1
|
Lunev EA, Klementieva NV, Vassilieva SG, Volovikov EA, Jappy D, Savchenko IM, Svetlova EA, Polikarpova AV, Shubina MY, Spirin DM, Anufrieva KS, Lebedev PR, Pokrovsky VM, Utkina MV, Krut' VG, Sintsov M, Popov S, Deykin AV, Rozov A, Egorova TV, Bardina MV. Development of an AAV-RNAi strategy to silence the dominant variant GNAO1 c.607G>A linked to encephalopathy. Gene Ther 2025:10.1038/s41434-025-00532-x. [PMID: 40229422 DOI: 10.1038/s41434-025-00532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Heterozygous mutations in GNAO1 cause an ultra-rare neurodevelopmental disease called GNAO1 encephalopathy, characterized by infantile epilepsy and movement disorder. Here, we provide a functional characterization of the hotspot mutation GNAO1 c.607G>A (p.G203R) and conduct early-phase development of an adeno-associated virus (AAV)-mediated gene therapy approach. The GNAO1 gene encodes the Gαo protein that is involved in neuronal signaling. We showed that the Gαo-G203R lost its ability to enhance forskolin-stimulated cAMP synthesis in HEK293T cells. In primary neuronal culture, Gαo-G203R had a dominant-negative effect on neuronal activity and GABAB-dependent synaptic release. To ablate the mutant protein, we used selective silencing of the pathogenic variant using effectors of RNA interference (RNAi). We selected the short hairpin RNA (sh1500) that suppressed the c.607G>A transcripts, resulting in a 3.8-fold increase in the ratio of wild-type to mutant GNAO1 transcripts in patient-specific neurons. We also detected off-target effects of sh1500 as well as transcriptome changes associated with AAV transduction and RNAi activation. We improved the AAV construct by using an artificial miRNA (miR1500) and the neuron-specific hSyn promoter. Systemic administration of AAV9-hSyn-miR1500 did not cause pathological changes in Gnao1-GGA mice with a "humanized" target sequence. Importantly, AAV9 transduced Gαo-positive neurons in the striatum, thalamus, substantia nigra, and cerebellum, which we defined as primary targets for gene therapy. Our findings pave the road toward the development of AAV-RNAi approaches for dominant-negative GNAO1 variants.
Collapse
Affiliation(s)
- Evgenii A Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Klementieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Egor A Volovikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Irina M Savchenko
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Svetlova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Anna V Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Maria Y Shubina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Danil M Spirin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | - Ksenia S Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | - Petr R Lebedev
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Vladimir M Pokrovsky
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | | | - Viktoriya G Krut'
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Mikhail Sintsov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | | | - Alexey V Deykin
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Maryana V Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.
- Marlin Biotech, Sochi, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Kong D, Meng L, Lin P, Wu G. Advancements in PROTAC-based therapies for neurodegenerative diseases. Future Med Chem 2025; 17:591-605. [PMID: 39931801 PMCID: PMC11901405 DOI: 10.1080/17568919.2025.2463310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/11/2025] Open
Abstract
Neurodegenerative diseases are characterized by impairments in movement and cognitive functions. These disorders are frequently associated with the accumulation of misfolded protein aggregates, which present significant challenges for treatment with conventional small-molecule inhibitors. While FDA-approved amyloid-beta-directed antibodies, such as Lecanemab, have recently shown clinical success in modifying disease progression, there are currently no treatments capable of curing neurodegenerative diseases. Emerging technologies like proteolysis-targeting chimeras (PROTACs) offer additional promise by targeting disease-causing proteins for degradation, potentially opening new therapeutic avenues. Recent experiments have demonstrated that PROTACs can specifically target and degrade pathogenic proteins associated with neurodegenerative diseases, thereby offering potential therapeutic avenues. This review discusses the latest advances in employing PROTACs for treating neurodegenerative diseases and delves into the associated challenges and opportunities. Our goal is to provide researchers in drug development with new insights on creating novel PROTACs for therapeutic applications.
Collapse
Affiliation(s)
- Deyuan Kong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Liying Meng
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanzhao Wu
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Yang ZF, Jiang XC, Gao JQ. Present insights into the progress in gene therapy delivery systems for central nervous system diseases. Int J Pharm 2025; 669:125069. [PMID: 39662855 DOI: 10.1016/j.ijpharm.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Central nervous system (CNS) diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), spinal cord injury (SCI), and ischemic strokes and certain rare diseases, such as amyotrophic lateral sclerosis (ALS) and ataxia, present significant obstacles to treatment using conventional molecular pharmaceuticals. Gene therapy, with its ability to target previously "undruggable" proteins with high specificity and safety, is increasingly utilized in both preclinical and clinical research for CNS ailments. As our comprehension of the pathophysiology of these conditions deepens, gene therapy stands out as a versatile and promising strategy with the potential to both prevent and treat these diseases. Despite the remarkable progress in refining and enhancing the structural design of gene therapy agents, substantial obstacles persist in their effective and safe delivery within living systems. To surmount these obstacles, a diverse array of gene delivery systems has been devised and continuously improved. Notably, Adeno-Associated Virus (AAVs)-based viral gene vectors and lipid-based nanocarriers have each advanced the in vivo delivery of gene therapies to various extents. This review aims to concisely summarize the pathophysiological foundations of CNS diseases and to shed light on the latest advancements in gene delivery vector technologies. It discusses the primary categories of these vectors, their respective advantages and limitations, and their specialized uses in the context of gene therapy delivery.
Collapse
Affiliation(s)
- Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| |
Collapse
|
4
|
Nomakuchi TT, Teferedegn EY, Li D, Muirhead KJ, Dubbs H, Leonard J, Muraresku C, Sergio E, Arnold K, Pizzino A, Skraban CM, Zackai EH, Wang K, Ganetzky RD, Vanderver AL, Ahrens-Nicklas RC, Bhoj EJK. Utility of genome sequencing in exome-negative pediatric patients with neurodevelopmental phenotypes. Am J Med Genet A 2024; 194:e63817. [PMID: 39031459 PMCID: PMC11540733 DOI: 10.1002/ajmg.a.63817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.
Collapse
Affiliation(s)
- Tomoki T. Nomakuchi
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eden Y. Teferedegn
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kayla J. Muirhead
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Holly Dubbs
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jacqueline Leonard
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Colleen Muraresku
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily Sergio
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaley Arnold
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cara M. Skraban
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Wang
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca D. Ganetzky
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adeline L. Vanderver
- Department of Neurology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth J. K. Bhoj
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
6
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
8
|
Xu C, Cao J, Qiang H, Liu Y, Wu J, Luo Q, Wan M, Wang Y, Wang P, Cheng Q, Zhou G, Sima J, Guo Y, Xu S. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA. Genome Biol 2024; 25:179. [PMID: 38972974 PMCID: PMC11229350 DOI: 10.1186/s13059-024-03326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.
Collapse
Affiliation(s)
- Chong Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiyanuo Cao
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiudan Luo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Wan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujie Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Sima
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Romano R, Bucci C. Antisense therapy: a potential breakthrough in the treatment of neurodegenerative diseases. Neural Regen Res 2024; 19:1027-1035. [PMID: 37862205 PMCID: PMC10749614 DOI: 10.4103/1673-5374.385285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 10/22/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system. Currently, there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide. Therefore, it is necessary to find new therapeutic approaches, and antisense therapies offer this possibility, having the great advantage of not modifying cellular genome and potentially being safer. Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases. The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases, with a focus on those antisense therapies that have already received the approval of the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
10
|
Goksu AY, Kocanci FG, Akinci E, Demir-Dora D, Erendor F, Sanlioglu S, Uysal H. Microglia cells treated with synthetic vasoactive intestinal peptide or transduced with LentiVIP protect neuronal cells against degeneration. Eur J Neurosci 2024; 59:1993-2015. [PMID: 38382910 DOI: 10.1111/ejn.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.
Collapse
Affiliation(s)
- Azize Yasemin Goksu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Ersin Akinci
- Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
Klementieva NV, Lunev EA, Shmidt AA, Loseva EM, Savchenko IM, Svetlova EA, Galkin II, Polikarpova AV, Usachev EV, Vassilieva SG, Marina VI, Dzhenkova MA, Romanova AD, Agutin AV, Timakova AA, Reshetov DA, Egorova TV, Bardina MV. RNA Interference Effectors Selectively Silence the Pathogenic Variant GNAO1 c.607 G > A In Vitro. Nucleic Acid Ther 2024; 34:90-99. [PMID: 38215303 DOI: 10.1089/nat.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.
Collapse
Affiliation(s)
- Natalia V Klementieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | - Evgenii A Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna A Shmidt
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina M Savchenko
- Marlin Biotech LLC, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Svetlova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | - Ivan I Galkin
- Marlin Biotech LLC, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | - Evgeny V Usachev
- Laboratory of Translational Biomedicine, Gamaleya National Research Center for Epidemiology, Moscow, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | | | - Marina A Dzhenkova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | - Anna D Romanova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Anton V Agutin
- State Budgetary Healthcare Institution of Moscow Region "Balashikha Hospital," Balashikha, Russia
| | - Anna A Timakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
| | - Maryana V Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech LLC, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R, Haskins W, Tan W, Benner SA, Wang KKW. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024; 29:1124. [PMID: 38474636 DOI: 10.3390/molecules29051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Mojtaba Golpich
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Guangzheng Cai
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaowei Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, China
| | - Steven A Benner
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
13
|
Qiu L, Xu E, Chambule S, LaTourette P, Dyer CD, Wallace CK, Donocoff R, Wilson JM, Lucas TH, Chen HI. Magnetic Resonance Imaging-Guided Frameless Stereotactic Injections of the Bilateral Cerebellar Dentate Nuclei in Nonhuman Primates: Technical Note. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01040. [PMID: 38310346 DOI: 10.1227/ons.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Nonhuman primates (NHPs) are important preclinical models for evaluating therapeutics because of their anatomophysiological similarities to humans, and can be especially useful for testing new delivery targets. With the growing promise of cell and gene therapies for the treatment of neurological diseases, it is important to ensure the accurate and safe delivery of these agents to target structures in the brain. However, a standard guideline or method has not been developed for stereotactic targeting in NHPs. In this article, we describe the safe use of a magnetic resonance imaging-guided frameless stereotactic system to target bilateral cerebellar dentate nuclei for accurate, real-time delivery of viral vector in NHPs. METHODS Seventeen rhesus macaques (Macaca mulatta) underwent stereotactic surgery under real-time MRI guidance using the ClearPoint® system. Bilateral cerebellar dentate nuclei were targeted through a single parietal entry point with a transtentorial approach. Fifty microliters of contrast-impregnated infusate was delivered to each dentate nucleus, and adjustments were made as necessary according to real-time MRI monitoring of delivery. Perioperative clinical outcomes and postoperative volumes of distribution were recorded. RESULTS All macaques underwent bilateral surgery successfully. Superficial pin site infection occurred in 4/17 (23.5%) subjects, which resolved with antibiotics. Two episodes of transient neurological deficit (anisocoria and unilateral weakness) were recorded, which did not require additional postoperative treatment and resolved over time. Volume of distribution of infusate achieved satisfactory coverage of target dentate nuclei, and only 1 incidence (2.9%) of cerebrospinal fluid penetration was recorded. Mean volume of distribution was 161.22 ± 39.61 mm3 (left, 173.65 ± 48.29; right, 148.80 ± 23.98). CONCLUSION MRI-guided frameless stereotactic injection of bilateral cerebellar dentate nuclei in NHPs is safe and feasible. The use of this technique enables real-time modification of the surgical plan to achieve adequate target coverage and can be readily translated to clinical use.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Xu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Chambule
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip LaTourette
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chelsea K Wallace
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Donocoff
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Bristol Myers Squibb, Princeton, New Jersey, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy H Lucas
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Wang L, Wang P, Liu Y, Qi Z, Wang P, Xu S. The HpSGNi system: A compact approach for genetic suppression without sequence limitation in Escherichia coli. J Biotechnol 2024; 379:18-24. [PMID: 38000712 DOI: 10.1016/j.jbiotec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Targeted gene regulation is indispensable for exploring gene functions in microbes and the development of microbial cell factories. While most loci can be regulated by CRISPRi, it cannot be used for targets lacking protospacer adjacent motifs (PAM) or protospacer flanking sequences (PFS). Here, we characterized a genetic suppression approach named the hpDNA-assisted structure-guided nuclease mediating interference system (HpSGNi). It was composed of a flap endonuclease 1 (FEN1) and mis-hairpin DNA probes (mis-hpDNA) to suppress the expression of target genes simply and efficiently in microbe without sequence restrictions. By inhibiting the initiation and elongation of the transcription, HpSGNi successfully silenced the transcription of exogenous fluorescent protein genes, ampicillin resistance gene and endogenous folP/sulA genes in Escherichia coli BL21(DE3) and K-12 MG1655. Meanwhile, aiming at optimizing the mis-hpDNA, we displayed the characteristics by detecting the tolerance to the single base mismatch and length of the guide sequence. This DNA-guided recognition platform provides a simple approach for selectively inhibiting gene expression.
Collapse
Affiliation(s)
- Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Morroni F, Caccamo A. Advances and Challenges in Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S417-S431. [PMID: 39422937 DOI: 10.3233/jad-230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral impairments. Despite extensive research efforts, effective treatment options for AD remain limited. Recently, gene therapy has emerged as a promising avenue for targeted intervention in the pathogenesis of AD. This review will provide an overview of clinical and preclinical studies where gene therapy techniques have been utilized in the context of AD, highlighting their potential as novel therapeutic strategies. While challenges remain, ongoing research and technological advancement continue to enhance the potential of gene therapy as a targeted and personalized therapeutic approach for AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
19
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Ribeiro J, Lopes I, Gomes AC. A New Perspective for the Treatment of Alzheimer's Disease: Exosome-like Liposomes to Deliver Natural Compounds and RNA Therapies. Molecules 2023; 28:6015. [PMID: 37630268 PMCID: PMC10458935 DOI: 10.3390/molecules28166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increment of the aging population in recent years, neurodegenerative diseases exert a major global disease burden, essentially as a result of the lack of treatments that stop the disease progression. Alzheimer's Disease (AD) is an example of a neurodegenerative disease that affects millions of people globally, with no effective treatment. Natural compounds have emerged as a viable therapy to fill a huge gap in AD management, and in recent years, mostly fueled by the COVID-19 pandemic, RNA-based therapeutics have become a hot topic in the treatment of several diseases. Treatments of AD face significant limitations due to the complex and interconnected pathways that lead to their hallmarks and also due to the necessity to cross the blood-brain barrier. Nanotechnology has contributed to surpassing this bottleneck in the treatment of AD by promoting safe and enhanced drug delivery to the brain. In particular, exosome-like nanoparticles, a hybrid delivery system combining exosomes and liposomes' advantageous features, are demonstrating great potential in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Joana Ribeiro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
21
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
23
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
24
|
Polikarpova AV, Egorova TV, Lunev EA, Tsitrina AA, Vassilieva SG, Savchenko IM, Silaeva YY, Deykin AV, Bardina MV. CRISPR/Cas9-generated mouse model with humanizing single-base substitution in the Gnao1 for safety studies of RNA therapeutics. Front Genome Ed 2023; 5:1034720. [PMID: 37077890 PMCID: PMC10106585 DOI: 10.3389/fgeed.2023.1034720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the “humanized” fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.
Collapse
Affiliation(s)
- Anna V. Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Tatiana V. Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Evgenii A. Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Irina M. Savchenko
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Y. Silaeva
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Deykin
- Marlin Biotech, Sochi, Russia
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Maryana V. Bardina,
| |
Collapse
|
25
|
Cerium-Doped Self-Assembling Nanoparticles as a Novel Anti-Oxidant Delivery System Preserving Mitochondrial Function in Cortical Neurons Exposed to Ischemia-like Conditions. Antioxidants (Basel) 2023; 12:antiox12020358. [PMID: 36829918 PMCID: PMC9952397 DOI: 10.3390/antiox12020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases are characterized by mitochondrial dysfunction leading to abnormal levels of reactive oxygen species (ROS), making the use of ROS-scavenging nanomaterials a promising therapeutic approach. Here, we combined the unique ROS-scavenging properties of cerium-based nanomaterials with the lipid self-assembling nanoparticles (SANP) technology. We optimized the preparation of cerium-doped SANP (Ce-SANP) and characterized the formulations in terms of both physiochemical and biological properties. Ce-SANP exhibited good colloidal properties and were able to mimic the activity of two ROS-scavenging enzymes, namely peroxidase and super oxide dismutase. Under ischemia-like conditions, Ce-SANP could rescue neuronal cells from mitochondrial suffering by reducing ROS production and preventing ATP level reduction. Furthermore, Ce-SANP prevented mitochondrial Ca2+ homeostasis dysfunction, partially restoring mitochondrial Ca2+ handling. Taken together, these results highlight the potential of the anti-oxidant Ce-SANP platform technology to manage ROS levels and mitochondrial function for the treatment of neurodegenerative diseases.
Collapse
|
26
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
27
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
29
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Premature delivery in the domestic sow in response to in utero delivery of AAV9 to fetal piglets. Gene Ther 2022; 29:513-519. [PMID: 34803165 DOI: 10.1038/s41434-021-00305-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023]
Abstract
Numerous pediatric neurogenetic diseases may be optimally treated by in utero gene therapy (IUGT); but advancing such treatments requires animal models that recapitulate developmental physiology relevant to humans. One disease that could benefit from IUGT is the autosomal recessive motor neuron disease spinal muscular atrophy (SMA). Current SMA gene-targeting therapeutics are more efficacious when delivered shortly after birth, however postnatal treatment is rarely curative in severely affected patients. IUGT may provide benefit for SMA patients. In previous studies, we developed a large animal porcine model of SMA using AAV9 to deliver a short hairpin RNA (shRNA) directed at porcine survival motor neuron gene (Smn) mRNA on postnatal day 5. Here, we aimed to model developmental features of SMA in fetal piglets and to demonstrate the feasibility of prenatal gene therapy by delivering AAV9-shSmn in utero. Saline (sham), AAV9-GFP, or AAV9-shSmn was injected under direct ultrasound guidance between gestational ages 77-110 days. We developed an ultrasound-guided technique to deliver virus under direct visualization to mimic the clinic setting. Saline injection was tolerated and resulted in viable, healthy piglets. Litter rejection occurred within seven days of AAV9 injection for all other rounds. Our real-world experience of in utero viral delivery followed by AAV9-related fetal rejection suggests that the domestic sow may not be a viable model system for preclinical in utero AAV9 gene therapy studies.
Collapse
|
31
|
Varea O, Guinovart JJ, Duran J. Malin restoration as proof of concept for gene therapy for Lafora disease. Brain Commun 2022; 4:fcac168. [PMID: 35813879 PMCID: PMC9260307 DOI: 10.1093/braincomms/fcac168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.
Collapse
Affiliation(s)
- Olga Varea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona , Barcelona 08028 , Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) , Barcelona 08017 , Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| |
Collapse
|
32
|
Khandia R, Saeed M, Alharbi AM, Ashraf GM, Greig NH, Kamal MA. Codon Usage Bias Correlates With Gene Length in Neurodegeneration Associated Genes. Front Neurosci 2022; 16:895607. [PMID: 35860292 PMCID: PMC9289476 DOI: 10.3389/fnins.2022.895607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Codon usage analysis is a crucial part of molecular characterization and is used to determine the factors affecting the evolution of a gene. The length of a gene is an important parameter that affects the characteristics of the gene, such as codon usage, compositional parameters, and sometimes, its functions. In the present study, we investigated the association of various parameters related to codon usage with the length of genes. Gene expression is affected by nucleotide disproportion. In sixty genes related to neurodegenerative disorders, the G nucleotide was the most abundant and the T nucleotide was the least. The nucleotide T exhibited a significant association with the length of the gene at both the overall compositional level and the first and second codon positions. Codon usage bias (CUB) of these genes was affected by pyrimidine and keto skews. Gene length was found to be significantly correlated with codon bias in neurodegeneration associated genes. In gene segments with lengths below 1,200 bp and above 2,400 bp, CUB was positively associated with length. Relative synonymous CUB, which is another measure of CUB, showed that codons TTA, GTT, GTC, TCA, GGT, and GGA exhibited a positive association with length, whereas codons GTA, AGC, CGT, CGA, and GGG showed a negative association. GC-ending codons were preferred over AT-ending codons. Overall analysis indicated that the association between CUB and length varies depending on the segment size; however, CUB of 1,200–2,000 bp gene segments appeared not affected by gene length. In synopsis, analysis suggests that length of the genes correlates with various imperative molecular signatures including A/T nucleotide disproportion and codon choices. In the present study we additionally evaluated various molecular features and their correlation with different indices of codon usage, like the Codon Adaptation Index (CAI) and Relative Dynonymous Codon Usage (RSCU) of codons. We also considered the impact of gene fragment size on different molecular features in genes related to neurodegeneration. This analysis will aid our understanding of and in potentially modulating gene expression in cases of defective gene functioning in clinical settings.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
- *Correspondence: Rekha Khandia, ;
| | - Mohd. Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ahmed M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD, United States
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
33
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
34
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|
35
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Abdollahzadeh Jamalabadi MY, Xi J. Olfactory Drug Aerosol Delivery with Acoustic Radiation. Biomedicines 2022; 10:biomedicines10061347. [PMID: 35740370 PMCID: PMC9219900 DOI: 10.3390/biomedicines10061347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Nose-to-brain (N2B) drug delivery is a new approach to neurological disorder therapy as medications can bypass the blood-brain barrier and directly enter the brain. However, the delivery efficiency to the olfactory region using the conventional delivery method is impractically low because of the region’s secluded position in a convoluted nasal cavity. In this study, the acoustic radiation force was explored as an N2B delivery alternative in a wide frequency range of 10–100,000 Hz at an increment of 50 Hz. Numerical simulations of the particle deposition in the olfactory region of four nasal configurations were performed using COMSOL. Frequency analysis of the nasal cavities revealed that eigenfrequencies were often associated with a specific region with narrow passages and some eigenfrequencies exhibited an amendable pressure field to the olfactory region. Transient particle tracking was conducted with an acoustic inlet at 1 Pa, and a frequency spectrum of 10–100,000 Hz was imposed on the airflow, which carried the particles with acoustic radiation forces. It was observed that by increasing the pulsating wave frequency at the nostrils, the olfactory delivery efficiency reached a maximum in the range 11–15 kHz and decreased after that. The correlation of the olfactory delivery efficiency and instantaneous values of other parameters such as acoustic velocity and pressure in the frequency domain was examined.
Collapse
|
37
|
Powell JE, Lim CKW, Krishnan R, McCallister TX, Saporito-Magriña C, Zeballos MA, McPheron GD, Gaj T. Targeted gene silencing in the nervous system with CRISPR-Cas13. SCIENCE ADVANCES 2022; 8:eabk2485. [PMID: 35044815 PMCID: PMC8769545 DOI: 10.1126/sciadv.abk2485] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Cas13 nucleases are a class of programmable RNA-targeting CRISPR effector proteins that are capable of silencing target gene expression in mammalian cells. Here, we demonstrate that RfxCas13d, a Cas13 ortholog with favorable characteristics to other family members, can be delivered to the mouse spinal cord and brain to silence neurodegeneration-associated genes. Intrathecally delivering an adeno-associated virus vector encoding an RfxCas13d variant programmed to target superoxide dismutase 1 (SOD1), a protein whose mutation can cause amyotrophic lateral sclerosis, reduced SOD1 mRNA and protein in the spinal cord by >50% and improved outcomes in a mouse model of the disorder. We further show that intrastriatally delivering an RfxCas13d variant programmed to target huntingtin (HTT), a protein whose mutation is causative for Huntington’s disease, led to a ~50% reduction in HTT protein in the mouse brain. Our results establish RfxCas13d as a versatile platform for knocking down gene expression in the nervous system.
Collapse
Affiliation(s)
- Jackson E. Powell
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Colin K. W. Lim
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Ramya Krishnan
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Male D, Gromnicova R. Nanocarriers for Delivery of Oligonucleotides to the CNS. Int J Mol Sci 2022; 23:ijms23020760. [PMID: 35054957 PMCID: PMC8775451 DOI: 10.3390/ijms23020760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.
Collapse
|
39
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
40
|
Peng W, Chen Y, Tumilty S, Liu L, Luo L, Yin H, Xie Y. Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca 2+ and ROS homeostasis. Curr Opin Pharmacol 2021; 62:97-102. [PMID: 34959127 DOI: 10.1016/j.coph.2021.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases (NDDs) are a range of neurological disorders featured by neuronal degeneration and apoptosis. Cellular Calcium (Ca2+) and reactive oxygen species (ROS) dyshomeostasis are the earliest and important events in the development of NDDs and may yield promising therapeutic targets for NDDs. Paeoniflorin, a water-soluble monoterpene glucoside, is the major bioactive monomer extracted from the root of Paeonia lactiflora pall. Increasing evidence has suggested that this natural compound might be used to treat various NDDs, and its potential molecular mechanisms are related to the modulation of Ca2+/ROS homeostasis in cells. In addition, paeoniflorin accounts for more than 40% of the total glucosides of herbaceous peonies with abundant herbaceous sources. Furthermore, it has also been validated as a safe extraction in clinical pharmacological research with a wide therapeutic window. Hence, it is rational to anticipate paeoniflorin being a promising candidate for the treatment of NDDs via regulating Ca2+/ROS dyshomeostasis.
Collapse
Affiliation(s)
- Wei Peng
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yunhui Chen
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China.
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand
| | - Lizhou Liu
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand; Ageing Well National Science Challenge, University of Otago, Dunedin, 9054, New Zealand
| | - Ling Luo
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Haiyan Yin
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China
| |
Collapse
|
41
|
Finneran DJ, Njoku IP, Flores-Pazarin D, Ranabothu MR, Nash KR, Morgan D, Gordon MN. Toward Development of Neuron Specific Transduction After Systemic Delivery of Viral Vectors. Front Neurol 2021; 12:685802. [PMID: 34512509 PMCID: PMC8426581 DOI: 10.3389/fneur.2021.685802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread transduction of the CNS with a single, non-invasive systemic injection of adeno-associated virus is now possible due to the creation of blood-brain barrier-permeable capsids. However, as these capsids are mutants of AAV9, they do not have specific neuronal tropism. Therefore, it is necessary to use genetic tools to restrict expression of the transgene to neuronal tissues. Here we compare the strength and specificity of two neuron-specific promoters, human synapsin 1 and mouse calmodulin/calcium dependent kinase II, to the ubiquitous CAG promoter. Administration of a high titer of virus is necessary for widespread CNS transduction. We observed the neuron-specific promoters drive comparable overall expression in the brain to the CAG promoter. Furthermore, the neuron-specific promoters confer significantly less transgene expression in peripheral tissues compared with the CAG promoter. Future experiments will utilize these delivery platforms to over-express the Alzheimer-associated pathological proteins amyloid-beta and tau to create mouse models without transgenesis.
Collapse
Affiliation(s)
- Dylan J. Finneran
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ikenna P. Njoku
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Diego Flores-Pazarin
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Meghana R. Ranabothu
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - David Morgan
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marcia N. Gordon
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
42
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
43
|
Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther 2021; 29:3345-3358. [PMID: 33839324 DOI: 10.1016/j.ymthe.2021.04.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has historically posed unique challenges for gene-therapy-based approaches, due to a paucity of therapeutic targets as well as the difficulty of accessing both the brain and spinal cord. Recent advances in our understanding of disease mechanism and ALS genetics, however, have combined with tremendous strides in CNS targeting, gene delivery, and gene editing and knockdown techniques to open new horizons of therapeutic possibility. Gene therapy clinical trials are currently underway for ALS patients with SOD1 mutations, C9orf72 hexanucleotide repeat expansions, ATXN2 trinucleotide expansions, and FUS mutations, as well as sporadic disease without known genetic cause. In this review, we provide an in-depth exploration of the state of ALS-directed gene therapy, including antisense oligonucleotides, RNA interference, CRISPR, adeno-associated virus (AAV)-mediated trophic support, and antibody-based methods. We discuss how each of these approaches has been implemented across known genetic causes as well as sporadic ALS, reviewing preclinical studies as well as completed and ongoing human clinical trials. We highlight the transformative potential of these evolving technologies as the gene therapy field advances toward a true disease-modifying treatment for this devastating illness.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, Miao M, Wu D, Yu L. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. Br J Pharmacol 2021; 178:1741-1755. [PMID: 33608889 DOI: 10.1111/bph.15414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
RNAi effectors (e.g. siRNA, shRNA and miRNA) can trigger the silencing of specific genes causing alteration of genomic functions becoming a new therapeutic area for the treatment of infectious diseases, neurodegenerative disorders and cancer. In cancer treatment, RNAi effectors showed potential immunomodulatory actions by down-regulating immuno-suppressive proteins, such as PD-1 and CTLA-4, which restrict immune cell function and present challenges in cancer immunotherapy. Therefore, compared with extracellular targeting by antibodies, RNAi-mediated cell-intrinsic disruption of inhibitory pathways in immune cells could promote an increased anti-tumour immune response. Along with non-viral vectors, DNA-based RNAi strategies might be a more promising method for immunomodulation to silence multiple inhibitory pathways in T cells than immune checkpoint blockade antibodies. Thus, in this review, we discuss diverse RNAi implementation strategies, with recent viral and non-viral mediated RNAi synergism to immunotherapy that augments the anti-tumour immunity. Finally, we provide the current progress of RNAi in clinical pipeline.
Collapse
Affiliation(s)
- Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Nan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Israth Jahan Tuhin
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaowen Tang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
45
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|