, transcranial Doppler ultrasonography, contrast-enhanced ultrasound, arterial spin labeling MRI, 18F-FDG positron emission tomography, near-infrared spectroscopy (NIRS), functional NIRS, and diffuse correlation spectroscopy. Consensus is lacking regarding the clinical significance of CBF estimations detected by these different modalities. Heterogeneity in the imaging modality used, regional versus global estimations of CBF, time for the scan, and variables impacting brain perfusion and cohort clinical characteristics should be considered when translating the findings described in the literature to routine practice and implementation of therapeutic interventions. KEY POINTS · Hypoxic-ischemic injury in infants can result in adverse long-term neurologic sequelae.. · Cerebral blood flow is a useful biomarker in neonatal hypoxic-ischemic injury.. · Imaging modality, variables affecting cerebral blood flow, and patient characteristics affect cerebral blood flow assessment..
Collapse
Affiliation(s)
| | - Sandra Saade-Lemus
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Brigham and Women’s Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colbey Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Zhao M, Zhou W, Aparanji S, Mazumder D, Srinivasan VJ. Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-flight filter. OPTICA 2023; 10:42-52. [PMID: 37275218 PMCID: PMC10238083 DOI: 10.1364/optica.472471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Diffuse optics (DO) is a light-based technique used to study the human brain, but it suffers from low brain specificity. Interferometric diffuse optics (iDO) promises to improve the quantitative accuracy and depth specificity of DO, and particularly, coherent light fluctuations (CLFs) arising from blood flow. iDO techniques have alternatively achieved either time-of-flight (TOF) discrimination or highly parallel detection, but not both at once. Here, we break this barrier with a single iDO instrument. Specifically, we show that rapid tuning of a temporally coherent laser during the sensor integration time increases the effective linewidth seen by a highly parallel interferometer. Using this concept to create a continuously variable and user-specified TOF filter, we demonstrate a solution to the canonical problem of DO, measuring optical properties. Then, with a deep TOF filter, we reduce scalp sensitivity of CLFs by 2.7 times at 1 cm source-collector separation. With this unique combination of desirable features, i.e., TOF-discrimination, spatial localization, and highly parallel CLF detection, we perform multiparametric imaging of light intensities and CLFs via the human forehead.
Collapse
Affiliation(s)
- Mingjun Zhao
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
| | - Wenjun Zhou
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Santosh Aparanji
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- Department of Ophthalmology, New York University Langone Health, 550 First Avenue, New York, New York 10016, USA
- Tech4Health Institute, New York University Langone Health, 433 1st Avenue, New York, New York 10010, USA
| |
Collapse
|
29
|
Estimation of the Differential Pathlength Factor for Human Skin Using Monte Carlo Simulations. Diagnostics (Basel) 2023; 13:diagnostics13020309. [PMID: 36673119 PMCID: PMC9858156 DOI: 10.3390/diagnostics13020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Near-infrared technology is an emerging non-invasive technique utilized for various medical applications. Recently, there have been many attempts to utilize NIR technology for the continues monitoring of blood glucose levels through the skin. Different approaches and designs have been proposed for non-invasive blood glucose measurements. Light photons penetrating the skin can undergo multiple scattering events, and the actual optical pathlength becomes larger than the source-to-detector separation (optode spacing) in the reflection-mode configuration. Thus, the differential pathlength factor (DPF) must be incorporated into the modified Beer-Lambert law. The accurate estimation of the DPF values will lead to an accurate quantification of the physiological variations within the tissue. In this work, the aim was to systematically estimate the DPF for human skin for a range of source-to-detector separations and wavelengths. The Monte Carlo (MC) method was utilized to mimic the different layers of human skin with different optical properties and blood and water volume fractions. This work could help improve the accuracy of the near-infrared technique in the measurement of physiological variations within skin tissue.
Collapse
|
30
|
Characterization of forehead blood flow bias on NIRS signals during neural activation with a verbal fluency task. Neurosci Res 2023; 186:43-50. [PMID: 36191681 DOI: 10.1016/j.neures.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 01/04/2023]
Abstract
The major problem of near-infrared spectroscopy (NIRS) for brain activity measurement during verbal fluency task is the overlapping forehead scalp blood flow (FBF) on the target cerebral blood flow (CBF). There could be among-individual differences in the influence of FBF on CBF. We investigated effects of FBF on CBF by comparing signals obtained through a laser Doppler flowmeter (LDF) and NIRS using the modified Beer-Lambert Law (MBLL). Among 25 healthy individuals, 7 participants showed a strong correlation between LDF and NIRS signals (rs >0.500). There were no significant differences according to age or sex. Subsequently, we applied the hemodynamic separation method to the values calculated using the MBLL (Δ[oxy-Hb]M): to separate the concentration of oxygenated hemoglobin in the forehead (Δ[oxy-Hb]F) and cerebral cortex (Δ[oxy-Hb]C). First, we found that the influence of Δ[oxy-Hb]F on Δ[oxy-Hb]C in the high rs group was almost twice as large as that in the low rs group. Second, presence of sex and age differences in the influence of Δ[oxy-Hb]F on Δ[oxy-Hb]C were suggested. Based on the results, we discuss the factors affecting FBF and the resulting variations in NIRS signals.
Collapse
|
31
|
Blaney G, Fernandez C, Sassaroli A, Fantini S. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:013508. [PMID: 36601543 PMCID: PMC9807277 DOI: 10.1117/1.nph.10.1.013508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Significance This work targets the contamination of optical signals by superficial hemodynamics, which is one of the chief hurdles in non-invasive optical measurements of the human brain. Aim To identify optimal source-detector distances for dual-slope (DS) measurements in frequency-domain (FD) near-infrared spectroscopy (NIRS) and demonstrate preferential sensitivity of DS imaging to deeper tissue (brain) versus superficial tissue (scalp). Approach Theoretical studies (in-silico) based on diffusion theory in two-layered and in homogeneous scattering media. In-vivo demonstrations of DS imaging of the human brain during visual stimulation and during systemic blood pressure oscillations. Results The mean distance (between the two source-detector distances needed for DS) is the key factor for depth sensitivity. In-vivo imaging of the human occipital lobe with FD NIRS and a mean distance of 31 mm indicated: (1) greater hemodynamic response to visual stimulation from FD phase versus intensity, and from DS versus single-distance (SD); (2) hemodynamics from FD phase and DS mainly driven by blood flow, and hemodynamics from SD intensity mainly driven by blood volume. Conclusions DS imaging with FD NIRS may suppress confounding contributions from superficial hemodynamics without relying on data at short source-detector distances. This capability can have significant implications for non-invasive optical measurements of the human brain.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Cristianne Fernandez
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| |
Collapse
|
32
|
Ortega-Martinez A, Rogers D, Anderson J, Farzam P, Gao Y, Zimmermann B, Yücel MA, Boas DA. How much do time-domain functional near-infrared spectroscopy (fNIRS) moments improve estimation of brain activity over traditional fNIRS? NEUROPHOTONICS 2023; 10:013504. [PMID: 36284602 PMCID: PMC9587749 DOI: 10.1117/1.nph.10.1.013504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Advances in electronics have allowed the recent development of compact, high channel count time domain functional near-infrared spectroscopy (TD-fNIRS) systems. Temporal moment analysis has been proposed for increased brain sensitivity due to the depth selectivity of higher order temporal moments. We propose a general linear model (GLM) incorporating TD moment data and auxiliary physiological measurements, such as short separation channels, to improve the recovery of the HRF. AIMS We compare the performance of previously reported multi-distance TD moment techniques to commonly used techniques for continuous wave (CW) fNIRS hemodynamic response function (HRF) recovery, namely block averaging and CW GLM. Additionally, we compare the multi-distance TD moment technique to TD moment GLM. APPROACH We augmented resting TD-fNIRS moment data (six subjects) with known synthetic HRFs. We then employed block averaging and GLM techniques with "short-separation regression" designed both for CW and TD to recover the HRFs. We calculated the root mean square error (RMSE) and the correlation of the recovered HRF to the ground truth. We compared the performance of equivalent CW and TD techniques with paired t-tests. RESULTS We found that, on average, TD moment HRF recovery improves correlations by 98% and 48% for HbO and HbR respectively, over CW GLM. The improvement on the correlation for TD GLM over TD moment is 12% (HbO) and 27% (HbR). RMSE decreases 56% and 52% (HbO and HbR) for TD moment compared to CW GLM. We found no statistically significant improvement in the RMSE for TD GLM compared to TD moment. CONCLUSIONS Properly covariance-scaled TD moment techniques outperform their CW equivalents in both RMSE and correlation in the recovery of the synthetic HRFs. Furthermore, our proposed TD GLM based on moments outperforms regular TD moment analysis, while allowing the incorporation of auxiliary measurements of the confounding physiological signals from the scalp.
Collapse
Affiliation(s)
| | - De’Ja Rogers
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Jessica Anderson
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Parya Farzam
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Yuanyuan Gao
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Bernhard Zimmermann
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
33
|
Cakar S, Gokalp Yavuz F. Nested and robust modeling techniques for fNIRS data with demographics and experiment related factors in n-back task. Neurosci Res 2023; 186:59-72. [PMID: 36328304 DOI: 10.1016/j.neures.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) signals are used to measure relative changes in oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations. Brain response studies constitute multilevel or nested datasets formed by different parts of the brain of individuals and multidimensional datasets. The changes in brain activities under specific stimuli are investigated with the help of statistical analysis. However, these studies ignore the dependence structure between the repeated measures of the same subject, which may cause inaccurate or incomplete findings. In this study, we adopt an advanced statistical method into HbO data controlling for variability within repeated measures of each subject while testing and measuring the degrees of the statistical significance between-subject factors and explanatory variables. The changes in HbO are investigated through a linear mixed model, taking experimental and demographic variables into account with open access neuroscience data. The channels nested within subjects are considered random to capture the differences among individuals. Our findings reveal that n-back conditions and mean response times of the subjects have statistically significant associations with mean HbO.
Collapse
Affiliation(s)
- Serenay Cakar
- Middle East Technical University, Department of Statistics, Ankara 06800, Turkey.
| | - Fulya Gokalp Yavuz
- Middle East Technical University, Department of Statistics, Ankara 06800, Turkey
| |
Collapse
|
34
|
Blaney G, Sassaroli A, Fantini S. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:10903. [PMID: 37811485 PMCID: PMC10557469 DOI: 10.3390/app122110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Many applications seek to measure a sample's absorption coefficient spectrum to retrieve the chemical makeup. Many real-world samples are optically turbid, causing scattering confounds which many commercial spectrometers cannot address. Using diffusion theory and considering absorption and reduced scattering coefficients on the order of 0.01 mm-1 and 1 mm-1, respectively, we develop a method which utilizes frequency-domain to measure absolute optical properties of turbid samples in a standard cuvette (45 mm × 10 mm × 10 mm). Inspired by the self-calibrating method, which removes instrumental confounds, the method uses measurements of the diffuse complex transmittance at two sets of two different source-detector distances. We find: this works best for highly scattering samples (reduced scattering coefficient above 1 mm-1); higher relative error in the absorption coefficient compared to the reduced scattering coefficient; accuracy is tied to knowledge of the sample's index of refraction. Noise simulations with 0.1 % amplitude and 0.1° = 1.7 mrad phase uncertainty find errors in absorption and reduced scattering coefficients of 4 % and 1 %, respectively. We expect that higher error in the absorption coefficient can be alleviated with highly scattering samples and that boundary condition confounds may be suppressed by designing a cuvette with high index of refraction. Further work will investigate implementation and reproducibility.
Collapse
Affiliation(s)
- Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
35
|
Zohdi H, Natale L, Scholkmann F, Wolf U. Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sci 2022; 12:1449. [PMID: 36358375 PMCID: PMC9688708 DOI: 10.3390/brainsci12111449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 10/18/2023] Open
Abstract
There is large intersubject variability in cerebrovascular hemodynamic and systemic physiological responses induced by a verbal fluency task (VFT) under colored light exposure (CLE). We hypothesized that machine learning would enable us to classify the response patterns and provide new insights into the common response patterns between subjects. In total, 32 healthy subjects (15 men and 17 women, age: 25.5 ± 4.3 years) were exposed to two different light colors (red vs. blue) in a randomized cross-over study design for 9 min while performing a VFT. We used the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach to measure cerebrovascular hemodynamics and oxygenation at the prefrontal cortex (PFC) and visual cortex (VC) concurrently with systemic physiological parameters. We found that subjects were suitably classified by unsupervised machine learning into different groups according to the changes in the following parameters: end-tidal carbon dioxide, arterial oxygen saturation, skin conductance, oxygenated hemoglobin in the VC, and deoxygenated hemoglobin in the PFC. With hard clustering methods, three and five different groups of subjects were found for the blue and red light exposure, respectively. Our results highlight the fact that humans show specific reactivity types to the CLE-VFT experimental paradigm.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Luciano Natale
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
36
|
Perkins GA, Eggebrecht AT, Dehghani H. Multi-modulated frequency domain high density diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5275-5294. [PMID: 36425621 PMCID: PMC9664897 DOI: 10.1364/boe.467614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/11/2023]
Abstract
Frequency domain (FD) high density diffuse optical tomography (HD-DOT) utilising varying or combined modulation frequencies (mFD) has shown to theoretically improve the imaging accuracy as compared to conventional continuous wave (CW) measurements. Using intensity and phase data from a solid inhomogeneous phantom (NEUROPT) with three insertable rods containing different contrast anomalies, at modulation frequencies of 78 MHz, 141 MHz and 203 MHz, HD-DOT is applied and quantitatively evaluated, showing that mFD outperforms FD and CW for both absolute (iterative) and temporal (linear) tomographic imaging. The localization error (LOCA), full width half maximum (FWHM) and effective resolution (ERES) were evaluated. Across all rods, the LOCA of mFD was 61.3% better than FD and 106.1% better than CW. For FWHM, CW was 6.0% better than FD and mFD and for ERES, mFD was 1.20% better than FD and 9.83% better than CW. Using mFD data is shown to minimize the effect of inherently noisier FD phase data whilst maximising its strengths through improved contrast.
Collapse
Affiliation(s)
- Guy A. Perkins
- University of Birmingham, Sci-Phy-4-Health Centre for Doctoral Training, College of Engineering and Physical Sciences, Birmingham, B15 2TT, UK
- University of Birmingham, School of Computer Science, College of Engineering and Physical Sciences, Birmingham, B15 2TT, UK
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, College of Engineering and Physical Sciences, Birmingham, B15 2TT, UK
| |
Collapse
|
37
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Ruesch A, McKnight JC, Fahlman A, Shinn-Cunningham BG, Kainerstorfer JM. Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care. Front Physiol 2022; 12:816701. [PMID: 35111080 PMCID: PMC8801602 DOI: 10.3389/fphys.2021.816701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Developments in wearable human medical and sports health trackers has offered new solutions to challenges encountered by eco-physiologists attempting to measure physiological attributes in freely moving animals. Near-infrared spectroscopy (NIRS) is one such solution that has potential as a powerful physio-logging tool to assess physiology in freely moving animals. NIRS is a non-invasive optics-based technology, that uses non-ionizing radiation to illuminate biological tissue and measures changes in oxygenated and deoxygenated hemoglobin concentrations inside tissues such as skin, muscle, and the brain. The overall footprint of the device is small enough to be deployed in wearable physio-logging devices. We show that changes in hemoglobin concentration can be recorded from bottlenose dolphins and gray seals with signal quality comparable to that achieved in human recordings. We further discuss functionality, benefits, and limitations of NIRS as a standard tool for animal care and wildlife tracking for the marine mammal research community.
Collapse
Affiliation(s)
- Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - J. Chris McKnight
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Kolmården Wildlife Park, Kolmården, Sweden
| | - Barbara G. Shinn-Cunningham
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jana M. Kainerstorfer
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Wang X, Ma LC, Shahdadian S, Wu A, Truong NCD, Liu H. Metabolic Connectivity and Hemodynamic-Metabolic Coherence of Human Prefrontal Cortex at Rest and Post Photobiomodulation Assessed by Dual-Channel Broadband NIRS. Metabolites 2022; 12:42. [PMID: 35050164 PMCID: PMC8778041 DOI: 10.3390/metabo12010042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (X.W.); (L.-C.M.); (S.S.); (A.W.); (N.C.D.T.)
| |
Collapse
|
40
|
Measurement of Adult Human Brain Responses to Breath-Holding by Multi-Distance Hyperspectral Near-Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major limitation of near-infrared spectroscopy (NIRS) is its high sensitivity to the scalp and low sensitivity to the brain of adult humans. In the present work we used multi-distance hyperspectral NIRS (hNIRS) to investigate the optimal source-detector distances, wavelength ranges, and analysis techniques to separate cerebral responses to 30 s breath-holds (BHs) from the responses in the superficial tissue layer in healthy adult humans. We observed significant responses to BHs in the scalp hemodynamics. Cerebral responses to BHs were detected in the cytochrome C oxidase redox (rCCO) at 4 cm without using data from the short-distance channel. Using the data from the 1 cm channel in the two-layer regression algorithm showed that cerebral hemodynamic and rCCO responses also occurred at 3 cm. We found that the waveband 700–900 nm was optimal for the detection of cerebral responses to BHs in adults.
Collapse
|
41
|
Zhang Z, Qi M, Hügli G, Khatami R. Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. BIOSENSORS 2021; 12:bios12010003. [PMID: 35049631 PMCID: PMC8774245 DOI: 10.3390/bios12010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder, and continuous positive airway pressure (CPAP) is the most effective treatment. Poor adherence is one of the major challenges in CPAP therapy. The recent boom of wearable optical sensors measuring oxygen saturation makes at-home multiple-night CPAP titrations possible, which may essentially improve the adherence of CPAP therapy by optimizing its pressure in a real-life setting economically. We tested whether the oxygen desaturations (ODs) measured in the arm muscle (arm_OD) by gold-standard frequency-domain multi-distance near-infrared spectroscopy (FDMD-NIRS) change quantitatively with titrated CPAP pressures in OSA patients together with polysomnography. We found that the arm_OD (2.08 ± 1.23%, mean ± standard deviation) was significantly smaller (p-value < 0.0001) than the fingertip OD (finger_OD) (4.46 ± 2.37%) measured by a polysomnography pulse oximeter. Linear mixed-effects models suggested that CPAP pressure was a significant predictor for finger_OD but not for arm_OD. Since FDMD-NIRS measures a mixture of arterial and venous OD, whereas a fingertip pulse oximeter measures arterial OD, our results of no association between arm_OD and finger_OD indicate that the arm_OD mainly represented venous desaturation. Arm_OD measured by optical sensors used for wearables may not be a suitable indicator of the CPAP titration effectiveness.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
- Barmelweid Academy, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
- Correspondence:
| | - Ming Qi
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
| | - Gordana Hügli
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
- Barmelweid Academy, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
42
|
Zhang Z, Qi M, Hügli G, Khatami R. Predictors of changes in cerebral perfusion and oxygenation during obstructive sleep apnea. Sci Rep 2021; 11:23510. [PMID: 34873232 PMCID: PMC8648752 DOI: 10.1038/s41598-021-02829-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common sleep disorder. Severe OSAS defined as apnea-hypopnea index (AHI) ≥ 30/h is a risk factor for developing cerebro-cardiovascular diseases. The mechanisms of how repetitive sleep apneas/hypopneas damage cerebral hemodynamics are still not well understood. In this study, changes in blood volume (BV) and oxygen saturation (StO2) in the left forehead of 29 newly diagnosed severe OSAS patients were measured by frequency-domain near-infrared spectroscopy during an incremental continuous positive airway pressure (CPAP) titration protocol together with polysomnography. The coefficients of variation of BV (CV-BV) and the decreases of StO2 (de-StO2) of more than 2000 respiratory events were predicted using linear mixed-effect models, respectively. We found that longer events and apneas rather than hypopneas induce larger changes in CV-BV and stronger cerebral desaturation. Respiratory events occurring during higher baseline StO2 before their onsets, during rapid-eye-movement sleep and those associated with higher heart rate induce smaller changes in CV-BV and de-StO2. The stepwise increased CPAP pressures can attenuate these changes. These results suggest that in severe OSAS the length and the type of respiratory event rather than widely used AHI may be better parameters to indicate the severity of cerebral hemodynamic changes.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017, Barmelweid, Switzerland. .,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland.
| | - Ming Qi
- grid.452327.50000 0004 0519 8976Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
| | - Gordana Hügli
- grid.452327.50000 0004 0519 8976Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
| | - Ramin Khatami
- grid.452327.50000 0004 0519 8976Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland ,grid.452327.50000 0004 0519 8976Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland ,grid.411656.10000 0004 0479 0855Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Stillwell RA, Kitsmiller VJ, Wei AY, Chong A, Senn L, O’Sullivan TD. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:7261-7279. [PMID: 34858713 PMCID: PMC8606133 DOI: 10.1364/boe.435913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) provides quantitative noninvasive measurements of tissue optical absorption and scattering, as well as a safe and accurate method for characterizing tissue composition and metabolism. However, the poor scalability and high complexity of most FD-NIRS systems assembled to date have contributed to its limited clinical impact. To address these shortcomings, we present a scalable, digital-based FD-NIRS platform capable of measuring optical properties and tissue chromophore concentrations in real-time. The system provides single-channel FD-NIRS amplitude/phase, optical property, and chromophore data at a maximum display rate of 36.6 kHz, 17.9 kHz, and 10.2 kHz, respectively, and can be scaled to multiple channels as well as integrated into a handheld format. The entire system is enabled by several innovations including an ultra-high-speed k-nearest neighbor lookup table method (maximum of 250,000 inversions/s for a large 2500x700 table of absorption and reduced scattering coefficients), embedded FPGA and CPU high-speed co-processing, and high-speed data transfer (due to on-board processing). We show that our 6-wavelength, broad modulation bandwidth (1-400 MHz) system can be used to perform 2D high-density spatial mapping of optical properties and high speed quantification of hemodynamics.
Collapse
Affiliation(s)
- Roy A. Stillwell
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Vincent J. Kitsmiller
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Alicia Y. Wei
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Alyssa Chong
- St. Mary’s College, Notre Dame, Indiana 46556, USA
| | - Lyla Senn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Thomas D. O’Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
44
|
Fan W, Dehghani H, Eggebrecht AT. Investigation of effect of modulation frequency on high-density diffuse optical tomography image quality. NEUROPHOTONICS 2021; 8:045002. [PMID: 34849379 PMCID: PMC8612746 DOI: 10.1117/1.nph.8.4.045002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/04/2021] [Indexed: 05/16/2023]
Abstract
Significance: By incorporating multiple overlapping functional near-infrared spectroscopy (fNIRS) measurements, high-density diffuse optical tomography (HD-DOT) images human brain function with fidelity comparable to functional magnetic resonance imaging (fMRI). Previous work has shown that frequency domain high-density diffuse optical tomography (FD-HD-DOT) may further improve image quality over more traditional continuous wave (CW) HD-DOT. Aim: The effects of modulation frequency on image quality as obtainable with FD-HD-DOT is investigated through simulations with a realistic noise model of functional activations in human head models, arising from 11 source modulation frequencies between CW and 1000 MHz. Approach: Simulations were performed using five representative head models with an HD regular grid of 158 light sources and 166 detectors and an empirically derived noise model. Functional reconstructions were quantitatively assessed with multiple image quality metrics including the localization error (LE), success rate, full width at half maximum, and full volume at half maximum (FVHM). All metrics were evaluated against CW-based models. Results: Compared to CW, localization accuracy is improved by >40% throughout brain depths of 13 to 25 mm below the surface with 300 to 500 MHz modulation frequencies. Additionally, the reliable field of view in brain tissue is enlarged by 35% to 48% within an optimal frequency of 300 MHz after considering realistic noise, depending on the dynamic range of the system. Conclusions: These results point to the tremendous opportunities in further development of high bandwidth FD-HD-DOT system hardware for applications in human brain mapping.
Collapse
Affiliation(s)
- Weihao Fan
- Washington University, Department of Physics, St. Louis, Missouri, United States
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Adam T. Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
- Washington University, Department of Biomedical Engineering, St. Louis, Missouri, United States
| |
Collapse
|
45
|
Mohammad PPS, Isarangura S, Eddins A, Parthasarathy AB. Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy. NEUROPHOTONICS 2021; 8:045004. [PMID: 34926716 PMCID: PMC8673635 DOI: 10.1117/1.nph.8.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Significance: Quantitative measurements of cerebral hemodynamic changes due to functional activation are widely accomplished with commercial continuous wave (CW-NIRS) instruments despite the availability of the more rigorous multi-distance frequency domain (FD-NIRS) approach. A direct comparison of the two approaches to functional near-infrared spectroscopy can help in the interpretation of optical data and guide implementations of diffuse optical instruments for measuring functional activation. Aim: We explore the differences between CW-NIRS and multi-distance FD-NIRS by comparing measurements of functional activation in the human auditory cortex. Approach: Functional activation of the human auditory cortex was measured using a commercial frequency domain near-infrared spectroscopy instrument for 70 dB sound pressure level broadband noise and pure tone (1000 Hz) stimuli. Changes in tissue oxygenation were calculated using the modified Beer-Lambert law (CW-NIRS approach) and the photon diffusion equation (FD-NIRS approach). Results: Changes in oxygenated hemoglobin measured with the multi-distance FD-NIRS approach were about twice as large as those measured with the CW-NIRS approach. A finite-element simulation of the functional activation problem was performed to demonstrate that tissue oxygenation changes measured with the CW-NIRS approach is more accurate than that with multi-distance FD-NIRS. Conclusions: Multi-distance FD-NIRS approaches tend to overestimate functional activation effects, in part due to partial volume effects.
Collapse
Affiliation(s)
| | - Sittiprapa Isarangura
- University of South Florida, Department of Communication Sciences and Disorders, Tampa, Florida, United States
| | - Ann Eddins
- University of South Florida, Department of Communication Sciences and Disorders, Tampa, Florida, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| |
Collapse
|
46
|
Blaney G, Curtsmith P, Sassaroli A, Fernandez C, Fantini S. Broadband absorption spectroscopy of heterogeneous biological tissue. APPLIED OPTICS 2021; 60:7552-7562. [PMID: 34613221 PMCID: PMC11407782 DOI: 10.1364/ao.431013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 05/11/2023]
Abstract
Absorption spectra (∼600 to 1064 nm) of six tissues in three healthy volunteers were measured by combining dual-slope continuous-wave broadband spectroscopy with self-calibrated frequency-domain measurements of scattering at two wavelengths (690 and 830 nm). The spectral fit with a linear combination of oxy- and deoxyhemoglobin, water, and lipids extinction spectra is improved by a wavelength-independent absorption background. The need to introduce this background is assigned to the inhomogeneous distribution of absorbers in tissue. By using a two-layer model, the relationship between recovered concentrations and their two-layer values was investigated, and the implications for non-invasive tissue spectroscopy are discussed.
Collapse
|
47
|
Zhang Z, Qi M, Hügli G, Khatami R. The Challenges and Pitfalls of Detecting Sleep Hypopnea Using a Wearable Optical Sensor: Comparative Study. J Med Internet Res 2021; 23:e24171. [PMID: 34326039 PMCID: PMC8367170 DOI: 10.2196/24171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is the most prevalent respiratory sleep disorder occurring in 9% to 38% of the general population. About 90% of patients with suspected OSA remain undiagnosed due to the lack of sleep laboratories or specialists and the high cost of gold-standard in-lab polysomnography diagnosis, leading to a decreased quality of life and increased health care burden in cardio- and cerebrovascular diseases. Wearable sleep trackers like smartwatches and armbands are booming, creating a hope for cost-efficient at-home OSA diagnosis and assessment of treatment (eg, continuous positive airway pressure [CPAP] therapy) effectiveness. However, such wearables are currently still not available and cannot be used to detect sleep hypopnea. Sleep hypopnea is defined by ≥30% drop in breathing and an at least 3% drop in peripheral capillary oxygen saturation (Spo2) measured at the fingertip. Whether the conventional measures of oxygen desaturation (OD) at the fingertip and at the arm or wrist are identical is essentially unknown. Objective We aimed to compare event-by-event arm OD (arm_OD) with fingertip OD (finger_OD) in sleep hypopneas during both naïve sleep and CPAP therapy. Methods Thirty patients with OSA underwent an incremental, stepwise CPAP titration protocol during all-night in-lab video-polysomnography monitoring (ie, 1-h baseline sleep without CPAP followed by stepwise increments of 1 cmH2O pressure per hour starting from 5 to 8 cmH2O depending on the individual). Arm_OD of the left biceps muscle and finger_OD of the left index fingertip in sleep hypopneas were simultaneously measured by frequency-domain near-infrared spectroscopy and video-polysomnography photoplethysmography, respectively. Bland-Altman plots were used to illustrate the agreements between arm_OD and finger_OD during baseline sleep and under CPAP. We used t tests to determine whether these measurements significantly differed. Results In total, 534 obstructive apneas and 2185 hypopneas were recorded. Of the 2185 hypopneas, 668 (30.57%) were collected during baseline sleep and 1517 (69.43%), during CPAP sleep. The mean difference between finger_OD and arm_OD was 2.86% (95% CI 2.67%-3.06%, t667=28.28; P<.001; 95% limits of agreement [LoA] –2.27%, 8.00%) during baseline sleep and 1.83% (95% CI 1.72%-1.94%, t1516=31.99; P<.001; 95% LoA –2.54%, 6.19%) during CPAP. Using the standard criterion of 3% saturation drop, arm_OD only recognized 16.32% (109/668) and 14.90% (226/1517) of hypopneas at baseline and during CPAP, respectively. Conclusions arm_OD is 2% to 3% lower than standard finger_OD in sleep hypopnea, probably because the measured arm_OD originates physiologically from arterioles, venules, and capillaries; thus, the venous blood adversely affects its value. Our findings demonstrate that the standard criterion of ≥3% OD drop at the arm or wrist is not suitable to define hypopnea because it could provide large false-negative results in diagnosing OSA and assessing CPAP treatment effectiveness.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Ming Qi
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Gordana Hügli
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland.,Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Istfan R, Gómez CA, Applegate M, Rozenberg D, Reid WD, Roblyer D. Hemodynamics of the sternocleidomastoid measured with frequency domain near-infrared spectroscopy towards non-invasive monitoring during mechanical ventilation. BIOMEDICAL OPTICS EXPRESS 2021; 12:4147-4162. [PMID: 34457405 PMCID: PMC8367268 DOI: 10.1364/boe.430423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Mechanical ventilation (MV) is used to assist spontaneous breathing in critically ill patients in the intensive care unit (ICU). MV is a cornerstone of critical care medicine but it is now known that inspiratory muscle dysfunction due to injury, disuse, and/or atrophy during MV plays a major role in outcomes for these patients. For example, prolonged MV is strongly correlated with dysfunction of the sternocleidomastoid (SCM), an accessory inspiratory muscle that has been linked to weaning failure from MV. Hemodynamic monitoring of the SCM may provide an important non-invasive and real-time means to monitor MV. In this work, we first conducted multi-layer Monte Carlo simulations to confirm the ability of near infrared light to detect changes in the oxygenation of the SCM over wide ranges of skin tones and adipose layer thicknesses. We then optimized a custom digital frequency domain near-infrared spectroscopy (FD-NIRS) system for continuous 10 Hz measurements of the SCM at 730 nm and 850 nm. A healthy volunteer study was conducted (N=10); subjects performed sets of isometric neck flexions of the SCM. Substantial changes in oxyhemoglobin + oxymyoglobin (oxy[Hb + Mb]), deoxyhemoglobin + deoxymyoglobin (deoxy[Hb + Mb]), and total hemoglobin + myoglobin (total[Hb + Mb]) were observed during sustained and intermittent isometric flexions. There were notable sex differences observed in the magnitude of hemodynamic changes (∼2x larger changes in males for oxy[Hb + Mb] and deoxy[Hb + Mb]). The magnitude of hemodynamic changes when taking into account µs' changes during flexions was ∼ 2-2.5x larger as compared to assuming constant scattering (CS), which is a common assumption used for continuous wave (CW) NIRS methods. This study suggests that FD-NIRS provides improved accuracy for hemodynamic monitoring of the SCM compared to CW-NIRS, and that FD-NIRS may provide value for SCM monitoring during MV.
Collapse
Affiliation(s)
- Raeef Istfan
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Carlos A. Gómez
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Matthew Applegate
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Dmitry Rozenberg
- Department of Medicine, Respirology and Lung Transplantation, University Health Network, University of Toronto, Toronto, ON, Canada
| | - W. Darlene Reid
- Department of Physical Therapy, University of Toronto, Toronto ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| |
Collapse
|
49
|
Allgaier M, Smith BJ. Diffuse optics for glaciology. OPTICS EXPRESS 2021; 29:18845-18864. [PMID: 34154132 DOI: 10.1364/oe.425630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Optical probing of glaciers has the potential for tremendous impact on environmental science. However, glacier ice is turbid, which prohibits the use of most established optical measurements for determining a glacier's interior structure. Here, we propose a method for determining the depth, scattering and absorption length based upon diffuse propagation of short optical pulses. Our model allows us to extract several characteristics of the glacier. Performing Monte Carlo simulations implementing Mie scattering and mixed boundary conditions, we show that the proposed approach should be feasible with current technology. The results suggest that the optical properties and geometry of the glacier can be extracted from realistic measurements, which could be implemented with a low cost and small footprint.
Collapse
|
50
|
Perkins GA, Eggebrecht AT, Dehghani H. Quantitative evaluation of frequency domain measurements in high density diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210034RR. [PMID: 33949158 PMCID: PMC8094378 DOI: 10.1117/1.jbo.26.5.056001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE High density diffuse optical tomography (HD-DOT) as applied in functional near-infrared spectroscopy (fNIRS) is largely limited to continuous wave (CW) data. Using a single modulation frequency, frequency domain (FD) HD-DOT has recently demonstrated better localization of focal activation as compared to CW data. We show that combining CW and FD measurements and multiple modulation frequencies increases imaging performance in fNIRS. AIM We evaluate the benefits of multiple modulation frequencies, combining different frequencies as well as CW data in fNIRS HD-DOT. APPROACH A layered model was used, with activation occurring within a cortex layer. CW and FD measurements were simulated at 78, 141, and 203 MHz with and without noise. The localization error, full width half maximum, and effective resolution were evaluated. RESULTS Across the average of the three metrics, at 141 MHz, FD performed 8.4% better than CW, and the combination of CW and FD was 21.7% better than CW. FD measurements at 203 MHz performed 5% better than 78 MHz. Moreover, the three combined modulation frequencies of FD and CW performed up to 3.92% better than 141 MHz alone. CONCLUSIONS We show that combining CW and FD measurements offers better performance than FD alone, with higher modulation frequencies increasing accuracy. Combining CW and FD measurements at multiple modulation frequencies yields the best overall performance.
Collapse
Affiliation(s)
- Guy A. Perkins
- University of Birmingham, Sci-Phy-4-Health Centre for Doctoral Training, College of Engineering and Physical Sciences, Birmingham, United Kingdom
- University of Birmingham, College of Engineering and Physical Sciences, School of Computer Science, Birmingham, United Kingdom
| | - Adam T. Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Hamid Dehghani
- University of Birmingham, College of Engineering and Physical Sciences, School of Computer Science, Birmingham, United Kingdom
| |
Collapse
|