1
|
Qu W, Yan G, Du Y, Zhou X, Huang C, Li B, Zhou J, Li Q. Crosstalk Between Mitochondrial DNA and Immune Response: Focus on Autism Spectrum Disorder. Mol Neurobiol 2025; 62:5629-5639. [PMID: 39589631 DOI: 10.1007/s12035-024-04637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by multiple dysfunctions in behavior, the nervous system, and the immune system. Increasing evidence suggests that mitochondrial DNA (mtDNA) plays a crucial role in the pathology of ASD. In clinical practice, altered mtDNA levels have been observed in various tissues of individuals with ASD. Mutation or oxidation of mtDNA is also closely related to the immune response associated with the pathology of autism. With mtDNA identified as a causal factor, much interest has focused on how its production affects neurodevelopment and neurophysiology. Here, we review how mtDNA leads to dysfunction of cellular mitochondria and immune response. We also illustrate the relationship between mtDNA alterations and the pathology of autism. Finally, we discuss the existing evidence on cell-free mtDNA associated with ASD and look forward to its application in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Wenxuan Qu
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Ge Yan
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Yajuan Du
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Xinyang Zhou
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Chutian Huang
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Bei Li
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Junmei Zhou
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China
| | - Qian Li
- Department of Central Laboratory, School of Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, 355 Luding Road, Shanghai, 200062, Putuo District, China.
| |
Collapse
|
2
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2025; 30:810-824. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Li Y, Sun G, Cui Y, Ji S, Kan T. Causal associations between immune cells and psychiatric disorders: a bidirectional mendelian randomization analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03818-4. [PMID: 39878811 DOI: 10.1007/s00210-025-03818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Extensive researches illuminate a potential interplay between immune traits and psychiatric disorders. However, whether there is the causal relationship between the two remains an unresolved question. We conducted a two-sample bidirectional mendelian randomization by utilizing summary data of 731 immune cell traits from genome-wide association studies (GCST90001391-GCST90002121)) and 11 psychiatric disorders including attention deficit/hyperactivity disorder (ADHD), anxiety disorder, autism spectrum disorder (ASD), bipolar disorder (BIP), anorexia nervosa (AN), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), Tourette syndrome (TS), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), and substance use disorders (cannabis) (SUD) from the Psychiatric Genomics Consortium (PGC). A total of four types of immune signatures (median fluorescence intensities [MFI], relative cell [RC], absolute cell [AC], and morphological parameters [MP]) were included. Effect estimates were obtained by using the inverse-variance-weighted (IVW), weighted median method, Mendelian randomization (MR)-Egger, and corrected by false discovery rate. Outliers were evaluated through the leave-one-out technique. Horizontal pleiotropy was assessed using the MR pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger intercept tests. MR analysis results suggested several immune cell subtypes were casually associated with psychiatric disorders. It was found that CD33br HLA DR + CD14 - AC (Myeloid cell, AC) may contribute to decreasing the risk of BIP (odds ratio [OR] = 0.9179, confidence interval [CI] = 0.8829-0.9542, PFDR = 7.06 × 10-3), and likewise, CD38 on transitional (B cell, MFI) also showed negative causal effect on SCZ risk (OR = 0.9551, CI = 0.9330-0.9776, PFDR = 0.0441). While IgD - CD27 - %lymphocyte (B cell, RC) has causal effect on increasing BIP risk (OR = 1.0184, CI = 1.0079-1.0291, PFDR = 0.0201). In addition, HLA DR + + monocyte %monocyte (TBNK, RC) is likely to increase AN onset (OR = 1.0746, CI = 1.0324-1.1186, PFDR = 0.0506), and CCR2 on CD14 - CD16 + monocyte (Monocyte, MFI) may contribute to PTSD (OR = 1.0591, CI = 1.0275-1.0917, PFDR = 0.0369). Sensitivity analysis revealed consistency of results. Our research elucidates there may be causal links between immune traits and the onset of psychiatric disorders, which established a groundwork for the prospective clinical utilization of immune cells as markers for the diagnosis and early intervention of psychiatric disorders.
Collapse
Affiliation(s)
- Yi Li
- Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China
| | - Guanchao Sun
- Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China
| | - Yingshu Cui
- Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China.
| | - Ting Kan
- Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China.
| |
Collapse
|
4
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
5
|
Chen J, Han Z, Wang Z, Chen L, Wang S, Yao W, Xue Z. Identification of immune traits associated with neurodevelopmental disorders by two-sample Mendelian randomization analysis. BMC Psychiatry 2024; 24:728. [PMID: 39448971 PMCID: PMC11515564 DOI: 10.1186/s12888-024-06148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND One of the main causes of health-related issues in children is neurodevelopmental disorders (NDDs), which include attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and Tourette syndrome (TS). Nonetheless, there is relatively little prior research looking at the link between immunological inflammation and NDDs. Our work uses a two-sample Mendelian Randomization (MR) approach to provide a thorough evaluation of the causal effects of immune traits on ADHD, ASD, and TS. METHODS As exposures, 731 immunological traits' genetic associations were chosen, and the outcomes were genome-wide association data for ADHD, ASD, and TS. The inverse-variance weighted (IVW), weighted median (WM), and MR-Egger methods were used to conduct MR analysis. The results' robustness, heterogeneity, and horizontal pleiotropy were confirmed using extensive sensitivity analysis. RESULTS With single-nucleotide polymorphisms serving as instruments and false discovery rate (FDR) correction applied, the study found that significantly higher expression of CD62L on CD62L+ myeloid DC (IVW, OR: 0.926, 95% CI 0.896~0.958, P = 9.42 × 10-6, FDR = 0.007) and suggestively higher absolute cell count (AC) of CD28 + DN (CD4-CD8-) (IVW, OR: 0.852, 95% CI = 0.780 ∼ 0.932, P-value = 4.65 × 10-4, FDR = 0.170) was associated with a lower risk of ADHD. There was no pleiotropy, and the causal relationships were strong according to sensitivity, leave-one-out, and MR-Steiger directionality tests. For ASD and TS, no harmful or protective immune traits were observed. CONCLUSIONS The results of the study lend credence to the theory that deficiency in CD62L on CD62L+ myeloid DC and CD28 + DN (CD4-CD8) AC may contribute to the onset of ADHD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhaopeng Han
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Zhuiyue Wang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Shuxia Wang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China.
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Fang C, Sun Y, Fan C, Lei D. The relationship of immune cells with autism spectrum disorder: a bidirectional Mendelian randomization study. BMC Psychiatry 2024; 24:477. [PMID: 38937836 PMCID: PMC11212275 DOI: 10.1186/s12888-024-05927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Observational studies have indicated a correlation between immunological inflammation and the risk of autism spectrum disorder (ASD). However, the causal relationship between immunological inflammation and ASD remains uncertain. METHODS Immunity-wide data sources were retrieved from the GWAS catalog. Genetic summary data on ASD were retrieved from two independent GWAS. We performed two independent bi-directional, two-sample Mendelian randomization (MR) analyses and a meta-analysis based on the two independent MR estimates to assess the causal relationship between ASD and immune cell signatures. RESULTS We have discovered 26 potential correlations between genetic predisposition in the immunophenotypes and ASD. The meta-analysis of the two inverse variance weighted (IVW)-produced estimates provided further evidence supporting the potential causal relationship between immunophenotypes and ASD. Based on the findings of the reverse MR analysis, it was determined that there are two potential negative causal relationships between ASD and immunophenotypes. However, the meta-analysis of the two IVW-derived MR estimates indicated that immunophenotypes were not significantly influenced by ASD (OR = 0.87, 95% CI = 0.73 -1.03, P = 0.09; OR = 0.91, 95% CI = 0.81-1.01, P = 0.08). CONCLUSIONS This study expanded immune cell subtypes that were potentially causally associated with ASD risk as well as identified ASD-specific immune cell subtypes. The discovery has the potential to lead to earlier detection and more effective treatment techniques.
Collapse
Affiliation(s)
- Congcong Fang
- Outpatient Department, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yonghao Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| | - Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
8
|
Li H, Cui J, Hu C, Li H, Luo X, Hao Y. Identification and Analysis of ZIC-Related Genes in Cerebellum of Autism Spectrum Disorders. Neuropsychiatr Dis Treat 2024; 20:325-339. [PMID: 38410689 PMCID: PMC10895985 DOI: 10.2147/ndt.s444138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with significant genetic heterogeneity. The ZIC gene family can regulate neurodevelopment, especially in the cerebellum, and has been implicated in ASD-like behaviors in mice. We performed bioinformatic analysis to identify the ZIC gene family in the ASD cerebellum. Methods We explored the roles of ZIC family genes in ASD by investigating (i) the association of ZIC genes with ASD risk genes from the Simons Foundation Autism Research Initiative (SFARI) database and ZIC genes in the brain regions of the Human Protein Atlas (HPA) database; (ii) co-expressed gene networks of genes positively and negatively correlated with ZIC1, ZIC2, and ZIC3, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and receiver operating characteristic (ROC) curve analysis of genes in these networks; and (iii) the relationship between ZIC1, ZIC2, ZIC3, and their related genes with cerebellar immune cells and stromal cells in ASD patients. Results (i) ZIC1, ZIC2, and ZIC3 were associated with neurodevelopmental disorders and risk genes related to ASD in the human cerebellum and (ii) ZIC1, ZIC2, and ZIC3 were highly expressed in the cerebellum, which may play a pathogenic role by affecting neuronal development and the cerebellar internal environment in patients with ASD, including immune cells, astrocytes, and endothelial cells. (iii) OLFM3, SLC27A4, GRB2, TMED1, NR2F1, and STRBP are closely related to ZIC1, ZIC2, and ZIC3 in ASD cerebellum and have good diagnostic accuracy. (iv) ASD mice in the maternal immune activation model demonstrated that Zic3 and Nr2f1 levels were decreased in the immune-activated cerebellum. Conclusion Our study supports the role of ZIC1, ZIC2, and ZIC3 in ASD pathogenesis and provides potential targets for early and accurate prediction of ASD.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
9
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
10
|
Arteaga-Henríquez G, Gisbert L, Ramos-Quiroga JA. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023; 37:215-229. [PMID: 36913130 PMCID: PMC10024667 DOI: 10.1007/s40263-023-00993-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sulforaphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone, celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood. Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide stronger evidence.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- NCRR-The National Center for Register-Based Research, Aahrus University, Aahrus, Denmark
| | - Laura Gisbert
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, Chen Y, Wang X, Zhu C. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol 2023; 13:1082950. [PMID: 36761165 PMCID: PMC9905846 DOI: 10.3389/fimmu.2022.1082950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
The pathogenesis of autism spectrum disorder (ASD) is not well understood, especially in terms of immunity and inflammation, and there are currently no early diagnostic or treatment methods. In this study, we obtained six existing Gene Expression Omnibus transcriptome datasets from the blood of ASD patients. We performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells. We validated that monocytes and nonclassical monocytes were upregulated in the ASD group using peripheral blood (30 children with ASD and 30 age and sex-matched typically developing children) using flow cytometry. The receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the "training" and verification groups. Three immune cell types - monocytes, M2 macrophages, and activated dendritic cells - had different degrees of correlation with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network and agents-gene interactions using miRNA databases (starBase and miRDB) and the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents were linked with ASD. These findings suggest that dysregulation of the immune system may contribute to ASD development, especially dysregulation of monocytes and monocyte-derived cells. ASD-related hub genes may serve as potential predictors for ASD, and the potential ASD-related miRNAs and agents identified here may open up new strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Changlian Zhu, ;;
| |
Collapse
|
12
|
Liu L, Fu Q, Ding H, Jiang H, Zhan Z, Lai Y. Combination of machine learning-based bulk and single-cell genomics reveals necroptosis-related molecular subtypes and immunological features in autism spectrum disorder. Front Immunol 2023; 14:1139420. [PMID: 37168851 PMCID: PMC10165081 DOI: 10.3389/fimmu.2023.1139420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Background Necroptosis is a novel form of controlled cell death that contributes to the progression of various illnesses. Nonetheless, the function and significance of necroptosis in autism spectrum disorders (ASD) remain unknown and require further investigation. Methods We utilized single-nucleus RNA sequencing (snRNA-seq) data to assess the expression patterns of necroptosis in children with autism spectrum disorder (ASD) based on 159 necroptosis-related genes. We identified differentially expressed NRGs and used an unsupervised clustering approach to divide ASD children into distinct molecular subgroups. We also evaluated immunological infiltrations and immune checkpoints using the CIBERSORT algorithm. Characteristic NRGs, identified by the LASSO, RF, and SVM-RFE algorithms, were utilized to construct a risk model. Moreover, functional enrichment, immune infiltration, and CMap analysis were further explored. Additionally, external validation was performed using RT-PCR analysis. Results Both snRNA-seq and bulk transcriptome data demonstrated a greater necroptosis score in ASD children. Among these cell subtypes, excitatory neurons, inhibitory neurons, and endothelials displayed the highest activity of necroptosis. Children with ASD were categorized into two subtypes of necroptosis, and subtype2 exhibited higher immune activity. Four characteristic NRGs (TICAM1, CASP1, CAPN1, and CHMP4A) identified using three machine learning algorithms could predict the onset of ASD. Nomograms, calibration curves, and decision curve analysis (DCA) based on 3-NRG have been shown to have clinical benefit in children with ASD. Furthermore, necroptosis-based riskScore was found to be positively associated with immune activation. Finally, RT-PCR demonstrated differentially expressed of these four NRGs in human peripheral blood samples. Conclusion A comprehensive identification of necroptosis may shed light on the underlying pathogenic process driving ASD onset. The classification of necroptosis subtypes and construction of a necroptosis-related risk model may yield significant insights for the individualized treatment of children with ASD.
Collapse
Affiliation(s)
- Lichun Liu
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Lichun Liu, ; Yongxing Lai,
| | - Qingxian Fu
- Department of Pediatric Endocrinology, Fujian Children’s Hospital, Fuzhou, China
| | - Huaili Ding
- Department of Rehabilitation Medicine, Fujian Children’s Hospital, Fuzhou, China
| | - Hua Jiang
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
| | - Zhidong Zhan
- Department of Pediatric Intensive Care Unit, Fujian Children’s Hospital, Fuzhou, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Lichun Liu, ; Yongxing Lai,
| |
Collapse
|
13
|
Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214329. [PMID: 36430805 PMCID: PMC9699353 DOI: 10.3390/ijms232214329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.
Collapse
|
14
|
Akbari M, Eghtedarian R, Hussen BM, Eslami S, Taheri M, Neishabouri SM, Ghafouri-Fard S. Assessment of Expression of Regulatory T Cell Differentiation Genes in Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:939224. [PMID: 35860502 PMCID: PMC9289514 DOI: 10.3389/fnmol.2022.939224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
Dysfunction of regulatory T cells (Tregs) has been shown to affect the etiology of autism spectrum disorder (ASD). Differentiation of this group of T cells has been found to be regulated by a group of long non-coding RNAs (lncRNAs). In this study, we have examined the expression of five lncRNAs that regulate this process in the blood samples of ASD cases compared with controls. These lncRNAs were FOXP3 regulating long intergenic non-coding RNA (FLICR), MAF transcriptional regulator RNA (MAFTRR), NEST (IFNG-AS1), RNA component of mitochondrial RNA processing endoribonuclease (RMRP), and Th2 cytokine locus control region (TH2-LCR). Expression of RMRP was significantly lower in total ASD cases compared to controls [expression ratio (95% CI) = 0.11 (0.08-0.18), adjusted P-value < 0.0001]. This pattern was also detected in both men and women cases compared with corresponding controls [expression ratio (95% CI) = 0.15 (0.08-0.29) and 0.08 (0.03-0.2), respectively]. Likewise, expression of NEST was reduced in total cases and cases among men and women compared with corresponding controls [expression ratio (95% CI) = 0.2 (0.14-0.28); 0.22 (0.12-0.37); and 0.19 (0.09-0.43), respectively; adjusted P-value < 0.0001]. Lastly, FLICR was downregulated in total cases and cases among both boys and girls compared with matched controls [expression ratio (95% CI) = 0.1 (0.06-0.19); 0.19 (0.08-0.46); and 0.06 (0.01-0.21), respectively; adjusted P-value < 0.0001]. These three lncRNAs had appropriate diagnostic power for differentiation of ASD cases from controls. Cumulatively, our study supports dysregulation of Treg-related lncRNAs in patients with ASD and suggests these lncRNAs as proper peripheral markers for ASD.
Collapse
Affiliation(s)
- Mohammadarian Akbari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Expectations and Concerns about the Use of Telemedicine for Autism Spectrum Disorder: A Cross-Sectional Survey of Parents and Healthcare Professionals. J Clin Med 2022; 11:jcm11123294. [PMID: 35743364 PMCID: PMC9224762 DOI: 10.3390/jcm11123294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Telemedicine has recently been used for diagnosis and interventions inpatients with autism spectrum disorder (ASD), traditionally performed in-person, but little attention has been paid to user expectations prior to its use. The aim of this study is to compare the expectations and concerns of 50 healthcare professionals and 45 parents of children with ASD regarding the use of telemedicine for diagnostic or treatment purposes. Parents have higher expectations for the use of telemedicine as an alternative (p = 0.0223) and supplement (p = 0.0061) to in-person diagnosis of ASD, as well as a supplement to traditional intervention (p ≤ 0.0001). In addition, while they also have greater hope for improvement in family routines (p = 0.0034) and parenting skills in child management (p = 0.0147), they express greater concern about the need for active parental involvement/supervision during telemedicine services (p = 0.015) and changes in the behaviour of the child with ASD during telemedicine services (p = 0.049). On the other hand, healthcare professionals are more concerned about barriers such as lack of devices (p = 0.000), unfamiliarity with the technology (p = 0.000), poor quality of internet connection (p = 0.006), and severity of ASD (p = 0.000). To achieve promising healthcare for ASD patients, the telemedicine service should try to meet the needs and preferences of both healthcare professionals and parents, as well as identify and, if possible, reduce perceived barriers.
Collapse
|