1
|
Zhang L, Zhang C, Chen R, Zhang J, Liu Y, Du Y, Gao X, Shang W, Xu R, Zhang X. Dl-3-n-Butylphthalide Promotes Neurogenesis in Ischemic Stroke Mice Through Wnt/β-Catenin Signaling Activation and Neurotrophic Factor Production. Mol Neurobiol 2025:10.1007/s12035-025-04884-8. [PMID: 40172819 DOI: 10.1007/s12035-025-04884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Synchronized neurogenesis and angiogenesis after stroke have been well documented, and inducing neurovascular remodeling may provide a promising strategy to promote tissue repair and functional recovery. Dl-3-n-Butylphthalide (NBP) was reported to exert a potent angiogenic activity in rodent models of stroke. However, little is currently known regarding the effects and mechanisms of NBP on neurogenesis in ischemic stroke. This study aimed to determine whether and how NBP promotes neurogenesis in cerebral ischemic injury. Adult C57BL/6 mice, subjected to distal middle cerebral artery occlusion (dMCAO), were treated with NBP. The efficacy of NBP was assessed using neurologic deficits and infarct volume. Immunofluorescent staining was applied to evaluate neurogenesis. The regulation of the Wnt/β-catenin signaling pathway and the expression of neurotrophic factors were detected by western blotting and qRT-PCR. Administration of NBP reduced infarct volume and ameliorated neurological deficits after stroke. NBP promoted the proliferation of NSCs in the SVZ, migration of neuroblasts along the corpus callosum, and differentiation of neuroblasts toward neurons in the peri-infarct zone, resulting in restored neural function. Moreover, we revealed that NBP-induced neurogenesis was associated with the activation of the Wnt/β-catenin pathway, which was reversed by DKK1. In addition, NBP increased the production of VEGF and BDNF. Our data have unveiled the potentials of NBP to promote neurogenesis and neural functional recovery after stroke, depending on Wnt/β-catenin signaling activation and neurotrophic factor production. Thus, NBP may be a promising candidate for delayed treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Ying Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xuan Gao
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Renhao Xu
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
2
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2025; 83:e257-e272. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
3
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
4
|
Leemans B, Gadella BM, Marchand JHEAM, Van Soom A, Stout TAE. Induction of in vivo-like ciliation in confluent monolayers of re-differentiated equine oviduct epithelial cells†. Biol Reprod 2024; 111:580-599. [PMID: 38847468 PMCID: PMC11402525 DOI: 10.1093/biolre/ioae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia, and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 × 106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and >20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,The Netherlands
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josephine H E A M Marchand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Idotta C, Pagano MA, Tibaldi E, Cadamuro M, Saetti R, Silvestrini M, Pigato G, Leanza L, Peruzzo R, Meneghetti L, Piazza S, Meneguzzo P, Favaro A, Grassi L, Toffanin T, Brunati AM. Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia. World J Biol Psychiatry 2024; 25:317-329. [PMID: 38869228 DOI: 10.1080/15622975.2024.2357096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of β-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting β-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.
Collapse
Affiliation(s)
- Carlo Idotta
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Roberto Saetti
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | - Marina Silvestrini
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Stefano Piazza
- Department of Mental Health, ULSS 8 Berica, Vicenza, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
6
|
Huang Y, Zhang Z, Xu Y, Peng Y, Xu R, Luan Y, Bie X, Jia J, Zhang C, Han T, Zhou B, Li Z, Zheng H, Yang D, He Y. ARMC10 regulates mitochondrial dynamics and affects mitochondrial function via the Wnt/β-catenin signalling pathway involved in ischaemic stroke. J Cell Mol Med 2024; 28:e18449. [PMID: 38924214 PMCID: PMC11196997 DOI: 10.1111/jcmm.18449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial dynamics has emerged as an important target for neuronal protection after cerebral ischaemia/reperfusion. Therefore, the aim of this study was to investigate the mechanism by which ARMC10 regulation of mitochondrial dynamics affects mitochondrial function involved in ischaemic stroke (IS). Mitochondrial morphology was detected by laser scanning confocal microscopy (LSCM), and mitochondrial ultrastructural alterations were detected by electron microscopy. The expression of mitochondrial dynamics-related genes Drp1, Mfn1, Mfn2, Fis1, OPA1 and ARMC10 and downstream target genes c-Myc, CyclinD1 and AXIN2 was detected by RT-qPCR. Western blot was used to detect the protein expression of β-catenin, GSK-3β, p-GSK-3β, Bcl-2 and Bax. DCFH-DA fluorescent probe was to detect the effect of ARMC10 on mitochondrial ROS level, Annexin V-FITC fluorescent probe was to detect the effect of ARMC10 on apoptosis, and ATP assay kit was to detect the effect of ARMC10 on ATP production. Mitochondrial dynamics was dysregulated in clinical IS samples and in the OGD/R cell model, and the relative expression of ARMC10 gene was significantly decreased in IS group (p < 0.05). Knockdown and overexpression of ARMC10 could affect mitochondrial dynamics, mitochondrial function and neuronal apoptosis. Agonist and inhibitor affected mitochondrial function and neuronal apoptosis by targeting Wnt/β-Catenin signal pathway. In the OGD/R model, ARMC10 affected mitochondrial function and neuronal apoptosis through the mechanism that regulates Wnt/β-catenin signalling pathway. ARMC10 regulates mitochondrial dynamics and protects mitochondrial function by activating Wnt/β-catenin signalling pathway, to exert neuroprotective effects.
Collapse
Affiliation(s)
- Yanyang Huang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhaojing Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yatian Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yue Peng
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ruochen Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Luan
- Reproduction CenterThe Third Affiliated Hospital of ZhengZhou UniversityZhengzhouChina
| | - Xiaoshuai Bie
- Clinical Laboratory CenterQingyuan Maternal and Child Health HospitalQingyuanChina
| | - Jing Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tianyi Han
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Baixue Zhou
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhihao Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Zheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Dongzhi Yang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Ying He
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
7
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
10
|
Chen Y, Ren P, He X, Yan F, Gu R, Bai J, Zhang X. Olfactory bulb neurogenesis depending on signaling in the subventricular zone. Cereb Cortex 2023; 33:11102-11111. [PMID: 37746807 DOI: 10.1093/cercor/bhad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.
Collapse
Affiliation(s)
- Yali Chen
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Ren
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiongjie He
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Rou Gu
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
11
|
Coronel R, López-Alonso V, Gallego MI, Liste I. Low Levels of Amyloid Precursor Protein (APP) Promote Neurogenesis and Decrease Gliogenesis in Human Neural Stem Cells. Int J Mol Sci 2023; 24:14635. [PMID: 37834082 PMCID: PMC10572469 DOI: 10.3390/ijms241914635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Amyloid precursor protein (APP) has been widely studied due to its association with Alzheimer's disease (AD). However, the physiological functions of APP are still largely unexplored. APP is a transmembrane glycoprotein whose expression in humans is abundant in the central nervous system. Specifically, several studies have revealed the high expression of APP during brain development. Previous studies in our laboratory revealed that a transient increase in APP expression induces early cell cycle exit of human neural stem cells (hNSCs) and directs their differentiation towards glial cells (gliogenesis) while decreasing their differentiation towards neurons (neurogenesis). In the present study, we have evaluated the intrinsic cellular effects of APP down-expression (using siRNA) on cell death, cell proliferation, and cell fate specification of hNSCs. Our data indicate that APP silencing causes cellular effects opposite to those obtained in previous APP overexpression assays, inducing cell proliferation in hNS1 cells (a model line of hNSCs) and favoring neurogenesis instead of gliogenesis in these cells. In addition, we have analyzed the gene and protein expression levels of β-Catenin as a possible molecule involved in these cellular effects. These data could help to understand the biological role of APP, which is necessary to deepen the knowledge of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain;
| | - Marta I. Gallego
- Unidad de Histología y Patología Mamaria, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
12
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
13
|
Campero-Romero AN, Real FH, Santana-Martínez RA, Molina-Villa T, Aranda C, Ríos-Castro E, Tovar-Y-Romo LB. Extracellular vesicles from neural progenitor cells promote functional recovery after stroke in mice with pharmacological inhibition of neurogenesis. Cell Death Discov 2023; 9:272. [PMID: 37507361 PMCID: PMC10382527 DOI: 10.1038/s41420-023-01561-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.
Collapse
Affiliation(s)
- Aura N Campero-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Fernando H Real
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo A Santana-Martínez
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tonatiuh Molina-Villa
- Department of Cellular and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristina Aranda
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Cinvestav-IPN, Ciudad de México, México
| | - Luis B Tovar-Y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Shen X, Li M, Shao K, Li Y, Ge Z. Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front Mol Neurosci 2023; 16:1076016. [PMID: 37078089 PMCID: PMC10106693 DOI: 10.3389/fnmol.2023.1076016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
An ischemic stroke occurs when the blood supply is obstructed to the vascular basin, causing the death of nerve cells and forming the ischemic core. Subsequently, the brain enters the stage of reconstruction and repair. The whole process includes cellular brain damage, inflammatory reaction, blood–brain barrier destruction, and nerve repair. During this process, the proportion and function of neurons, immune cells, glial cells, endothelial cells, and other cells change. Identifying potential differences in gene expression between cell types or heterogeneity between cells of the same type helps to understand the cellular changes that occur in the brain and the context of disease. The recent emergence of single-cell sequencing technology has promoted the exploration of single-cell diversity and the elucidation of the molecular mechanism of ischemic stroke, thus providing new ideas and directions for the diagnosis and clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Yongnan Li,
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Zhaoming Ge,
| |
Collapse
|
15
|
Burton B, Collins K, Brooks J, Marx K, Renner A, Wilcox K, Moore E, Osowski K, Riley J, Rowe J, Pawlus M. The biotoxin BMAA promotes dysfunction via distinct mechanisms in neuroblastoma and glioblastoma cells. PLoS One 2023; 18:e0278793. [PMID: 36893156 PMCID: PMC9997973 DOI: 10.1371/journal.pone.0278793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic exposure to the Cyanobacteria biotoxin Beta-methylamino-L-alanine (BMAA) has been associated with development of a sporadic form of ALS called Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), as observed within certain Indigenous populations of Guam and Japan. Studies in primate models and cell culture have supported the association of BMAA with ALS/PDC, yet the pathological mechanisms at play remain incompletely characterized, effectively stalling the development of rationally-designed therapeutics or application of preventative measures for this disease. In this study we demonstrate for the first time that sub-excitotoxic doses of BMAA modulate the canonical Wnt signaling pathway to drive cellular defects in human neuroblastoma cells, suggesting a potential mechanism by which BMAA may promote neurological disease. Further, we demonstrate here that the effects of BMAA can be reversed in cell culture by use of pharmacological modulators of the Wnt pathway, revealing the potential value of targeting this pathway therapeutically. Interestingly, our results suggest the existence of a distinct Wnt-independent mechanism activated by BMAA in glioblastoma cells, highlighting the likelihood that neurological disease may result from the cumulative effects of distinct cell-type specific mechanisms of BMAA toxicity.
Collapse
Affiliation(s)
- Bryan Burton
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kate Collins
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Brooks
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Karly Marx
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Abigail Renner
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kaylei Wilcox
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Ellie Moore
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Keith Osowski
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Riley
- Department of Biology, University of Sioux Falls, Sioux Falls, South Dakota, United States of America
| | - Jarron Rowe
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Matthew Pawlus
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| |
Collapse
|
16
|
Ma R, Lu D, Xie Q, Yuan J, Ren M, Li Y, Wang J, Li J, Xu Z, Wang J. l-Borneol and d-Borneol promote transdifferentiation of astrocytes into neurons in rats by regulating Wnt/Notch pathway to exert neuroprotective effect during recovery from cerebral ischaemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154583. [PMID: 36610167 DOI: 10.1016/j.phymed.2022.154583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Chinese medicines Borneolum and l-Borneolum have neuroprotective effects on acute cerebral ischaemia-reperfusion (IR) in rats. Research on their effects during recovery from cerebral IR is lacking. Cerebral ischaemia can activate astrocytes for conversion into neurons. Neurogenesis cannot be achieved without nutritional support from an improved brain microenvironment through the blood circulation. PURPOSE The purpose of this study was to determine whether Borneolum and l-Borneolum can promote transdifferentiation of astrocytes into neurons by regulating the Wnt/Notch pathway to exert neuroprotective effects during recovery from cerebral ischaemia. STUDY DESIGN AND METHODS A suture crossing the external carotid artery to occlude the middle cerebral artery was used to prepare a model of cerebral IR (Longa et al., 1989). The Longa neurological function score, modified neurological severity score, tape removal test and grid misstep experiment were used to evaluate motor nerve function. Triphenyltetrazolium chloride was used to determine the extent of cerebral infarction. Left/right hemisphere contrast was used to measure brain atrophy. Astrocytes labelled with adeno-associated virus were used to track their fate after transdifferentiation. Laser speckle contrast imaging was used to observe the effects of l-Borneolum and Borneolum on cerebral blood flow. Immunofluorescence and western blotting were used to investigate their mechanisms. RESULTS l-Borneolum and Borneolum significantly improved neurological function and limb movement in rats with cerebral ischaemia during recovery and increased cerebral blood flow. l-Borneolum improved forelimb motor coordination more effectively than Borneolum and promoted transdifferentiation of astrocytes to GABAergic neurons in the striatal region. The expression of Wnt3a and Notch-1 was downregulated. The expression of vascular endothelial growth factor was not significantly changed. Borneolum improved forelimb sensitivity and alleviated cerebral infarction and brain atrophy more effectively than l-Borneolum, which promoted transdifferentiation of astrocytes into neurons and nestin expression and neurogenesis in the striatal zone. The expression of glycogen synthase kinase-3β and β-catenin was upregulated. l-Borneolum and Borneolum had no significant neuroprotective effect on the cortex and hippocampus. CONCLUSIONS l-Borneolum and Borneolum exerted neuroprotective effects on cerebral ischaemia during recovery by promoting neurogenesis and blood circulation in the striatal and subventricular zones. Their mechanisms may be related to the Wnt3a and Notch-1 pathways.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Medicine, Foshan University, Foshan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Medicine, Foshan University, Foshan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Becker J, Sun B, Alammari F, Haerty W, Vance KW, Szele FG. What has single-cell transcriptomics taught us about long non-coding RNAs in the ventricular-subventricular zone? Stem Cell Reports 2022; 18:354-376. [PMID: 36525965 PMCID: PMC9860170 DOI: 10.1016/j.stemcr.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) function is mediated by the process of transcription or through transcript-dependent associations with proteins or nucleic acids to control gene regulatory networks. Many lncRNAs are transcribed in the ventricular-subventricular zone (V-SVZ), a postnatal neural stem cell niche. lncRNAs in the V-SVZ are implicated in neurodevelopmental disorders, cancer, and brain disease, but their functions are poorly understood. V-SVZ neurogenesis capacity declines with age due to stem cell depletion and resistance to neural stem cell activation. Here we analyzed V-SVZ transcriptomics by pooling current single-cell RNA-seq data. They showed consistent lncRNA expression during stem cell activation, lineage progression, and aging. In conjunction with epigenetic and genetic data, we predicted V-SVZ lncRNAs that regulate stem cell activation and differentiation. Some of the lncRNAs validate known epigenetic mechanisms, but most remain uninvestigated. Our analysis points to several lncRNAs that likely participate in key aspects of V-SVZ stem cell activation and neurogenesis in health and disease.
Collapse
Affiliation(s)
- Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia,Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Keith W. Vance
- Department of Life Sciences, University of Bath, Bath, UK
| | - Francis George Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Yan YH, Huang ZH, Xiong QP, Song YW, Li SY, Yang BW, Sun L, Zhang MY, Ji Y. Effects of Broussonetia papyrifera (L.) L'Hér. ex Vent. fruits water extract on hippocampal neurogenesis in the treatment of APP/PS1 transgenic mice. Front Pharmacol 2022; 13:1056614. [DOI: 10.3389/fphar.2022.1056614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Adult neurogenesis plays an important role in repairing damaged neurons and improving cognitive impairment in Alzheimer’s disease (AD). B. Papyrifera (L.) L'Hér. ex Vent. fruits (BL), a traditional Chinese medicine for tonifying the kidney, has been reported to improve cognitive function in AD mice, but the underlying mechanisms have not been clearly illuminated. This study aimed to provide an overview of the differential compounds in the brain of APP/PS1 mice after BL water extract (BLWE) treatment through metabolomics technology and to elucidate whether the therapeutic effect and mechanism are through the enhancement of neurogenesis.Methods: APP/PS1 transgenic mice were treated with different doses of BLWE. After 6 weeks of intragastric injection, the therapeutic effects of BLWE on APP/PS1 transgenic mice were determined by the Morris water maze test, immunohistochemistry, hematoxylin & eosin and Nissl staining, enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Subsequently, metabolomics technology was used to analyze the regulatory effect of BLWE on differential compounds in the brain of APP/PS1 mice, and on this basis, its molecular mechanism of BLWE was screened. Finally, the protein expression of the Wnt/β-catenin signaling pathway was detected by Western blotting.Results: After BLWE treatment, the learning and memory function of APP/PS1 mice were significantly improved, which was related to the increase in the number of Nestin+/BrdU+ and NeuN+/BrdU+ cells, and the decrease in the number of apoptotic cells in the hippocampus. BLWE treatment could also up-regulate the expression of synapse-associated proteins. Moreover, BLWE could modulate endogenous metabolic compounds in the brains of AD mice, including N-acetyl-aspartate, glutamine, etc. Furthermore, BLWE inhibited the phosphorylation of Tyr216-GSK-3β and β-catenin protein while increased CyclinD1 protein expression.Conclusion: We demonstrated that BLWE can enhance neural stem cells proliferation and improve neurogenesis, thereby efficiently repairing damaged neurons in the hippocampus and ameliorating cognitive impairment in APP/PS1 transgenic mice. The mechanism is at least partly through activating the Wnt/β-catenin signaling pathway.
Collapse
|
19
|
Yuan Y, Liu L, Du Y, Fan R, Zhang R, Zhou N. p-hydroxy benzaldehyde revitalizes the microenvironment of peri-infarct cortex in rats after cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154379. [PMID: 35987017 DOI: 10.1016/j.phymed.2022.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The formation of glial scar around the ischemic core following cerebral blood interruption exerts a protective effect in the subacute phase but impedes neurorepair in the chronic phase. Therefore, the present study aimed to explore whether p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, can cut the Gordian knot of glial scar and promote brain repair after cerebral ischemia. METHODS The effects of p-HBA on neurorepair were evaluated using a rat model of transient middle cerebral artery occlusion (tMCAO). The motor functions were evaluated by neurobehavioral tests, the pathophysiological processes in the peri-infarct cortex (PIC) were detected by viral-based lineage tracking or immunofluorescence staining, and the putative signaling pathway was analyzed by western blot. RESULTS Administration of p-HBA in the acute stage after stroke onset alleviated the motor impairment in tMCAO rats in a time-dependent manner. The corresponding cellular events were inhibition of astrogliosis, facilitating the conversion of reactive astrocytes (RAs) into neurons, and prompting angiogenesis in PIC, thereby protecting the structure of the neurovascular unit (NVU). One of the underlying molecular mechanisms is the activation of the neurogenic switch of the Wnt/β-catenin signaling pathway. Notably, p-HBA only promotes astrocyte-to-neuron conversion in the PIC, and only partial RAs were converted to neurons. This pattern of conversion ensures that the brain structure remains unaltered, and the beneficial role of glial scarring is preserved during the subacute phase after ischemia. CONCLUSIONS These results provided a potential approach to address the dilemma of glial scarring after brain injury, i.e., the pharmacological promotion of astrocyte-to-neuron conversion in the PIC without interfering with normal brain tissue, which mitigates but does not eliminate the glial scar. Subsequently, the neuron rescue-unfriendly environment is switched to a beneficial reconstruction milieu in PIC, which is conducive to neurorepair. Moreover, p-HBA could be a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Lijun Liu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Yao Du
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Rongping Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China.
| |
Collapse
|
20
|
Zhang S, Kong DW, Ma GD, Liu CD, Yang YJ, Liu S, Jiang N, Pan ZR, Zhang W, Kong LL, Du GH. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacol Sin 2022; 43:2212-2225. [PMID: 35217812 PMCID: PMC9433393 DOI: 10.1038/s41401-021-00844-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3β/β-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3β/β-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.
Collapse
Affiliation(s)
- Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - De-Wen Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cheng-di Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Jiao Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shan Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Nan Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Henan University, Zhengzhou, 475004, China
| | - Zi-Rong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|
22
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
23
|
Kook MG, Lee SE, Shin N, Kong D, Kim DH, Kim MS, Kang HK, Choi SW, Kang KS. Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid. Int J Stem Cells 2022; 15:85-94. [PMID: 35220294 PMCID: PMC8889335 DOI: 10.15283/ijsc21157] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Methods and Results Conclusions
Collapse
Affiliation(s)
- Myung Geun Kook
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Nari Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Min-Soo Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyun Kyoung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
25
|
Chiareli RA, Carvalho GA, Marques BL, Mota LS, Oliveira-Lima OC, Gomes RM, Birbrair A, Gomez RS, Simão F, Klempin F, Leist M, Pinto MCX. The Role of Astrocytes in the Neurorepair Process. Front Cell Dev Biol 2021; 9:665795. [PMID: 34113618 PMCID: PMC8186445 DOI: 10.3389/fcell.2021.665795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are highly specialized glial cells responsible for trophic and metabolic support of neurons. They are associated to ionic homeostasis, the regulation of cerebral blood flow and metabolism, the modulation of synaptic activity by capturing and recycle of neurotransmitters and maintenance of the blood-brain barrier. During injuries and infections, astrocytes act in cerebral defense through heterogeneous and progressive changes in their gene expression, morphology, proliferative capacity, and function, which is known as reactive astrocytes. Thus, reactive astrocytes release several signaling molecules that modulates and contributes to the defense against injuries and infection in the central nervous system. Therefore, deciphering the complex signaling pathways of reactive astrocytes after brain damage can contribute to the neuroinflammation control and reveal new molecular targets to stimulate neurorepair process. In this review, we present the current knowledge about the role of astrocytes in brain damage and repair, highlighting the cellular and molecular bases involved in synaptogenesis and neurogenesis. In addition, we present new approaches to modulate the astrocytic activity and potentiates the neurorepair process after brain damage.
Collapse
Affiliation(s)
| | | | | | - Lennia Soares Mota
- Department of Pharmacology, Federal University of Goias, Goiânia, Brazil
| | | | | | - Alexander Birbrair
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Renato Santiago Gomez
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Simão
- Research Division, Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | | | - Marcel Leist
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|