1
|
Zhang B, Wang Q, Zhang Y, Wang H, Kang J, Zhu Y, Wang B, Feng S. Treatment of Insomnia With Traditional Chinese Medicine Presents a Promising Prospect. Phytother Res 2025. [PMID: 40251853 DOI: 10.1002/ptr.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Insomnia, a prevalent sleep disorder, significantly impacts global health. While Western medications provide temporary relief, their risks of dependency and cognitive impairment have spurred the search for safer alternatives. Traditional Chinese Medicine (TCM) offers a promising approach to treating insomnia by focusing on harmonizing the balance of Yin and Yang and the functions of internal organs. This review explores recent research advances in TCM for insomnia treatment, integrating classical theories with modern scientific understanding of key pathological mechanisms, including neurotransmitter regulation (GABA, monoamines), immune-inflammatory responses, the HPA axis, and interactions with the gut microbiota. Growing clinical evidence supports the effectiveness of classical TCM prescriptions and treatments like acupuncture in improving sleep quality, particularly when combined with Western medications to enhance efficacy and reduce dependency. However, TCM also has its limitations. Future research directions should focus on modernizing TCM applications, addressing comorbidities associated with insomnia, exploring the role of gut microbiota, and optimizing medicinal and edible homologous products. By integrating traditional knowledge with cutting-edge technologies, TCM holds great potential for advancing personalized and effective insomnia treatments globally.
Collapse
Affiliation(s)
- Boyi Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Yuhang Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hanyu Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyu Kang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yandi Zhu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| |
Collapse
|
2
|
Fan R, Jia Y, Chen Z, Li S, Qi B, Ma A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods 2025; 14:1080. [PMID: 40238208 PMCID: PMC11988850 DOI: 10.3390/foods14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Insomnia affects one-third of the world's population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review using Web of Science and PubMed with keywords like "sleep", "insomnia", and "food". A subsequent summary of the literature revealed that certain foods, including milk, Ziziphus jujuba, Lactuca sativa, ginseng, Schisandra chinensis, and Juglans regia, etc., are purported to enhance sleep quality by prolonging sleep duration, reducing sleep latency, and alleviating anxiety. The mechanisms of these foods' effects mainly occur via the central nervous system, particularly the gamma-aminobutyric acid (GABA)ergic and 5-hydroxytryptamine (5-HT)ergic systems. Although this review supports the fact that they have potential, further research is needed. There are also issues such as more limited foods, fewer mechanisms, fewer pharmacokinetic studies, and more traditional research models being involved. These need to be addressed in the future to adequately address the problem of insomnia. It is hoped that this study will contribute to research into foods with sleep-improving properties and, in the future, provide an effective natural alternative for those seeking medication.
Collapse
Affiliation(s)
- Rui Fan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Bing Qi
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui 053000, China;
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| |
Collapse
|
3
|
Yeom JW, Cho CH. Herbal and Natural Supplements for Improving Sleep: A Literature Review. Psychiatry Investig 2024; 21:810-821. [PMID: 39086164 PMCID: PMC11321869 DOI: 10.30773/pi.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVE Herbal and natural supplements have gained popularity as alternative treatments to insomnia and sleep disorders due to their perceived safety and potential effectiveness. This literature review summarizes the current evidence on the efficacy, safety, and mechanisms of action of commonly used supplements for sleep, including valerian, hops, kava, German chamomile, cherry, tryptophan, theanine, melatonin, magnesium, and zinc. METHODS We conducted literature review of clinical research on herbal and supplements for sleep reported to date. We summarized key findings and reviewed outcomes related to clinical efficacy and side effects. RESULTS Findings suggest that certain supplements, particularly valerian, hops, and melatonin, could be effective in improving sleep quality and reducing insomnia symptoms through modulation of neurotransmitter systems and regulation of sleep-wake cycles. However, the strength of the evidence varies with unestablished optimal dosages, formulations, and treatment durations. Although generally considered safe, these supplements are not without risks, such as rare but serious adverse effects associated with kava and potential interactions with prescription medications. The quality and purity of supplements also vary widely due to a lack of strict regulations. CONCLUSION Healthcare providers should remain informed about the latest research and work closely with patients to develop personalized treatment plans. Herbal and natural supplements may offer promising alternatives or adjunct treatments for insomnia and sleep disorders, but their use should be guided by the best available evidence and individual patient requirements. Larger, well-designed clinical trials are needed to establish the efficacy and safety of these supplements for clinical decision-making.
Collapse
Affiliation(s)
- Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Belal A, Elballal MS, Al-Karmalawy AA, Hassan AHE, Roh EJ, Ghoneim MM, Ali MAM, Obaidullah AJ, Alotaibi JM, Shaaban S, Elanany MA. Exploring the sedative properties of natural molecules from hop cones ( Humulus lupulus) as promising natural anxiolytics through GABA receptors and the human serotonin transporter. Front Chem 2024; 12:1425485. [PMID: 39050372 PMCID: PMC11267477 DOI: 10.3389/fchem.2024.1425485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
This research work aimed to identify the main components that are responsible for the sedative properties of hop cones and allocate their targets. This investigation was performed through molecular docking, molecular dynamic simulations, root mean square fluctuation (RMSF) analysis, and DFT calculation techniques. The tested compounds from Humulus lupulus were compared to diazepam and paroxetine. Molecular docking showed that two-thirds of the compounds had a good affinity to gamma-aminobutyric acid (GABA), outperforming diazepam, while only three surpassed paroxetine on the SERT. Compounds 3,5-dihydroxy-4,6,6-tris(3-methylbut-2-en-1-yl)-2-(3-methylbutanoyl)cyclohexa-2,4-dien-1-one (5) and (S,E)-8-(3,7-dimethylocta-2,6-dien-1-yl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one (15) showed stable binding and favorable energy parameters, indicating their potential for targeting GABA receptors and the SERT. This study provides a basis for future clinical research on these promising compounds.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed S. Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed H. E. Hassan
- Deparment of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher M. Alotaibi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salwa Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suef University, Beni-Suef, Egypt
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed A. Elanany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
5
|
Czigle S, Nagy M, Mladěnka P, Tóth J. Pharmacokinetic and pharmacodynamic herb-drug interactions-part I. Herbal medicines of the central nervous system. PeerJ 2023; 11:e16149. [PMID: 38025741 PMCID: PMC10656908 DOI: 10.7717/peerj.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Unlike conventional drug substances, herbal medicines are composed of a complex of biologically active compounds. Therefore, the potential occurrence of herb-drug interactions is even more probable than for drug-drug interactions. Interactions can occur on both the pharmacokinetic and pharmacodynamic level. Herbal medicines may affect the resulting efficacy of the concomitantly used (synthetic) drugs, mainly on the pharmacokinetic level, by changing their absorption, distribution, metabolism, and excretion. Studies on the pharmacodynamic interactions of herbal medicines and conventional drugs are still very limited. This interaction level is related to the mechanism of action of different plant constituents. Herb-drug interactions can cause changes in drug levels and activities and lead to therapeutic failure and/or side effects (sometimes toxicities, even fatal). This review aims to provide a summary of recent information on the potential drug interactions involving commonly used herbal medicines that affect the central nervous system (Camellia, Valeriana, Ginkgo, Hypericum, Humulus, Cannabis) and conventional drugs. The survey databases were used to identify primary scientific publications, case reports, and secondary databases on interactions were used later on as well. Search keywords were based on plant names (botanical genera), officinal herbal drugs, herbal drug preparations, herbal drug extracts.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - the OEMONOM.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Webber LC, Anderson LN, Paraiso IL, Metz TO, Bradley R, Stevens JF, Wright AT. Affinity- and activity-based probes synthesized from structurally diverse hops-derived xanthohumol flavonoids reveal highly varied protein profiling in Escherichia coli. RSC Adv 2023; 13:29324-29331. [PMID: 37829707 PMCID: PMC10565736 DOI: 10.1039/d3ra05296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Xanthohumol, the principle prenylflavonoid found in hops (Humulus lupulus) and a reported anti-inflammatory agent, has great potential for pharmaceutical interventions related to inflammatory disorders in the gut. A suite of probes was prepared from xanthohumol and its structural isomer isoxanthohumol to enable profiling of both protein affinity binding and catalytic enzyme reactivity. The regiochemistry of the reactive group on the probes was altered to reveal how probe structure dictates protein labeling, and which probes best emulate the natural flavonoids. Affinity- and activity-based probes were applied to Escherichia coli, and protein labeling was measured by chemoproteomics. Structurally dependent activity-based probe protein labeling demonstrates how subtle alterations in flavonoid structure and probe reactive groups can result in considerably different protein interactions. This work lays the groundwork to expand upon unexplored cellular activities related to xanthohumol interactions, metabolism, and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Lucas C Webber
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Lindsey N Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Ines L Paraiso
- Department of Chemistry, Linus Pauling Institute, Oregon State University Corvallis Oregon 97331 USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine Portland Oregon 97201 USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego La Jolla CA 92093 USA
| | - Jan F Stevens
- Department of Chemistry, Linus Pauling Institute, Oregon State University Corvallis Oregon 97331 USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
- Department of Biology, Baylor University Waco Texas 76708 USA
- Department of Chemistry & Biochemistry, Baylor University Waco Texas 76708 USA
| |
Collapse
|
7
|
Estrugo CP, Rodríguez MT, de Guevara NML, Gómez JG, Ridocci F, Moro-Martín MT, Guinot M, Saz-Leal P, Nieto Magro C. Combination of Soy Isoflavones, 8-Prenylnaringenin and Melatonin Improves Hot Flashes and Health-Related Quality of Life Outcomes in Postmenopausal Women: Flavie Study. J Menopausal Med 2023; 29:73-83. [PMID: 37691315 PMCID: PMC10505517 DOI: 10.6118/jmm.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVES This study aims to investigate the effects of a combination of soy isoflavones, 8-prenylnaringenin (8-PN), and melatonin in postmenopausal women suffering from moderate-to-severe hot flashes (HFs). METHODS A multicenter, prospective, open-label study enrolled 44 postmenopausal women suffering from moderate-to-severe HFs (≥ 5 daily or ≥ 35 weekly) to receive 54.4 mg standardized soy isoflavones (including 24.5 mg genistein and 16.3 mg daidzein), 100 µg 8-PN, and 1 mg melatonin once daily for 12 weeks. The primary clinical outcomes included changes in health-related quality of life (HRQoL) scores (Menopause-Specific QoL questionnaire [MENQoL] and Cervantes Scale) and HFs following 4 and 12 weeks of treatment. Other analyses included treatment adherence, acceptability, tolerability, and safety. RESULTS All of the four domains of MENQoL questionnaire significantly improved at 4 weeks (P < 0.05) and 12 weeks (P < 0.001), affecting significantly the vasomotor, psychosocial, and physical spheres (41.2%, 26.3%, and 25.0%; 12 weeks improvements, respectively). Similarly, in the menopause (39.3%) and psychic (51.7%) domains (both P < 0.05 at 12 weeks), the global score of the Cervantes Scale significantly increased at 4 weeks (18.6%) and 12 weeks (35.4%). Accordingly, moderate-to-severe HFs significantly decreased at 4 weeks compared to baseline (41.7% reduction) and further reduced at 12 weeks (76.5%), including the total number of episodes. CONCLUSIONS Food supplements containing soy isoflavones, 8-PN, and melatonin showed an early and progressive benefit for reducing clinically significant HFs and for improving HRQoL across all domains, favorably affecting postmenopausal women's overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Misericordia Guinot
- Department of Obstetrics and Gynecology, Dra. Guinot's Surgery, Barcelona, Spain
| | - Paula Saz-Leal
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain.
| | - Concepción Nieto Magro
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain
| |
Collapse
|
8
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
9
|
Medicinal Plants Used for Anxiety, Depression, or Stress Treatment: An Update. Molecules 2022; 27:molecules27186021. [PMID: 36144755 PMCID: PMC9500625 DOI: 10.3390/molecules27186021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Depression, anxiety, stress, and other mental disorders, which are on the rise worldwide, are indications that pharmacological therapy can have serious adverse effects, which is why many patients prefer to use herbal products to treat these symptoms. Here, we reviewed plants and products derived from them that are commonly used for the above indications, focusing on clinical data and safety profiles. While lavender, hops, maypop, lemon balm, and valerian have consistently been shown in clinical trials to relieve mild forms of neurological disorders, particularly depression, anxiety, and stress, currently available data do not fully support the use of peppermint for anxiety disorders and depression. Recent studies support the use of saffron for depression; however, its toxicological profile raises safety concerns. St. John’s wort is effective in alleviating mild to moderate depression; however, careful use is necessary particularly due to possible interactions with other drugs. In conclusion, more studies are needed to validate the mechanism of action so that these plants can be used successfully and safely to alleviate or eliminate various mental disorders.
Collapse
|
10
|
MIN B, PARK CW, AHN Y, HONG KB, CHO HJ, LEE JH, JO K, SUH HJ. Effect of hop mixture containing xanthohumol on sleep enhancement in a mouse model and ROS scavenging effect in oxidative stress-induced HT22 cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Byungjick MIN
- Korea University, Republic of Korea; Lotte R&D Center, Korea
| | - Chun Woong PARK
- Korea University, Republic of Korea; Korea University, Republic of Korea
| | | | | | | | | | | | - Hyung Joo SUH
- Korea University, Republic of Korea; Korea University, Republic of Korea
| |
Collapse
|
11
|
GABA A Receptor-Mediated Sleep-Promoting Effect of Saaz-Saphir Hops Mixture Containing Xanthohumol and Humulone. Molecules 2021; 26:molecules26237108. [PMID: 34885687 PMCID: PMC8659287 DOI: 10.3390/molecules26237108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Hops contain flavonoids that have sedative and sleep-promoting activities such as α-acid, β-acid, and xanthohumol. In this study, the sleep-enhancing activity of a Saaz–Saphir hops mixture was measured. In the caffeine-induced insomnia model, the administration of a Saaz–Saphir mixture increased the sleep time compared to Saaz or Saphir administration alone, which was attributed to the increase in NREM sleep time by the δ-wave increase. Oral administration of the Saaz–Saphir mixture for 3 weeks increased the γ-amino butyric acid (GABA) content in the brain and increased the expression of the GABAA receptor. As the GABA antagonists picrotoxin and bicuculline showed a decrease in sleep activity, it was confirmed that the GABAA receptor was involved in the Saaz–Saphir mixture activity. In addition, the GABAA receptor antagonist also reduced the sleep activity induced by xanthohumol and humulone contained in the Saaz–Saphir mixture. Therefore, xanthohumol and humulone contained in the Saaz–Saphir mixture showed sleep-promoting activity mediated by the GABAA receptors. The mixture of the Saaz and Saphir hop varieties may thus help mitigate sleep disturbances compared to other hop varieties.
Collapse
|
12
|
Spiess D, Abegg VF, Chauveau A, Treyer A, Reinehr M, Oufir M, Duong E, Potterat O, Hamburger M, Simões-Wüst AP. Placental Passage of Humulone and Protopine in an Ex Vivo Human Perfusion System. PLANTA MEDICA 2021; 87:1192-1205. [PMID: 34530480 PMCID: PMC8585570 DOI: 10.1055/a-1578-3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
The placental passage of humulone and protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Only a small portion of humulone initially present in the maternal circuit reached the fetal circuit. The humulone concentration in the maternal circuit rapidly decreased, likely due to metabolization in the placenta. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. None of the study compounds affected placental viability or functionality, as glucose consumption, lactate production, beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elisa Duong
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Kim S, Hong KB, Jo K, Suh HJ. Quercetin-3- O-glucuronide in the Ethanol Extract of Lotus Leaf ( Nelumbo nucifera) Enhances Sleep Quantity and Quality in a Rodent Model via a GABAergic Mechanism. Molecules 2021; 26:3023. [PMID: 34069439 PMCID: PMC8159104 DOI: 10.3390/molecules26103023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
Current pharmacological treatments for insomnia carry several and long-term side effects. Therefore, natural products without side effects are warranted. In this study, the sleep-promoting activity of the lotus leaf (Nelumbo nucifera) extract was assessed using ICR mice and Sprague Dawley rats. A pentobarbital-induced sleep test and electroencephalogram analysis were conducted to measure sleep latency time, duration, and sleep architecture. The action mechanism of the extract was evaluated through ligand binding experiments. A high dose (300 mg/kg) of the ethanolic lotus leaf extract significantly increased sleep duration compared to the normal group (p < 0.01). Administration of low (150 mg/kg) and high doses (300 mg/kg) of the extract significantly increased sleep quality, especially the relative power of theta waves (p < 0.05), compared to the normal group. Furthermore, caffeine and lotus leaf extract administration significantly recovered caffeine-induced sleep disruption (p < 0.001), and the sleep quality was similar to that of the normal group. Additionally, ligand binding assay using [3H]-flumazenil revealed that quercetin-3-O-glucuronide contained in the lotus leaf extract (77.27 μg/mg of extract) enhanced sleep by binding to GABAA receptors. Collectively, these results indicated that the lotus leaf extract, particularly quercetin-3-O-glucuronide, exhibits sleep quantity- and quality-enhancing activity via the GABAergic pathway.
Collapse
Affiliation(s)
- Singeun Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea;
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea;
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea;
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Bioactive Compounds Obtained from Polish "Marynka" Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules 2021; 26:molecules26082366. [PMID: 33921703 PMCID: PMC8073632 DOI: 10.3390/molecules26082366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
Given the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish "Marynka" hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, β-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods. The post-extraction residues (R1) were re-extracted in order to obtain extract E2 enriched in xanthohumol. Then, both samples were subjected to investigation of their antibacterial (anti-acne, anti-caries), cytotoxic, and anti-proliferative activities in vitro. It was demonstrated that extract (E1) possessed more beneficial biological properties than xanthohumol. It exhibited not only better antibacterial activity against Gram-positive bacteria strains (MIC, MBC) but also possessed a higher synergistic effect with commercial antibiotics when compared to xanthohumol. Moreover, cell culture experiments revealed that crude extract neither inhibited viability nor divisions of normal skin fibroblasts as strongly as xanthohumol. In turn, calculated selectivity indexes showed that the crude extract had from slightly to significantly better selective anti-proliferative activity towards cancer cells in comparison with xanthohumol.
Collapse
|