1
|
Bazzi SA, Maguire C, Mayfield RD, Melamed E. Alcohol induces concentration-dependent transcriptomic changes in oligodendrocytes. Addict Biol 2025; 30:e70012. [PMID: 39935385 PMCID: PMC11814538 DOI: 10.1111/adb.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 02/13/2025]
Abstract
Oligodendrocytes are a key cell type within the central nervous system (CNS) that generates the myelin sheath covering axons, enabling fast propagation of neuronal signals. Alcohol consumption is known to affect oligodendrocytes and white matter in the CNS. However, most studies have focused on foetal alcohol spectrum disorder and severe alcohol use disorder. Additionally, the impact of alcohol dosage on oligodendrocytes has not been previously investigated. In this study, we evaluated transcriptomic changes in C57BL6/J cultured mature oligodendrocytes following exposure to moderate and high concentrations of alcohol. We found that high concentrations of alcohol elicited gene expression changes across a wide range of biological pathways, including myelination, protein translation, integrin signalling, cell cycle regulation and inflammation. Further, our results demonstrate that transcriptomic changes are indeed dependent on alcohol concentration, with moderate and high concentrations of alcohol provoking distinct gene expression profiles. In conclusion, our study demonstrates that alcohol-induced transcriptomic changes in oligodendrocytes are concentration-dependent and may have critical downstream impacts on myelin production. Targeting alcohol-induced changes in cell cycle regulation, integrin signalling, inflammation or protein translation regulation may uncover mechanisms for modulating myelin production or inhibition. Furthermore, gaining a deeper understanding of alcohol's effects on oligodendrocyte demyelination and remyelination could help uncover therapeutic pathways that can be utilized independently of alcohol to aid in remyelinating drug design.
Collapse
Affiliation(s)
- Sam A. Bazzi
- Department of Neurology, Dell Medical SchoolThe University of Texas at AustinAustinTXUSA
| | - Cole Maguire
- Department of Neurology, Dell Medical SchoolThe University of Texas at AustinAustinTXUSA
| | - R. Dayne Mayfield
- Department of NeuroscienceThe University of Texas at AustinAustinTXUSA
| | - Esther Melamed
- Department of Neurology, Dell Medical SchoolThe University of Texas at AustinAustinTXUSA
| |
Collapse
|
2
|
Sarnat HB, Rao VTS. Neuroglia pathology in genetic and epigenetic disorders of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:87-99. [PMID: 40148059 DOI: 10.1016/b978-0-443-19102-2.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glial cells are increasingly recognized for their important interactions with both developing and mature neurons, in particular for maintenance of dendritic ramifications and spines, synapses, and neurotransmitter uptake. MicroRNA abnormalities are demonstrated in individual astrocytes with alterations in neurological diseases. Alexander disease is a prototype astrocytic disease because of genetically altered glial fibrillary acidic protein (GFAP) filaments. Other genetic diseases are now recognized as involving glial cells in their pathogenesis: Rett, Fragile-X, Aicardi-Goutières, and Down syndromes, as well as epigenetic effects in the mechanism of fetal alcohol spectrum disorder. Many involve glial production of cytokines and neuroinflammation. Microglia also may contribute. The heat-shock protein α-B-crystallin is expressed in the Rosenthal fibers of Alexander disease, in which the molecular structure of GFAP is altered, in astrocytes secreting neurotoxic cytokines, and focally at or near epileptic foci. Satellite glial cells adherent to neuronal soma are frequent and diagnostically nonspecific but may contribute to neuronal degeneration, especially of hypermetabolic epileptogenic neurons. Glial cells have distorted size and morphology in mTOR malformations. Failure of glial apoptosis in the fetal lamina terminalis is the likely pathogenesis of callosal agenesis and of other cerebral dysgeneses.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada; Medical Affairs Laboratory, Argenx US, Inc., Boston, MA, United States.
| | - Vijayaraghava T S Rao
- Departments of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada; Medical Affairs Laboratory, Argenx US, Inc., Boston, MA, United States
| |
Collapse
|
3
|
Purcell JB, Harnett NG, Mrug S, Elliott MN, Emery ST, Schuster MA, Knight DC. Hippocampal gray matter volume in young adulthood varies with adolescent alcohol use. Exp Clin Psychopharmacol 2024; 32:566-578. [PMID: 38753392 PMCID: PMC11826516 DOI: 10.1037/pha0000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Adolescent substance use is linked with negative future outcomes (e.g., depression, anxiety, substance use disorder). Given that the brain undergoes significant maturation during adolescence, this developmental period may represent a time of particular vulnerability to substance use. Neuroimaging research has largely focused on heavy or binge patterns of substance use; thus, relatively less is known about the neural impact of a broader range of adolescent substance use. Characterizing the neural impact of a broader range of adolescent substance use may inform prevention and treatment efforts. The present study investigated relationships between adolescent substance use trajectories (i.e., alcohol, tobacco, and cannabis) and gray matter volume in young adulthood. Substance use was assessed in 1,594 participants at ages 11, 13, 16, and 19. Following the last assessment, 320 participants completed a single magnetic resonance imaging session to assess brain gray matter volume. Latent growth curve models were used to estimate growth parameters characterizing alcohol, tobacco, and cannabis use trajectories for each participant. These growth parameters (i.e., intercept, linear slope, and quadratic slope) were then used as predictors of gray matter volume. The gray matter volume of the hippocampus was positively associated with age 14 alcohol use (i.e., intercept) but not other trajectories (i.e., progression or acceleration) or substances (tobacco or cannabis). These results provide new insight into the neural impact of distinct adolescent alcohol, tobacco, and cannabis use trajectories, which may help to refine prevention and treatment efforts. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Juliann B. Purcell
- University of Alabama at Birmingham, Department of Psychology, Birmingham, Alabama, USA
| | - Nathaniel G. Harnett
- University of Alabama at Birmingham, Department of Psychology, Birmingham, Alabama, USA
| | - Sylvie Mrug
- University of Alabama at Birmingham, Department of Psychology, Birmingham, Alabama, USA
| | | | - Susan Tortolero Emery
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas, USA
| | - Mark A. Schuster
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David C. Knight
- University of Alabama at Birmingham, Department of Psychology, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Noel S, LaFrancois R, Scott ME. Gastrointestinal nematode infection during pregnancy and lactation enhances spatial reference memory and reduces indicators of anxiety-like behaviour in uninfected adult female mouse offspring. Parasitology 2024; 151:722-731. [PMID: 38808523 PMCID: PMC11474017 DOI: 10.1017/s0031182024000696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Maternal bacterial and viral infections that induce neuroinflammation in the developing brain are associated with impaired cognitive function and increased anxiety in the offspring. In contrast, maternal infection with the immunoregulatory murine gastrointestinal (GI) nematode, Heligmosomoides bakeri, appears to benefit neurodevelopment as juvenile 2- and 3-week-old male and female offspring had enhanced spatial memory, which may be due to a Th2/Treg biased neuroimmune environment. Here, the impact of maternal H. bakeri infection during pregnancy and lactation on the spatial and anxiety-like behaviours of adult, 3-month-old uninfected male and female offspring was explored for the first time. It was observed that adult female offspring of H. bakeri-infected dams had enhanced spatial reference memory and reduced anxiety-like behaviour compared to females of uninfected dams. These effects were not observed in adult male offspring. Thus, the positive influence of a maternal GI nematode infection on spatial memory of juvenile offspring persists in adult female offspring.
Collapse
Affiliation(s)
- Sophia Noel
- Institute of Parasitology, McGill University (Macdonald Campus), Quebec H9X 3V9, Canada
| | - Ryan LaFrancois
- Institute of Parasitology, McGill University (Macdonald Campus), Quebec H9X 3V9, Canada
| | - Marilyn E. Scott
- Institute of Parasitology, McGill University (Macdonald Campus), Quebec H9X 3V9, Canada
| |
Collapse
|
5
|
Mudyanselage AW, Wijamunige BC, Kocoń A, Turner R, McLean D, Morentin B, Callado LF, Carter WG. Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues. Antioxidants (Basel) 2024; 13:580. [PMID: 38790685 PMCID: PMC11117938 DOI: 10.3390/antiox13050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocoń
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Ricky Turner
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Denise McLean
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, E-48001 Bilbao, Spain;
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country-UPV/EHU, E-48940 Leioa, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| |
Collapse
|
6
|
Long M, Kar P, Forkert ND, Landman BA, Gibbard WB, Tortorelli C, McMorris CA, Huo Y, Lebel CA. Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure. Front Hum Neurosci 2024; 18:1379959. [PMID: 38660010 PMCID: PMC11039858 DOI: 10.3389/fnhum.2024.1379959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Prenatal alcohol exposure (PAE) occurs in ~11% of North American pregnancies and is the most common known cause of neurodevelopmental disabilities such as fetal alcohol spectrum disorder (FASD; ~2-5% prevalence). PAE has been consistently associated with smaller gray matter volumes in children, adolescents, and adults. A small number of longitudinal studies show altered gray matter development trajectories in late childhood/early adolescence, but patterns in early childhood and potential sex differences have not been characterized in young children. Using longitudinal T1-weighted MRI, the present study characterized gray matter volume development in young children with PAE (N = 42, 84 scans, ages 3-8 years) compared to unexposed children (N = 127, 450 scans, ages 2-8.5 years). Overall, we observed altered global and regional gray matter development trajectories in the PAE group, wherein they had attenuated age-related increases and more volume decreases relative to unexposed children. Moreover, we found more pronounced sex differences in children with PAE; females with PAE having the smallest gray matter volumes and the least age-related changes of all groups. This pattern of altered development may indicate reduced brain plasticity and/or accelerated maturation and may underlie the cognitive/behavioral difficulties often experienced by children with PAE. In conjunction with previous research on older children, adolescents, and adults with PAE, our results suggest that gray matter volume differences associated with PAE vary by age and may become more apparent in older children.
Collapse
Affiliation(s)
- Madison Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Preeti Kar
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - W. Ben Gibbard
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, AB, Canada
| | - Carly A. McMorris
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Kim HS, Sarrafpour S, Teng CC, Liu J. External Disruption of Ocular Development in Utero. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:41-48. [PMID: 38559457 PMCID: PMC10964818 DOI: 10.59249/rrmm8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate steps of human ocular embryology are impacted by cellular and genetic signaling pathways and a myriad of external elements that can affect pregnancy, such as environmental, metabolic, hormonal factors, medications, and intrauterine infections. This review focuses on presenting some of these factors to recognize the multifactorial nature of ocular development and highlight their clinical significance. This review is based on English-language articles sourced from PubMed, Web of Science, and Google Scholar; keywords searched included "ocular development in pregnancy," "ocular embryology," "maternal nutrition," "ophthalmic change," and "visual system development." While some animal models show the disruption of ocular embryology from these external factors, there are limited post-birth assessments in human studies. Much remains unknown about the precise mechanisms of how these external factors can disrupt normal ocular development in utero, and more significant research is needed to understand the pathophysiology of these disruptive effects further. Findings in this review emphasize the importance of additional research in understanding the dynamic association between factors impacting gestation and neonatal ocular development, particularly in the setting of limited resources.
Collapse
Affiliation(s)
- Hyun Sue Kim
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Department of
Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT,
USA
| | - Soshian Sarrafpour
- Department of
Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT,
USA
| | - Christopher C. Teng
- Department of
Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT,
USA
| | - Ji Liu
- Department of
Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT,
USA
| |
Collapse
|
8
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
9
|
Donald KA, Hendrikse CJ, Roos A, Wedderburn CJ, Subramoney S, Ringshaw JE, Bradford L, Hoffman N, Burd T, Narr KL, Woods RP, Zar HJ, Joshi SH, Stein DJ. Prenatal alcohol exposure and white matter microstructural changes across the first 6-7 years of life: A longitudinal diffusion tensor imaging study of a South African birth cohort. Neuroimage Clin 2024; 41:103572. [PMID: 38309186 PMCID: PMC10847766 DOI: 10.1016/j.nicl.2024.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure (PAE) can affect brain development in early life, but few studies have investigated the effects of PAE on trajectories of white matter tract maturation in young children. Here we used diffusion weighted imaging (DWI) repeated over three time points, to measure the effects of PAE on patterns of white matter microstructural development during the pre-school years. Participants were drawn from the Drakenstein Child Health Study (DCHS), an ongoing birth cohort study conducted in a peri-urban community in the Western Cape, South Africa. A total of 342 scans acquired from 237 children as neonates (N = 82 scans: 30 PAE; 52 controls) and at ages 2-3 (N = 121 scans: 27 PAE; 94 controls) and 6-7 years (N = 139 scans: 45 PAE; 94 controls) were included. Maternal alcohol use during pregnancy and other antenatal covariates were collected from 28 to 32 weeks' gestation. Linear mixed effects models with restricted maxium likelihood to accommodate missing data were implemented to investigate the effects of PAE on fractional anisotropy (FA) and mean diffusivity (MD) in specific white matter tracts over time, while adjusting for child sex and maternal education. We found significant PAE-by-time effects on trajectories of FA development in the left superior cerebellar peduncle (SCP-L: p = 0.001; survived FDR correction) and right superior longitudinal fasciculus (SLF-R: p = 0.046), suggesting altered white matter development among children with PAE. Compared with controls, children with PAE demonstrated a more rapid change in FA in these tracts from the neonatal period to 2-3 years of age, followed by a more tapered trajectory for the period from 2-3 to 6-7 years of age, with these trajectories differing from unexposed control children. Given their supporting roles in various aspects of neurocognitive functioning (i.e., motor regulation, learning, memory, language), altered patterns of maturation in the SCP and SLF may contribute to a spectrum of physical, social, emotional, and cognitive difficulties often experienced by children with PAE. This study highlights the value of repeated early imaging in longitudinal studies of PAE, and focus for early childhood as a critical window of potential susceptibility as well as an opportunity for early intervention.
Collapse
Affiliation(s)
- K A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - C J Hendrikse
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - A Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - C J Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - S Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - J E Ringshaw
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - L Bradford
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - N Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - T Burd
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - K L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - R P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; The Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - H J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - S H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States
| | - D J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Padilla-Valdez MM, Díaz-Iñiguez MI, Ortuño-Sahagún D, Rojas-Mayorquín AE. Neuroinflammation in fetal alcohol spectrum disorders and related novel therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166854. [PMID: 37611676 DOI: 10.1016/j.bbadis.2023.166854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) is an umbrella term to describe the neurological effects of prenatal alcohol exposure (PAE). It has been extensively characterized that PAE causes cell proliferation disruption, heterotopias, and malformations in various brain regions and there is increasing evidence that neuroinflammation is responsible for some of these neurotoxic effects. Despite evidence of its importance, neuroinflammation is not usually considered at diagnosis or treatment for FASD. Here, we discuss the literature regarding anti- inflammatory drugs and nutraceuticals, which hold promise for future therapeutical interventions in these disorders.
Collapse
Affiliation(s)
- Mayra Madeleine Padilla-Valdez
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico; Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico
| | - María Isabel Díaz-Iñiguez
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico; Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P 44340 Guadalajara, JAL, Mexico.
| | - Argelia Esperanza Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico.
| |
Collapse
|
11
|
Kokhan VS, Anokhin PK, Proskuryakova TV, Shokhonova VA, Ageldinov RA, Shamakina IY. Interleukin-1β and TNF-α are elevated in the amygdala of adult rats prenatally exposed to ethanol. BIOMEDITSINSKAIA KHIMIIA 2023; 69:300-306. [PMID: 37937432 DOI: 10.18097/pbmc20236905300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Affective disorders, including anxiety and depression, developed in adult offspring of the mothers who consumed alcohol during pregnancy could be associated with an imbalance in neuroimmune factors in the amygdala (corpus amygdaloideum) resulted in impaired emotional stimulus processing. The aim of this study was to compare the content of cytokines TNF-α, IL-1α, IL-1β, IL-10, and IL-17 in the amygdala of adult female rats exposed to alcohol in utero and control rats. Cytokine levels were evaluated using a multiplex immunoassay system; mRNA expression was investigated using a real-time reverse transcription-polymerase chain reaction (RT-qPCR) assay. Prenatal alcohol exposure led to the increase in the content of TNF-α and IL-1β without significant changes in the mRNA expression level. Our data suggest that ethanol exposure to the fetus during pregnancy can result in long-term alterations in the content of the key neuroinflammatory factors in the amygdala, which in turn can be a risk factor for affective disorders in the adulthood.
Collapse
Affiliation(s)
- V S Kokhan
- National Scientific Center for Narcology - Branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- National Scientific Center for Narcology - Branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - T V Proskuryakova
- National Scientific Center for Narcology - Branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - V A Shokhonova
- National Scientific Center for Narcology - Branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - R A Ageldinov
- Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia, Svetlye gory, Moscow Region, Russia
| | - I Yu Shamakina
- National Scientific Center for Narcology - Branch of the V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
12
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Garcia-Baos A, Pastor A, Gallego-Landin I, de la Torre R, Sanz F, Valverde O. The role of PPAR-γ in memory deficits induced by prenatal and lactation alcohol exposure in mice. Mol Psychiatry 2023; 28:3373-3383. [PMID: 37491462 DOI: 10.1038/s41380-023-02191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.
Collapse
Affiliation(s)
- Alba Garcia-Baos
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Antoni Pastor
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael de la Torre
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ferran Sanz
- Research Program on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
14
|
Hashimoto JG, Zhang X, Guizzetti M. Ethanol-induced transcriptional and translational changes in Aldh1l1-Egfp/Rpl10a cortical astrocyte cultures. Front Neurosci 2023; 17:1193304. [PMID: 37415614 PMCID: PMC10320287 DOI: 10.3389/fnins.2023.1193304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
The role astrocytes play in brain development and function has garnered greater attention as the diversity of roles they are involved in has become apparent. We have previously shown that ethanol-exposed astrocytes alter neuronal neurite outgrowth in an in vitro co-culture system and that ethanol alters the astrocyte-produced extracellular matrix (ECM) in vitro, with similar alterations in vivo. In this study, we utilized the translating ribosome affinity purification (TRAP) procedure in Aldh1l1-EGFP/Rpl10a transgenic mouse primary cortical astrocyte cultures to transcriptionally and translationally profile the astrocyte response to ethanol. We found a large number of differences between the total RNA pool and the translating RNA pool, indicating that the transcriptional state of astrocytes may not always reflect the translational state of astrocytes. In addition, there was a considerable overlap between ethanol-dysregulated genes in the total RNA pool and the translating RNA pool. Comparisons to published datasets indicate the in vitro model used here is most similar to PD1 or PD7 in vivo cortical astrocytes, and the ethanol-regulated genes showed a significant overlap with models of chronic ethanol exposure in astrocytes, a model of third-trimester ethanol exposure in the hippocampus and cerebellum, and an acute model of ethanol exposure in the hippocampus. These findings will further our understanding of the effects of ethanol on astrocyte gene expression and protein translation and how these changes may alter brain development and support the use of in vitro astrocyte cultures as models of neonatal astrocytes.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
15
|
Noor S, Pritha AN, Pasmay AA, Sanchez JE, Sanchez JJ, Fernandez-Oropeza AK, Sun MS, Dell’Orco M, Davies S, Savage DD, Mellios N, Milligan ED. Prenatal alcohol exposure dysregulates spinal and circulating immune cell circular RNA expression in adult female rats with chronic sciatic neuropathy. Front Neurosci 2023; 17:1180308. [PMID: 37360167 PMCID: PMC10288115 DOI: 10.3389/fnins.2023.1180308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Alcohol consumption during pregnancy is associated with Fetal Alcohol Spectrum Disorders (FASD) that results in a continuum of central nervous system (CNS) deficits. Emerging evidence from both preclinical and clinical studies indicate that the biological vulnerability to chronic CNS disease in FASD populations is driven by aberrant neuroimmune actions. Our prior studies suggest that, following minor nerve injury, prenatal alcohol exposure (PAE) is a risk factor for developing adult-onset chronic pathological touch sensitivity or allodynia. Allodynia in PAE rats occurs concurrently with heightened proinflammatory peripheral and spinal glial-immune activation. However, minor nerve-injured control rats remain non-allodynic, and corresponding proinflammatory factors are unaltered. A comprehensive molecular understanding of the mechanism(s) that underlie PAE-induced proinflammatory bias during adulthood remains elusive. Non-coding circular RNAs (circRNAs) are emerging as novel modulators of gene expression. Here, we hypothesized that PAE induces dysregulation of circRNAs that are linked to immune function under basal and nerve-injured conditions during adulthood. Utilizing a microarray platform, we carried out the first systematic profiling of circRNAs in adult PAE rats, prior to and after minor nerve injury. The results demonstrate a unique circRNA profile in adult PAE rats without injury; 18 circRNAs in blood and 32 spinal circRNAs were differentially regulated. Following minor nerve injury, more than 100 differentially regulated spinal circRNAs were observed in allodynic PAE rats. Bioinformatic analysis identified that the parental genes of these circRNAs are linked to the NF-κB complex, a central transcription factor for pain-relevant proinflammatory cytokines. Quantitative real-time PCR was employed to measure levels of selected circRNAs and linear mRNA isoforms. We have validated that circVopp1 was significantly downregulated in blood leukocytes in PAE rats, concurrent with downregulation of Vopp1 mRNA levels. Spinal circVopp1 levels were upregulated in PAE rats, regardless of nerve injury. Additionally, PAE downregulated levels of circItch and circRps6ka3, which are linked to immune regulation. These results demonstrate that PAE exerts long-lasting dysregulation of circRNA expression in blood leukocytes and the spinal cord. Moreover, the spinal circRNA expression profile following peripheral nerve injury is differentially modulated by PAE, potentially contributing to PAE-induced neuroimmune dysregulation.
Collapse
|
16
|
Cealie MY, Douglas JC, Le LHD, Vonkaenel ED, McCall MN, Drew PD, Majewska AK. Developmental ethanol exposure has minimal impact on cerebellar microglial dynamics, morphology, and interactions with Purkinje cells during adolescence. Front Neurosci 2023; 17:1176581. [PMID: 37214408 PMCID: PMC10198441 DOI: 10.3389/fnins.2023.1176581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the most common cause of non-heritable, preventable mental disability, occurring in almost 5% of births in the United States. FASD lead to physical, behavioral, and cognitive impairments, including deficits related to the cerebellum. There is no known cure for FASD and their mechanisms remain poorly understood. To better understand these mechanisms, we examined the cerebellum on a cellular level by studying microglia, the principal immune cells of the central nervous system, and Purkinje cells, the sole output of the cerebellum. Both cell types have been shown to be affected in models of FASD, with increased cell death, immune activation of microglia, and altered firing in Purkinje cells. While ethanol administered in adulthood can acutely depress the dynamics of the microglial process arbor, it is unknown how developmental ethanol exposure impacts microglia dynamics and their interactions with Purkinje cells in the long term. Methods To address this question, we used a mouse model of human 3rd trimester exposure, whereby L7cre/Ai9+/-/Cx3cr1G/+ mice (with fluorescently labeled microglia and Purkinje cells) of both sexes were subcutaneously treated with a binge-level dose of ethanol (5.0 g/kg/day) or saline from postnatal days 4-9. Cranial windows were implanted in adolescent mice above the cerebellum to examine the long-term effects of developmental ethanol exposure on cerebellar microglia and Purkinje cell interactions using in vivo two-photon imaging. Results We found that cerebellar microglia dynamics and morphology were not affected after developmental ethanol exposure. Microglia dynamics were also largely unaltered with respect to how they interact with Purkinje cells, although subtle changes in these interactions were observed in females in the molecular layer of the cerebellum. Discussion This work suggests that there are limited in vivo long-term effects of ethanol exposure on microglia morphology, dynamics, and neuronal interactions, so other avenues of research may be important in elucidating the mechanisms of FASD.
Collapse
Affiliation(s)
- MaKenna Y. Cealie
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James C. Douglas
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Linh H. D. Le
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Erik D. Vonkaenel
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Matthew N. McCall
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Paul D. Drew
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ania K. Majewska
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
17
|
Holloway KN, Douglas JC, Rafferty TM, Majewska AK, Kane CJM, Drew PD. Ethanol-induced cerebellar transcriptomic changes in a postnatal model of fetal alcohol spectrum disorders: Focus on disease onset. Front Neurosci 2023; 17:1154637. [PMID: 37008214 PMCID: PMC10062483 DOI: 10.3389/fnins.2023.1154637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of neurodevelopmental disorders caused by ethanol exposure in utero, which can result in neurocognitive and behavioral impairments, growth defects, and craniofacial anomalies. FASD affects up to 1-5% of school-aged children in the United States, and there is currently no cure. The underlying mechanisms involved in ethanol teratogenesis remain elusive and need greater understanding to develop and implement effective therapies. Using a third trimester human equivalent postnatal mouse model of FASD, we evaluate the transcriptomic changes induced by ethanol exposure in the cerebellum on P5 and P6, after only 1 or 2 days of ethanol exposure, with the goal of shedding light on the transcriptomic changes induced early during the onset and development of FASD. We have highlighted key pathways and cellular functions altered by ethanol exposure, which include pathways related to immune function and cytokine signaling as well as the cell cycle. Additionally, we found that ethanol exposure resulted in an increase in transcripts associated with a neurodegenerative microglia phenotype, and acute- and pan-injury reactive astrocyte phenotypes. Mixed effects on oligodendrocyte lineage cell associated transcripts and cell cycle associated transcripts were observed. These studies help to elucidate the underlying mechanisms that may be involved with the onset of FASD and provide further insights that may aid in identifying novel targets for interventions and therapeutics.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
18
|
Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, Riley EP, Elliott EJ. Fetal alcohol spectrum disorders. Nat Rev Dis Primers 2023; 9:11. [PMID: 36823161 DOI: 10.1038/s41572-023-00420-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Alcohol readily crosses the placenta and may disrupt fetal development. Harm from prenatal alcohol exposure (PAE) is determined by the dose, pattern, timing and duration of exposure, fetal and maternal genetics, maternal nutrition, concurrent substance use, and epigenetic responses. A safe dose of alcohol use during pregnancy has not been established. PAE can cause fetal alcohol spectrum disorders (FASD), which are characterized by neurodevelopmental impairment with or without facial dysmorphology, congenital anomalies and poor growth. FASD are a leading preventable cause of birth defects and developmental disability. The prevalence of FASD in 76 countries is >1% and is high in individuals living in out-of-home care or engaged in justice and mental health systems. The social and economic effects of FASD are profound, but the diagnosis is often missed or delayed and receives little public recognition. Future research should be informed by people living with FASD and be guided by cultural context, seek consensus on diagnostic criteria and evidence-based treatments, and describe the pathophysiology and lifelong effects of FASD. Imperatives include reducing stigma, equitable access to services, improved quality of life for people with FASD and FASD prevention in future generations.
Collapse
Affiliation(s)
- Svetlana Popova
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Michael E Charness
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Burd
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Pediatric Therapy Services, Altru Health System, Grand Forks, ND, USA
| | - Andi Crawford
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - H Eugene Hoyme
- Sanford Children's Genomic Medicine Consortium, Sanford Health, and University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Raja A S Mukherjee
- National UK FASD Clinic, Surrey and Borders Partnership NHS Foundation Trust, Redhill, Surrey, UK
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Elizabeth J Elliott
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,New South Wales FASD Assessment Service, CICADA Centre for Care and Intervention for Children and Adolescents affected by Drugs and Alcohol, Sydney Children's Hospitals Network, Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Bradley R, Lakpa KL, Burd M, Mehta S, Katusic MZ, Greenmyer JR. Fetal Alcohol Spectrum Disorder and Iron Homeostasis. Nutrients 2022; 14:4223. [PMID: 36296909 PMCID: PMC9607572 DOI: 10.3390/nu14204223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 09/19/2023] Open
Abstract
Prenatal alcohol exposure results in a spectrum of behavioral, cognitive, and morphological abnormalities collectively referred to as fetal alcohol spectrum disorder (FASD). FASD presents with significant phenotypic variability and may be modified by gestational variables such as maternal nutritional status. Iron serves a critical function in the development of and processes within central nervous system (CNS) structures. Gestational iron deficiency alters CNS development and may contribute to neurodevelopmental impairment in FASD. This review explores the relationship between iron deficiency and fetal alcohol spectrum disorder as described in small animal and human studies. Consideration is given to the pathophysiologic mechanisms linking iron homeostasis and prenatal alcohol exposure. Existing data suggest that iron deficiency contributes to the severity of FASD and provide a mechanistic explanation linking these two conditions.
Collapse
Affiliation(s)
- Regan Bradley
- School of Medicine, University of North Dakota, Grand Forks, ND 58201, USA
| | - Koffi L. Lakpa
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Burd
- School of Medicine, University of North Dakota, Grand Forks, ND 58201, USA
| | - Sunil Mehta
- Mayo Clinic, Developmental and Behavioral Pediatrics, Psychiatry and Psychology, Rochester, MN 55905, USA
| | - Maja Z. Katusic
- Mayo Clinic, Pediatric and Adolescent Medicine, Rochester, MN 55905, USA
| | - Jacob R. Greenmyer
- Mayo Clinic, Pediatric and Adolescent Medicine, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Kar P, Reynolds JE, Gibbard WB, McMorris C, Tortorelli C, Lebel C. Trajectories of brain white matter development in young children with prenatal alcohol exposure. Hum Brain Mapp 2022; 43:4145-4157. [PMID: 35596624 PMCID: PMC9374879 DOI: 10.1002/hbm.25944] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/08/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is associated with alterations to brain white matter microstructure. Previous studies of PAE have demonstrated different findings in young children compared to older children and adolescents, suggesting altered developmental trajectories and highlighting the need for longitudinal research. 122 datasets in 54 children with PAE (27 males) and 196 datasets in 89 children without PAE (45 males) were included in this analysis. Children underwent diffusion tensor imaging between 2 and 8 years of age, returning approximately every 6 months. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major brain white matter tracts and examined for age-related changes using linear mixed effects models with age, sex, group (PAE vs. control) and an age-by-group interaction. Children with PAE had slower decreases of MD over time in the genu of the corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus. No significant age-by-group interactions were noted for FA. These findings show slower white matter development in young children with PAE than in unexposed controls. This connects previous cross-sectional findings of lower MD in young children with PAE to findings of higher MD in older children and adolescents with PAE, and further helps to understand brain development in children with PAE. This deviation from typical development trajectories may reflect altered brain plasticity, which has implications for cognitive and behavioral learning in children with PAE.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - William Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Marguet F, Brosolo M, Friocourt G, Sauvestre F, Marcorelles P, Lesueur C, Marret S, Gonzalez BJ, Laquerrière A. Oligodendrocyte lineage is severely affected in human alcohol-exposed foetuses. Acta Neuropathol Commun 2022; 10:74. [PMID: 35568959 PMCID: PMC9107108 DOI: 10.1186/s40478-022-01378-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure is a major cause of neurobehavioral disabilities. MRI studies in humans have shown that alcohol is associated with white matter microstructural anomalies but these studies focused on myelin abnormalities only after birth. Only one of these studies evaluated oligodendrocyte lineage, but only for a short period during human foetal life. As data are lacking in humans and alcohol is known to impair oligodendrocyte differentiation in rodents, the present study aimed to compare by immunohistochemistry the oligodendrocyte precursor cells expressing PDGFR-α and immature premyelinating/mature oligodendrocytes expressing Olig2 in the ganglionic eminences and the frontal cortex of 14 human foetuses exposed to alcohol from 15 to 37 weeks' gestation with age-matched controls. The human brains used in this study were obtained at the time of foetal autopsies for medical termination of pregnancy, in utero or post-natal early death. Before birth, PDGFR-α expression was strongly increased in the ganglionic eminences and the cortex of all foetuses exposed to alcohol except at the earliest stage. No massive generation of Olig2 immunoreactive cells was identified in the ganglionic eminences until the end of pregnancy and the density of Olig2-positive cells within the cortex was consistently lower in foetuses exposed to alcohol than in controls. These antenatal data from humans provides further evidence of major oligodendrocyte lineage impairment at specific and key stages of brain development upon prenatal alcohol exposure including defective or delayed generation and maturation of oligodendrocyte precursors.
Collapse
Affiliation(s)
- Florent Marguet
- Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Laboratoire d'Anatomie Pathologique, Pavillon Jacques Delarue, CHU, Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France.
| | - Mélanie Brosolo
- UNIROUEN, INSERM U1245 F76000, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, Rouen, France
| | - Gaëlle Friocourt
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et Des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Fanny Sauvestre
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Pascale Marcorelles
- Pathology Laboratory, Pole Pathologie-Biologie, Centre Hospitalier Universitaire Brest, Brest, France
- Laboratory of Neurosciences of Brest, Faculté de Médecine et des Sciences de la Santé, Brest University, Brest, France
| | - Céline Lesueur
- UNIROUEN, INSERM U1245 F76000, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, Rouen, France
| | - Stéphane Marret
- Department of Neonatal Paediatrics and Intensive Care, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, 76000, Rouen, France
| | - Bruno J Gonzalez
- UNIROUEN, INSERM U1245 F76000, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, Rouen, France
| | - Annie Laquerrière
- Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Laboratoire d'Anatomie Pathologique, Pavillon Jacques Delarue, CHU, Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, 1 Rue de Germont, 76031, Rouen Cedex, France
| |
Collapse
|
22
|
Komada M, Nishimura Y. Epigenetics and Neuroinflammation Associated With Neurodevelopmental Disorders: A Microglial Perspective. Front Cell Dev Biol 2022; 10:852752. [PMID: 35646933 PMCID: PMC9133693 DOI: 10.3389/fcell.2022.852752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a cause of neurodevelopmental disorders such as autism spectrum disorders, fetal alcohol syndrome, and cerebral palsy. Converging lines of evidence from basic and clinical sciences suggest that dysregulation of the epigenetic landscape, including DNA methylation and miRNA expression, is associated with neuroinflammation. Genetic and environmental factors can affect the interaction between epigenetics and neuroinflammation, which may cause neurodevelopmental disorders. In this minireview, we focus on neuroinflammation that might be mediated by epigenetic dysregulation in microglia, and compare studies using mammals and zebrafish.
Collapse
Affiliation(s)
- Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Yuhei Nishimura,
| |
Collapse
|
23
|
Siqueira M, Stipursky J. BLOOD BRAIN BARRIER AS AN INTERFACE FOR ALCOHOL INDUCED NEUROTOXICITY DURING DEVELOPMENT. Neurotoxicology 2022; 90:145-157. [DOI: 10.1016/j.neuro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
24
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
25
|
Lin DT, Kao NJ, Cross TWL, Lee WJ, Lin SH. nEffects of ketogenic diet on cognitive functions of mice fed high-fat-high-cholesterol diet. J Nutr Biochem 2022; 104:108974. [DOI: 10.1016/j.jnutbio.2022.108974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
|
26
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
27
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
29
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
30
|
Lowery RL, Cealie MY, Lamantia CE, Mendes MS, Drew PD, Majewska AK. Microglia and astrocytes show limited, acute alterations in morphology and protein expression following a single developmental alcohol exposure. J Neurosci Res 2021; 99:2008-2025. [PMID: 33606320 PMCID: PMC8349862 DOI: 10.1002/jnr.24808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are the most common cause of nonheritable, preventable mental disability and are characterized by cognitive, behavioral, and physical impairments. FASD occurs in almost 5% of births in the United States, but despite this prevalence there is no known cure, largely because the biological mechanisms that translate alcohol exposure to neuropathology are not well understood. While the effects of early ethanol exposure on neuronal survival and circuitry have received more attention, glia, the cells most closely tied to initiating and propagating inflammatory events, could be an important target for alcohol in the developing brain. Inflammation is known to alter developmental trajectories, but it has recently been shown that even small changes in both astrocytes and microglia in the absence of full-blown inflammatory signaling can alter brain function long-term. Here, we studied the acute response of astrocytes and microglia to a single exposure to ethanol in development across sexes in a mouse model of human third trimester exposure, in order to understand how these cells may transition from their normal developmental path to a different program that leads to FASD neuropathology. We found that although a single ethanol exposure delivered subcutaneously on postnatal day 4 did not cause large changes in microglial morphology or the expression of AldH1L1 and GFAP in the cortex and hippocampus, subtle effects were observed. These findings suggest that even a single, early ethanol exposure can induce mild acute alterations in glia that could contribute to developmental deficits.
Collapse
Affiliation(s)
- Rebecca L Lowery
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - MaKenna Y Cealie
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Cassandra E Lamantia
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Monique S Mendes
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ania K Majewska
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
31
|
Mokashi SS, Shankar V, MacPherson RA, Hannah RC, Mackay TFC, Anholt RRH. Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain. Front Psychiatry 2021; 12:699033. [PMID: 34366927 PMCID: PMC8341641 DOI: 10.3389/fpsyt.2021.699033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal alcohol exposure can lead to developmental abnormalities, intellectual disability, and behavioral changes, collectively termed fetal alcohol spectrum disorder (FASD). In 2015, the Centers for Disease Control found that 1 in 10 pregnant women report alcohol use and more than 3 million women in the USA are at risk of exposing their developing fetus to alcohol. Drosophila melanogaster is an excellent genetic model to study developmental effects of alcohol exposure because many individuals of the same genotype can be reared rapidly and economically under controlled environmental conditions. Flies exposed to alcohol undergo physiological and behavioral changes that resemble human alcohol-related phenotypes. Here, we show that adult flies that developed on ethanol-supplemented medium have decreased viability, reduced sensitivity to ethanol, and disrupted sleep and activity patterns. To assess the effects of exposure to alcohol during development on brain gene expression, we performed single cell RNA sequencing and resolved cell clusters with differentially expressed genes which represent distinct neuronal and glial populations. Differential gene expression showed extensive sexual dimorphism with little overlap between males and females. Gene expression differences following developmental alcohol exposure were similar to previously reported differential gene expression following cocaine consumption, suggesting that common neural substrates respond to both drugs. Genes associated with glutathione metabolism, lipid transport, glutamate and GABA metabolism, and vision feature in sexually dimorphic global multi-cluster interaction networks. Our results provide a blueprint for translational studies on alcohol-induced effects on gene expression in the brain that may contribute to or result from FASD in human populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert R. H. Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC, United States
| |
Collapse
|
32
|
Pinson MR, Holloway KN, Douglas JC, Kane CJM, Miranda RC, Drew PD. Divergent and overlapping hippocampal and cerebellar transcriptome responses following developmental ethanol exposure during the secondary neurogenic period. Alcohol Clin Exp Res 2021; 45:1408-1423. [PMID: 34060105 PMCID: PMC8312515 DOI: 10.1111/acer.14633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Background The developing hippocampus and cerebellum, unique among brain regions, exhibit a secondary surge in neurogenesis during the third trimester of pregnancy. Ethanol (EtOH) exposure during this period is results in a loss of tissue volume and associated neurobehavioral deficits. However, mechanisms that link EtOH exposure to teratology in these regions are not well understood. We therefore analyzed transcriptomic adaptations to EtOH exposure to identify mechanistic linkages. Methods Hippocampi and cerebella were microdissected at postnatal day (P)10, from control C57BL/6J mouse pups, and pups treated with 4 g/kg of EtOH from P4 to P9. RNA was isolated and RNA‐seq analysis was performed. We compared gene expression in EtOH‐ and vehicle‐treated control neonates and performed biological pathway‐overrepresentation analysis. Results While EtOH exposure resulted in the general induction of genes associated with the S‐phase of mitosis in both cerebellum and hippocampus, overall there was little overlap in differentially regulated genes and associated biological pathways between these regions. In cerebellum, EtOH additionally induced gene expression associated with the G2/M‐phases of the cell cycle and sonic hedgehog signaling, while in hippocampus, EtOH‐induced the pathways for ribosome biogenesis and protein translation. Moreover, EtOH inhibited the transcriptomic identities associated with inhibitory interneuron subpopulations in the hippocampus, while in the cerebellum there was a more pronounced inhibition of transcripts across multiple oligodendrocyte maturation stages. Conclusions These data indicate that during the delayed neurogenic period, EtOH may stimulate the cell cycle, but it otherwise results in widely divergent molecular effects in the hippocampus and cerebellum. Moreover, these data provide evidence for region‐ and cell‐type‐specific vulnerability, which may contribute to the pathogenic effects of developmental EtOH exposure.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kalee N Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
33
|
Kar P, Reynolds JE, Grohs MN, Gibbard WB, McMorris C, Tortorelli C, Lebel C. White matter alterations in young children with prenatal alcohol exposure. Dev Neurobiol 2021; 81:400-410. [PMID: 33829663 DOI: 10.1002/dneu.22821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Prenatal alcohol exposure (PAE) can lead to cognitive, behavioural, and social-emotional challenges. Previous neuroimaging research has identified structural brain alterations in newborns, older children, adolescents, and adults with PAE; however, little is known about brain structure in young children. Extensive brain development occurs during early childhood; therefore, understanding the neurological profiles of young children with PAE is critical for early identification and effective intervention. We studied 54 children (5.21 ± 1.11 years; 27 males) with confirmed PAE (94% also had other prenatal exposures, 74% had adverse postnatal experiences) compared with 54 age- and sex-matched children without PAE. Children underwent diffusion tensor imaging between 2 and 7 years of age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major white matter tracts. Univariate analyses of covariance were used to test group differences (PAE vs. control) controlling for age and sex. The PAE group had higher FA in the genu of the corpus callosum and lower MD in the bilateral uncinate fasciculus. The PAE group also had lower tract volume in the corpus callosum, the bilateral inferior fronto-occipital fasciculi, and the right superior longitudinal fasciculus. Our findings align with studies of newborns with PAE reporting lower diffusivity, but contrast those in older populations with PAE, which consistently report lower FA and higher MD. Further research is needed to understand trajectories of white matter development and how our results of higher FA/lower MD in young children connect with lower FA/higher MD observed at older ages.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Goeke CM, Hashimoto JG, Guizzetti M, Vitalone A. Effects of ethanol-and choline-treated astrocytes on hippocampal neuron neurite outgrowth in vitro. Sci Prog 2021; 104:368504211018943. [PMID: 34019432 PMCID: PMC9115969 DOI: 10.1177/00368504211018943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure to ethanol in utero can result in Fetal Alcohol Spectrum Disorders, which may cause long-lasting cognitive and behavioral abnormalities. Preclinical studies indicate that choline ameliorates the behavioral effects of developmental alcohol exposure in rodents, and clinical studies on the effectiveness of choline, administered early in pregnancy, showed that the adverse effects of heavy prenatal alcohol exposure on postnatal growth, and cognition in human infants were mitigated. However, little is known on the mechanisms behind the effects of choline. We have previously reported that astrocyte pre-treatment with 75 mM ethanol, in vitro, reduces neurite outgrowth in hippocampal neurons co-cultured with the pre-treated astrocytes. Our in vitro system allows us to study the effects of chemicals on astrocyte functions, able to modulate neuronal development. The main objective was to test the hypothesis that choline can ameliorate the astrocyte-mediated effects of ethanol on neurite growth. In this study, we exposed primary rat cortical astrocytes to ethanol, choline, ethanol plus choline, or control conditions for 24 h. Culture media was then removed, replaced with fresh media containing no ethanol or choline treatments and primary rat hippocampal neurons were plated on top of the astrocyte monolayer and cultured for 16 h. Neurons were then stained for β-III Tubulin and neurite outgrowth was measured. Astrocyte exposure to ethanol (25, 50, and 75 mM) decreases neurite outgrowth in co-cultured hippocampal pyramidal neurons, while astrocyte treatment with choline had no effect. Astrocyte treatment with ethanol and choline in combination, however, prevented the effect of ethanol, leading to levels of neurite outgrowth similar the control condition. Choline prevents the inhibitory effect of ethanol-treated astrocytes on neurite outgrowth while not altering normal neuronal development. These results suggest a new, astrocyte-mediated mechanism by which choline ameliorates the effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Calla M Goeke
- VA Portland Health Care System, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Annabella Vitalone
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Kable JA, Coles CD, Jones KL, Yevtushok L, Kulikovsky Y, Zymak-Zakutnya N, Dubchak I, Akhmedzhanova D, Wertelecki W, Chambers CD. Infant Cardiac Orienting Responses Predict Later FASD in the Preschool Period. Alcohol Clin Exp Res 2021; 45:386-394. [PMID: 33277942 PMCID: PMC7887046 DOI: 10.1111/acer.14525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been identified as one of the leading preventable causes of developmental disabilities, but early identification of those impacted has been challenging. This study evaluated the use of infant cardiac orienting responses (CORs), which assess neurophysiological encoding of environmental events and are sensitive to the impact of PAE, to predict later fetal alcohol spectrum disorder (FASD) status. METHODS Mother-infant dyads from Ukraine were recruited during pregnancy based on the mother's use of alcohol. Participants (n = 120) were then seen at 6 and 12 months when CORs were collected and in the preschool period when they were categorized as having (i) fetal alcohol syndrome (FAS), (ii) partial FAS (pFAS), (iii) alcohol-related neurodevelopmental disorder (ARND), (iv) PAE and no diagnosis, or (v) no PAE and no diagnosis. To assess CORs, stimuli (auditory tones and pictures) were presented using a fixed-trial habituation/dishabituation paradigm. Heart rate (HR) responses were aggregated across the first 3 habituation and dishabituation trials and converted to z-scores relative to the sample's mean response at each second by stimuli. Z-scores greater than 1 were then counted by condition (habituation or dishabituation) to compute a total risk index. RESULTS Significant group differences were found on total deviation scores of the CORs elicited from visual but not auditory stimuli. Those categorized as pFAS/FAS had significantly higher total deviation scores than did those categorized as ARND or as having no alcohol-related diagnosis with or without a history of PAE. Receiver operating characteristic curve analysis of the visual response yielded an area under the curve value of 0.765 for predicting to pFAS/FAS status. CONCLUSIONS A score reflecting total deviation from typical HR during CORs elicited using visual stimuli in infancy may be useful in identifying individuals who need early intervention as a result of their PAE.
Collapse
Affiliation(s)
- Julie A Kable
- From the Department of Psychiatry and Behavioral Science (JAK, CDC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of and Pediatrics (JAK, CDC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire D Coles
- From the Department of Psychiatry and Behavioral Science (JAK, CDC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of and Pediatrics (JAK, CDC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth L Jones
- Department of Pediatrics (KLJ, WW, ChDC), University of California San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health (KLJ, ChDC), University of California San Diego, La Jolla, California, USA
| | - Lyubov Yevtushok
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
- Rivne Regional Medical Diagnostic Center (LY, YK), Rivne, Ukraine
- Lviv National Medical University (LY), Lviv, Ukraine
| | - Yaroslav Kulikovsky
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
- Rivne Regional Medical Diagnostic Center (LY, YK), Rivne, Ukraine
| | - Natalya Zymak-Zakutnya
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
- Khmelnytsky Perinatal Center (NZ-Z, ID, DA), Khmelnytsky, Ukraine
| | - Iryna Dubchak
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
- Khmelnytsky Perinatal Center (NZ-Z, ID, DA), Khmelnytsky, Ukraine
| | - Diana Akhmedzhanova
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
- Khmelnytsky Perinatal Center (NZ-Z, ID, DA), Khmelnytsky, Ukraine
| | - Wladimir Wertelecki
- Department of Pediatrics (KLJ, WW, ChDC), University of California San Diego, La Jolla, California, USA
- OMNI-Net Ukraine Birth Defects Program (LY, YK, NZ-Z, ID, DA, WW), Rivne, Ukraine
| | - Christina D Chambers
- Department of Pediatrics (KLJ, WW, ChDC), University of California San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health (KLJ, ChDC), University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Siqueira M, Araujo APB, Gomes FCA, Stipursky J. Ethanol Gestational Exposure Impairs Vascular Development and Endothelial Potential to Control BBB-Associated Astrocyte Function in the Developing Cerebral Cortex. Mol Neurobiol 2021; 58:1755-1768. [PMID: 33387302 DOI: 10.1007/s12035-020-02214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Ethanol consumption during pregnancy or lactation period can induce permanent damage to the development of the central nervous system (CNS), resulting in fetal alcohol spectrum disorders (FASD). CNS development depends on proper neural cells and blood vessel (BV) development and blood-brain barrier (BBB) establishment; however, little is known about how ethanol affects these events. Here, we investigated the impact of ethanol exposure to endothelial cells (ECs) function and to ECs interaction with astrocytes in the context of BBB establishment. Cerebral cortex of newborn mice exposed in utero to ethanol (FASD model) presented a hypervascularized phenotype, revealed by augmented vessel density, length, and branch points. Further, aberrant distribution of the tight junction ZO-1 protein along BVs and increased rates of perivascular astrocytic endfeet around BVs were observed. In vitro exposure of human brain microcapillary ECs (HBMEC) to ethanol significantly disrupted ZO-1 distribution, decreased Claudin-5 and GLUT-1 expression and impaired glucose uptake, and increased nitric oxide secretion. These events were accompanied by upregulation of angiogenesis-related secreted proteins by ECs in response to ethanol exposure. Treatment of cortical astrocytes with conditioned medium (CM) from ethanol exposed ECs, upregulated astrocyte's expression of GFAP, Cx43, and Lipocalin-2 genes, as well as the pro-inflammatory genes, IL-1beta, IL-6, and TNF-alpha, which was accompanied by NF-kappa B protein nuclear accumulation. Our findings suggest that ethanol triggers a dysfunctional phenotype in brain ECs, leading to impairment of cortical vascular network formation, and promotes ECs-induced astrocyte dysfunction, which could dramatically affect BBB establishment in the developing brain.
Collapse
Affiliation(s)
- Michele Siqueira
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Ana Paula Bérgamo Araujo
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Joice Stipursky
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
37
|
Chatterjee D, Mahabir S, Chatterjee D, Gerlai R. Lasting alterations induced in glial cell phenotypes by short exposure to alcohol during embryonic development in zebrafish. Addict Biol 2021; 26:e12867. [PMID: 31919968 DOI: 10.1111/adb.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Despite the known teratogenic effects of alcohol (ethanol) on the developing human fetus, the prevalence of fetal alcohol spectrum disorder (FASD) is not decreasing. Appropriate treatment for this life-long disease has not been developed, and even diagnostic biomarkers are unavailable. FASD remains a large unmet medical need. Numerous animal models have been developed to mimic FASD and study potential underlying biological mechanisms. However, most of these models focused on neuronal phenotypes. Given that glial cells represent the majority of cells in the vertebrate brain, and given the increasingly appreciated roles they play in a myriad of neuronal functions as well as CNS disorders, we decided to investigate potential embryonic alcohol exposure induced changes in them. Building upon a previously introduced zebrafish model of milder and most prevalent forms of FASD, we investigated the effect of a 2-hour-long exposure to alcohol (1% vol/vol bath concentration) employed at the 24th hour postfertilization stage of development of zebrafish on a number of glial cell-related phenotypes. We studied oligodendrocyte, astrocyte as well as microglia-related phenotypes using immunohistochemistry, lipid, and enzyme activity analyses. We report significant changes in wide-spread glial cell phenotypes induced by embryonic alcohol exposure in the zebrafish brain and conclude that the zebrafish will advance our understanding of the mechanisms of this devastating disorder.
Collapse
Affiliation(s)
| | - Samantha Mahabir
- Department of Cell and Systems Biology University of Toronto Toronto Canada
| | - Diptendu Chatterjee
- Department of Psychology University of Toronto Mississauga Mississauga Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology University of Toronto Toronto Canada
- Department of Psychology University of Toronto Mississauga Mississauga Canada
| |
Collapse
|
38
|
Marguet F, Friocourt G, Brosolo M, Sauvestre F, Marcorelles P, Lesueur C, Marret S, Gonzalez BJ, Laquerrière A. Prenatal alcohol exposure is a leading cause of interneuronopathy in humans. Acta Neuropathol Commun 2020; 8:208. [PMID: 33256853 PMCID: PMC7706035 DOI: 10.1186/s40478-020-01089-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are most often derived from animal or in vitro models. In order to study the production, migration and cortical density disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 foetal and infant brains antenatally exposed to alcohol, aged 15 weeks’ gestation to 22 postnatal months and in the ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks’ gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postnatal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal microscopy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and calretininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneuron density and positioning within the cortical plate, and which could account for the neurological disabilities observed in children with foetal alcohol disorder spectrum.
Collapse
|
39
|
Collier AD, Khalizova N, Chang GQ, Min S, Campbell S, Gulati G, Leibowitz SF. Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcohol Clin Exp Res 2020; 44:2519-2535. [PMID: 33067812 DOI: 10.1111/acer.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Embryonic exposure to ethanol (EtOH) produces marked disturbances in neuronal development and alcohol-related behaviors, with low-moderate EtOH doses stimulating neurogenesis without producing apoptosis and high doses having major cytotoxic effects while causing gross morphological abnormalities. With the pro-inflammatory chemokine system, Cxcl12, and its main receptor Cxcr4, known to promote processes of neurogenesis, we examined here this neuroimmune system in the embryonic hypothalamus to test directly if it mediates the stimulatory effects low-moderate EtOH doses have on neuronal development. METHODS We used the zebrafish (Danio rerio) model, which develops externally and allows one to investigate the developing brain in vivo with precise control of dose and timing of EtOH delivery in the absence of maternal influence. Zebrafish were exposed to low-moderate EtOH doses (0.1, 0.25, 0.5% v/v), specifically during a period of peak hypothalamic development from 22 to 24 hours postfertilization, and in some tests were pretreated from 2 to 22 hpf with the Cxcr4 receptor antagonist, AMD3100. Measurements in the hypothalamus at 26 hpf were taken of cxcl12a and cxcr4b transcription, signaling, and neuronal density using qRT-PCR, RNAscope, and live imaging of transgenic zebrafish. RESULTS Embryonic EtOH exposure, particularly at the 0.5% dose, significantly increased levels of cxcl12a and cxcr4b mRNA in whole embryos, number of cxcl12a and cxcr4b transcripts in developing hypothalamus, and internalization of Cxcr4b receptors in hypothalamic cells. Embryonic EtOH also caused an increase in the number of hypothalamic neurons and coexpression of cxcl12a and cxcr4b transcripts within these neurons. Each of these stimulatory effects of EtOH in the embryo was blocked by pretreatment with the Cxcr4 antagonist AMD3100. CONCLUSIONS These results provide clear evidence that EtOH's stimulatory effects at low-moderate doses on the number of hypothalamic neurons early in development are mediated, in part, by increased transcription and intracellular activation of this chemokine system, likely due to autocrine signaling of Cxcl12a at its Cxcr4b receptor within the neurons.
Collapse
Affiliation(s)
- Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Nailya Khalizova
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Soe Min
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Samantha Campbell
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
40
|
Darbinian N, Darbinyan A, Merabova N, Bajwa A, Tatevosian G, Martirosyan D, Zhao H, Selzer ME, Goetzl L. Ethanol-mediated alterations in oligodendrocyte differentiation in the developing brain. Neurobiol Dis 2020; 148:105181. [PMID: 33189883 DOI: 10.1016/j.nbd.2020.105181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Alterations of white matter integrity and subsequent white matter structural deficits are consistent findings in Fetal Alcohol Syndrome (FAS), but knowledge regarding the molecular mechanisms underlying these abnormalities is incomplete. Experimental rodent models of FAS have shown dysregulation of cytokine expression leading to apoptosis of oligodendrocyte precursor cells (OPCs) and altered oligodendrocyte (OL) differentiation, but whether this is representative of human FAS pathogenesis has not been determined. METHODS Fetal brain tissue (12.2-21.4 weeks gestation) from subjects undergoing elective termination of pregnancy was collected according to an IRB-approved protocol. Ethanol (EtOH) exposure status was classified based on a detailed face-to-face questionnaire adapted from the National Institute on Alcohol Abuse and Alcoholism Prenatal Alcohol and Sudden Infant Death Syndrome and Stillbirth (PASS) study. Twenty EtOH-exposed fetuses were compared with 20 gestational age matched controls. Cytokine and OPC marker mRNA expression was quantified by Real-Time Polymerase chain reaction (qRT-PCR). Patterns of protein expression of OPC markers and active Capase-3 were studied by Fluorescence Activated Cell Sorting (FACS). RESULTS EtOH exposure was associated with reduced markers of cell viability, OPC differentiation, and OL maturation, while early OL differentiation markers were unchanged or increased. Expression of mRNAs for proteins specific to more mature forms of OL lineage (platelet-derived growth factor α (PDGFRα) and myelin basic protein (MBP) was lower in the EtOH group than in controls. Expression of the multifunctional growth and differentiation-promoting growth factor IGF-1, which is essential for normal development, also was reduced. Reductions were not observed for markers of early stages of OL differentiation, including Nuclear transcription factor NK-2 homeobox locus 2 (Nkx2.2). Expression of mRNAs for the proinflammatory cytokine, tumor necrosis factor-α (TNFα), and several proinflammatory chemokines was higher in the EtOH group compared to controls, including: Growth regulated protein alpha/chemokine (C-X-C motif) ligand 1 (GRO-α/CXCL1), Interleukin 8/chemokine (C-X-C motif) ligand 8 (IL8/CXCL8), Chemokine (C-X-C motif) ligand 6/Granulocyte chemotactic protein 2 (CXCL16/GCP2), epithelial-derived neutrophil-activating protein 78/chemokine (C-X-C motif) ligand 5 (ENA-78/CXCL5), monocyte chemoattractant protein-1 (MCP-1). EtOH exposure also was associated with an increase in the proportion of cells expressing markers of early stage OPCs, such as A2B5 and NG2. Finally, apoptosis (measured by caspase-3 activation) was increased substantially in the EtOH group compared to controls. CONCLUSION Prenatal EtOH exposure is associated with excessive OL apoptosis and/or delayed OL maturation in human fetal brain. This is accompanied by markedly dysregulated expression of several chemokines and cytokines, in a pattern predictive of increased OL cytotoxicity and reduced OL differentiation. These findings are consistent with findings in animal models of FAS.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States of America.
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Huaqing Zhao
- Department of Clinical Sciences (Biostatistics and Epidemiology), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, United States of America.
| |
Collapse
|
41
|
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2020; 99:1973-1985. [PMID: 32959429 DOI: 10.1002/jnr.24735] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
Ethanol exposure to the fetus during pregnancy can result in fetal alcohol spectrum disorders (FASD). These disorders vary in severity, can affect multiple organ systems, and can lead to lifelong disabilities. Damage to the central nervous system (CNS) is common in FASD, and can result in altered behavior and cognition. The incidence of FASD is alarmingly high, resulting in significant personal and societal costs. There are no cures for FASD. Alcohol can directly alter the function of neurons in the developing CNS. In addition, ethanol can alter the function of CNS glial cells including microglia and astrocytes which normally maintain homeostasis in the CNS. These glial cells can function as resident immune cells in the CNS to protect against pathogens and other insults. However, activation of glia can also damage CNS cells and lead to aberrant CNS function. Ethanol exposure to the developing brain can result in the activation of glia and neuroinflammation, which may contribute to the pathology associated with FASD. This suggests that anti-inflammatory agents may be effective in the treatment of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
42
|
ABHD4-dependent developmental anoikis safeguards the embryonic brain. Nat Commun 2020; 11:4363. [PMID: 32868797 PMCID: PMC7459116 DOI: 10.1038/s41467-020-18175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
A specialized neurogenic niche along the ventricles accumulates millions of progenitor cells in the developing brain. After mitosis, fate-committed daughter cells delaminate from this germinative zone. Considering the high number of cell divisions and delaminations taking place during embryonic development, brain malformations caused by ectopic proliferation of misplaced progenitor cells are relatively rare. Here, we report that a process we term developmental anoikis distinguishes the pathological detachment of progenitor cells from the normal delamination of daughter neuroblasts in the developing mouse neocortex. We identify the endocannabinoid-metabolizing enzyme abhydrolase domain containing 4 (ABHD4) as an essential mediator for the elimination of pathologically detached cells. Consequently, rapid ABHD4 downregulation is necessary for delaminated daughter neuroblasts to escape from anoikis. Moreover, ABHD4 is required for fetal alcohol-induced apoptosis, but not for the well-established form of developmentally controlled programmed cell death. These results suggest that ABHD4-mediated developmental anoikis specifically protects the embryonic brain from the consequences of sporadic delamination errors and teratogenic insults.
Collapse
|
43
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
44
|
Savage DD, Rosenberg MJ, Coquet L, Porch MW, Allen NA, Roux C, Aligny C, Jouenne T, Gonzalez BJ. Ethanol-Induced Alterations in Placental and Fetal Cerebrocortical Annexin-A4 and Cerebral Cavernous Malformation Protein 3 Are Associated With Reductions in Fetal Cortical VEGF Receptor Binding and Microvascular Density. Front Neurosci 2020; 14:519. [PMID: 32655346 PMCID: PMC7325964 DOI: 10.3389/fnins.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Jegou et al. (2012) have reported prenatal alcohol exposure (PAE)-induced reductions of angiogenesis-related proteins in mouse placenta. These effects were associated with striking alterations in microvascular development in neonatal cerebral cortex. Here, we employed a rat model of moderate PAE to search for additional proteins whose placental and fetal cortical expression is altered by PAE, along with a subsequent examination of fetal cerebral cortical alterations associated with altered protein expression. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 h each day throughout gestation. Daily ethanol consumption, which resulted in a mean peak maternal serum ethanol concentration of 60.8 mg/dL, did not affect maternal weight gain, litter size, or placental or fetal body weight. On gestational day 20, rat placental: fetal units were removed by Caesarian section. Placental protein expression, analyzed by 2D-PAGE – tandem mass spectroscopy, identified a total of 1,117 protein spots, 20 of which were significantly altered by PAE. To date, 14 of these PAE-altered proteins have been identified. Western blotting confirmed the alterations of two of these placental proteins, namely, annexin-A4 (ANX-A4) and cerebral cavernous malformation protein 3 (CCM-3). Specifically, PAE elevated ANX-A4 and decreased CCM-3 in placenta. Subsequently, these two proteins were measured in fetal cerebral cortex, along with radiohistochemical studies of VEGF binding and histofluorescence studies of microvascular density in fetal cerebral cortex. PAE elevated ANX-A4 and decreased CCM-3 in fetal cerebral cortex, in a pattern similar to the alterations observed in placenta. Further, both VEGF receptor binding and microvascular density and orientation, measures that are sensitive to reduced CCM-3 expression in developing brain, were significantly reduced in the ventricular zone of fetal cerebral cortex. These results suggest that the expression angiogenesis-related proteins in placenta might serve as a biomarker of ethanol-induced alterations in microvascular development in fetal brain.
Collapse
Affiliation(s)
- Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Martina J Rosenberg
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Laurent Coquet
- UMR 6270, CNRS, Normandie University, UNIROUEN, Proteomic Facility PISSARO, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Morgan W Porch
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Nyika A Allen
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Christian Roux
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Aligny
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Thierry Jouenne
- UMR 6270, CNRS, Normandie University, UNIROUEN, Proteomic Facility PISSARO, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
45
|
Maxwell JR, Yellowhair TR, Davies S, Rogers DA, McCarson KL, Savage DD, Jantzie LL. Prenatal Alcohol Exposure and Chorioamnionitis Results in Microstructural Brain Injury in a Preclinical Investigation. ANNALS OF PEDIATRIC RESEARCH 2020; 4:1031. [PMID: 33073262 PMCID: PMC7560999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prenatal Alcohol Exposure (PAE) impacts 2% to 5% of infants born in the United States yearly. Women who consume alcohol during pregnancy have a five-fold increased rate of Chorioamnionitis (CHORIO). Both PAE and CHORIO cause microstructural injury to multiple brain regions including major white matter tracts. OBJECTIVE Utilizing two previously established animal models, we hypothesized that the combination of PAE+CHORIO would result in greater deficits in myelination and structural integrity than PAE alone. MATERIAL AND METHODS Pregnant Long-Evans rats voluntarily drank 5% ethanol or saccharin until Gestational Day 19 (GD). On GD19, CHORIO was induced in one group of PAE dams by a 30 min uterine artery occlusion and injection of Lipopolysaccharide (LPS) into each amniotic sac. The remaining PAE dams and saccharin controls underwent sham surgery. Pups were born on GD22 and weaned on Postnatal Day 24 (PD). On PD28, offspring were sacrificed, and their brains examined using ex-vivo Diffusion Tensor Imaging (DTI). RESULTS Compared to control, PAE alone did not affect offspring birth weights, mortality or any DTI measures. In contrast, PAE+CHORIO significantly reduced offspring survival and, in surviving pups, increased Radial Diffusivity (RD) in medial frontal cortex and decreased Fractional Anisotropy (FA) in medial and ventral frontal cortex and within capsular regions. CONCLUSION The combination of moderate PAE+CHORIO results in an increased mortality, concomitant with diffuse microstructural brain injury noted in young adolescent offspring at PD28. Future studies should examine the extent to which PAE exacerbates the damage caused by CHORIO alone and whether these deficits persist into adulthood.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, USA
- Department of Neurosciences, University of New Mexico, USA
| | | | - Suzy Davies
- Department of Neurosciences, University of New Mexico, USA
| | | | - Krystle L McCarson
- Department of Pediatrics, University of Arkansas for Medical Sciences, USA
| | - Daniel D Savage
- Department of Pediatrics, University of New Mexico, USA
- Department of Neurosciences, University of New Mexico, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, USA
- Department of Neurology, Johns Hopkins University School of Medicine, USA
- Kennedy Krieger Institute, USA
| |
Collapse
|
46
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
47
|
Peng J, Wang H, Rong X, He L, Xiangpen L, Shen Q, Peng Y. Cerebral Hemorrhage and Alcohol Exposure: A Review. Alcohol Alcohol 2019; 55:20-27. [PMID: 31845978 DOI: 10.1093/alcalc/agz087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Abstract
Aims
To investigate the dose–response relationships between alcohol and intracerebral hemorrhage (ICH), the impact of alcohol on the outcome of ICH and possible mechanisms underlying hypertensive ICH (HICH) caused by heavy drinking.
Methods
Literature search from 1985 to August 2019 in the PubMed database.
Results
The relationship between low-middle alcohol consumption and ICH remains controversial for various reasons, whereas chronic heavy drinking increases the incidence of ICH and exerts worse outcome. More attention is needed to clarify the characteristics of chronic alcohol intake and binge drinking. Chronic alcohol abuse tends to elevates blood pressure, resulting in increased occurrence of HICH and exaggerated HICH-contributed brain injury.
Conclusion
It is important to develop strategies to promote reasonable intake categories, prevent alcoholism and thus reduce the risk of ICH.
Collapse
Affiliation(s)
- Jialing Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - Lei He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - L Xiangpen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - Qingy Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. No. 33 Yinfeng Road, Guangzhou 510828
| |
Collapse
|
48
|
Sautreuil C, Laquerrière A, Lecuyer M, Brasse-Lagnel C, Jégou S, Bekri S, Marcorelles P, Gil S, Marret S, Gonzalez BJ. [Fetal alcohol exposure: when placenta would help to the early diagnosis of child brain impairments]. Med Sci (Paris) 2019; 35:859-865. [PMID: 31845877 DOI: 10.1051/medsci/2019167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alcohol consumption during pregnancy constitutes a major cause of neurodevelopmental and behavioral disabilities. Whereas it is possible for clinicians to establish a perinatal diagnosis of fetal alcohol syndrome, the more severe expression of fetal alcohol spectrum disorder (FASD), most FASD children are late or mis-diagnosed due to a lack of clear morphological and neurodevelopmental abnormalities. Several precious years of care are consequently lost. Recent data revealed a functional placenta-brain axis involved in the control of the fetal brain angiogenesis which is impaired by in utero alcohol exposure. Because in the developing fetal brain a correct angiogenesis is required for a correct neurodevelopment, these preclinical and clinical advances pave the way for a new generation of placental biomarkers for early diagnosis of FASD.
Collapse
Affiliation(s)
- Camille Sautreuil
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | - Annie Laquerrière
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Pathologie, Hôpital Charles-Nicolle, CHU de Rouen, France
| | - Matthieu Lecuyer
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | | | - Sylvie Jégou
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | - Soumeya Bekri
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Biochimie métabolique, Hôpital Charles-Nicolle, CHU de Rouen, France
| | | | - Sophie Gil
- Inserm UMR-S1139, Université Paris Descartes, Sorbonne Paris Cité, Fondation PremUp, Paris, France
| | - Stéphane Marret
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Pédiatrie Néonatale et Réanimation, Neuropédiatrie, Camsp, Hôpital Charles-Nicolle, CHU de Rouen, 37 boulevard Gambetta, 76000 Rouen, France
| | - Bruno J Gonzalez
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| |
Collapse
|
49
|
Heroux NA, Horgan CJ, Rosen JB, Stanton ME. Cholinergic rescue of neurocognitive insult following third-trimester equivalent alcohol exposure in rats. Neurobiol Learn Mem 2019; 163:107030. [PMID: 31185278 PMCID: PMC6689250 DOI: 10.1016/j.nlm.2019.107030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat significantly impairs hippocampal and prefrontal neurobehavioral functioning. Postnatal day [PD] 4-9 ethanol exposure in rats disrupts long-term context memory formation, resulting in abolished post-shock and retention test freezing in a variant of contextual fear conditioning called the Context Preexposure Facilitation Effect (CPFE). This behavioral impairment is accompanied by disrupted medial prefrontal, but not dorsal hippocampal expression of the immediate early genes (IEGs) c-Fos, Arc, Egr-1, and Npas4 (Heroux, Robinson-Drummer, Kawan, Rosen, & Stanton, 2019). The current experiment examined if systemic administration of the acetylcholinesterase inhibitor physostigmine (PHY) prior to context learning would rescue prefrontal IEG expression and freezing in the CPFE. From PD4-9, Long-Evans rats received oral intubation of ethanol (EtOH; 5.25 g/kg/day) or sham-intubation (SI). Rats received a systemic injection of saline (SAL) or PHY (0.01 mg/kg) prior to all three phases (Experiment 1) or just context exposure (Experiment 2) in the CPFE from PD31-33. A subset of rats were sacrificed 30 min after context learning to assay changes in IEG expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and ventral hippocampus (vHPC). Administration of PHY prior to all three phases or just context learning rescued both post-shock and retention test freezing in the CPFE in EtOH rats without altering performance in SI rats. EtOH-SAL rats had significantly reduced mPFC but not dHPC expression of c-Fos, Arc, Egr-1, and Npas4. EtOH-PHY treatment rescued mPFC expression of c-Fos in ethanol-exposed rats and increased Arc and Npas4 regardless of dosing condition. While there was no effect of PHY on dHPC or vHPC expression of Arc, Egr-1, or Npas4, this treatment significantly boosted hippocampal expression of c-Fos regardless of ethanol treatment. These findings implicate impaired cholinergic and prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Colin J Horgan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
50
|
Mahnke AH, Adams AM, Wang AZ, Miranda RC. Toxicant and teratogenic effects of prenatal alcohol. CURRENT OPINION IN TOXICOLOGY 2019; 14:29-34. [PMID: 32864517 DOI: 10.1016/j.cotox.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prenatal alcohol exposure can result in growth, cognitive, and behavioral deficits due to the toxicant and teratogenic effects of alcohol. Alcohol is an unusual toxicant, because, unlike other toxicants, it is consumed and has biological effects in the millimolar range. Cerebral cortical development is particularly vulnerable to both alcohol's acute and long-term reprogramming effects. Recent evidence suggests that neuroinflammation may be a persistent result of prenatal alcohol exposure and that modes of cellular communication capable of carrying miRNAs, such as extracellular vesicles, may be an integral part of long-term changes to cellular communication and inflammation following in utero alcohol exposure.
Collapse
Affiliation(s)
- Amanda H Mahnke
- Texas A&M University Health Science Center, Department of Neuroscience and Experimental Therapeutics, Bryan, TX 77807 USA
| | - Amy M Adams
- Texas A&M University Health Science Center, Department of Neuroscience and Experimental Therapeutics, Bryan, TX 77807 USA
| | - Andrew Z Wang
- Texas A&M University Health Science Center, Department of Neuroscience and Experimental Therapeutics, Bryan, TX 77807 USA
| | - Rajesh C Miranda
- Texas A&M University Health Science Center, Department of Neuroscience and Experimental Therapeutics, Bryan, TX 77807 USA
| |
Collapse
|