1
|
Fohner AE, Sitlani CM, Jayadev S, Bis JC, Trittschuh EH, Lopez OL, Tracy RP, Psaty BM, Longstreth WT, Seshadri S. Plasma TAR DNA-binding protein 43 (TDP-43) levels in a population-based cohort of older adults: The cardiovascular health study. J Alzheimers Dis 2025:13872877251334820. [PMID: 40267298 DOI: 10.1177/13872877251334820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Brain deposition of transactive response DNA-binding protein 43 (TDP-43) is a feature of neurodegenerative syndromes. We evaluated TDP-43 plasma concentrations in 1058 participants in the Cardiovascular Health Study (CHS), a population-based longitudinal cohort. The cohort was 38% male, 11% Black, had a mean age 75 years, and 261 people developed dementia over a mean of 5.5 years of follow up. Median TDP-43 levels were 211.0 pg/mL (IQR: 134.0-341.0 pg/mL). TDP-43 levels were not associated with cross-sectional or longitudinal change in cognitive scores, with plasma AD biomarkers, with brain MRI volumes, with incident dementia, or with demographic characteristics.
Collapse
Affiliation(s)
- Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center (GRECC), Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russel P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Systems and Population Health, University of Washington, Seattle, WA, USA
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Department of Neurology, Glenn Biggs Institute for Alzheimer s & Neurodegenerative Diseases, University of Texas Health Science Center at San AntonioSan Antonio, TX, USA
| |
Collapse
|
2
|
Takhor NH, Phan CW. The role of Ergothioneine in cognition and age-related neurodegenerative disease: a systematic review. Inflammopharmacology 2025:10.1007/s10787-025-01746-6. [PMID: 40249478 DOI: 10.1007/s10787-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Ergothioneine (ET) is an under recognised diet-derived compound which has the potential to be a "longevity vitamin". It was found to be beneficial for cognitive function and age-related neurodegenerative disorder (ARND). Thus, this study was conducted to synthesise the existing evidence of ET's effects on cognition and ARND, emphasizing its potential as a micronutrient for healthy aging. This study also highlights the future prospects of the research regarding ET's effects on cognition and ARND that are suggested in existing literature. Three databases (Pubmed, Scopus, and Web of Science) were used to search for the studies that meet the inclusion and exclusion criteria. A total of 19 studies were included after screening in this review. The risk of bias of each study was assessed using the Office of Health Assessment and Translation (OHAT) risk of bias rating tool. All studies' characteristics and main findings were tabulated according to their type of study. Mechanisms of ET in improving cognitive function and preventing ARND were found to be through its antioxidative, anti-inflammatory and antisenescence properties. Its role in neurotransmission and neuroprotection also contributed to improving cognition and preventing ARND. In conclusion, ET is a potential compound to be explored as its role in cognition and ARND have been discovered through several studies.
Collapse
Affiliation(s)
- Nurfarah Hazwani Takhor
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Neuroscience Research Group (NeuRG), Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
4
|
Chong ZZ, Souayah N. Pathogenic TDP-43 in amyotrophic lateral sclerosis. Drug Discov Today 2025; 30:104351. [PMID: 40188980 DOI: 10.1016/j.drudis.2025.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
The aberrant expression of the transactive response DNA-binding protein of 43 kDa (TDP-43) has been closely associated with amyotrophic lateral sclerosis (ALS). Cytoplasmic inclusions containing TDP-43 can be found in the brain and spinal cord in up to 97% of ALS cases. Mutations in the TARDBP gene promote the nuclear export of TDP-43, increase cytoplasmic aggregation, and predispose TDP-43 to post-translational modifications. Cleavage of TDP-43 and the resulting C- and N-terminal fragments also contribute to the development of ALS. Cellularly, the resulting impairment of autophagy and mitochondria aggravates cellular damage and neurodegeneration. Given the contribution of pathogenic TDP-43 to the development of ALS, elucidating the mechanisms related to TDP-43 will facilitate finding therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA.
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
5
|
Stella R, Bertoli A, Lopreiato R, Peggion C. A Twist in Yeast: New Perspectives for Studying TDP-43 Proteinopathies in S. cerevisiae. J Fungi (Basel) 2025; 11:188. [PMID: 40137226 PMCID: PMC11943067 DOI: 10.3390/jof11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and some forms of Alzheimer's disease. Yeast models have proven valuable in ND research due to their simplicity, genetic tractability, and the conservation of many cellular processes shared with higher eukaryotes. For several decades, Saccharomyces cerevisiae has been used as a model organism to study the behavior and toxicity of TDP-43, facilitating the identification of genes and pathways that either exacerbate or mitigate its toxic effects. This review will discuss evidence showing that yeast models of TDP-43 exhibit defects in proteostasis, mitochondrial function, autophagy, and RNA metabolism, which are key features of TDP-43-related NDs. Additionally, we will explore how modulating proteins involved in these processes reduce TDP-43 toxicity, aiding in restoring normal TDP-43 function or preventing its pathological aggregation. These findings highlight potential therapeutic targets for the treatment of TDP-43-related diseases.
Collapse
Affiliation(s)
- Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
- Neuroscience Institute, Consiglio Nazionale Delle Ricerche, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Wang Y, Wang Y, Yin H, Xiao Z, Ren Z, Ma X, Zhang J, Fu X, Zhang F, Zeng L. BI1 Activates Autophagy and Mediates TDP43 to Regulate ALS Pathogenesis. Mol Neurobiol 2025; 62:988-1030. [PMID: 38954254 DOI: 10.1007/s12035-024-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueting Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingtian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Fuqiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Ciaglia T, Miranda MR, Di Micco S, Vietri M, Smaldone G, Musella S, Di Sarno V, Auriemma G, Sardo C, Moltedo O, Pepe G, Bifulco G, Ostacolo C, Campiglia P, Manfra M, Vestuto V, Bertamino A. Neuroprotective Potential of Indole-Based Compounds: A Biochemical Study on Antioxidant Properties and Amyloid Disaggregation in Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:1585. [PMID: 39765912 PMCID: PMC11673510 DOI: 10.3390/antiox13121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states. Further analysis using thioflavin T fluorescence assays, circular dichroism, and computational studies indicated that the synthesized derivatives effectively promoted the self-disaggregation of the Aβ(25-35) fragment. Taken together, these findings suggest a unique profile of neuroprotective actions for indole-phenolic derivatives, combining chelating, antioxidant, and anti-aggregation properties, which position them as promising compounds for the development of multifunctional agents in Alzheimer's disease therapy. The methods used provide reliable in vitro data, although further in vivo validation and assessment of blood-brain barrier penetration are needed to confirm therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy;
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| |
Collapse
|
8
|
García Porta C, Mahfooz K, Komorowska J, Garcia-Rates S, Greenfield S. A Novel 14mer Peptide Inhibits Autophagic Flux via Selective Activation of the mTORC1 Signalling Pathway: Implications for Alzheimer's Disease. Int J Mol Sci 2024; 25:12837. [PMID: 39684549 DOI: 10.3390/ijms252312837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
During development, a 14mer peptide, T14, modulates cell growth via the α-7 nicotinic acetylcholine receptor (α7 nAChR). However, this process could become excitotoxic in the context of the adult brain, leading to pathologies such as Alzheimer's disease (AD). Recent work shows that T14 acts selectively via the mammalian target of rapamycin complex 1 (mTORC1). This pathway is essential for normal development but is overactive in AD. The triggering of mTORC1 has also been associated with the suppression of autophagy, commonly observed in ageing and neurodegeneration. We therefore investigated the relationship between T14 and autophagic flux in tissue cultures, mouse brain slices, and human Alzheimer's disease hippocampus. Here, we demonstrate that T14 and p-mTOR s2448 expression significantly increases in AD human hippocampus, which was associated with the gradual decrease in the autophagosome number across Braak stages. During development, the reduction in T14 positively correlated with pTau (Ser202, Thr205) and two selective autophagy receptors: p62 and optineurin. In vitro studies also indicated that T14 increases p-mTOR s2448 expression, resulting in the aggregation of polyubiquinated substances. The effective blockade of T14 via its cyclic variant, NBP14, has been validated in vitro, in vivo, and ex vivo. In this study, NBP14 significantly attenuated p-mTOR s2448 expression and restored normal autophagic flux, as seen with rapamycin. We conclude that T14 acts at the α-7 receptor to selectively activate the mTORC1 pathway and consequently inhibit autophagic flux. Hence, this study describes a further step in the process by which T14 could drive neurodegeneration.
Collapse
Affiliation(s)
- Cloe García Porta
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Kashif Mahfooz
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Joanna Komorowska
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Sara Garcia-Rates
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Susan Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| |
Collapse
|
9
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
10
|
Mutithu DW, Aremu OO, Mokaila D, Bana T, Familusi M, Taylor L, Martin LJ, Heathfield LJ, Kirwan JA, Wiesner L, Adeola HA, Lumngwena EN, Manganyi R, Skatulla S, Naidoo R, Ntusi NAB. A study protocol to characterise pathophysiological and molecular markers of rheumatic heart disease and degenerative aortic stenosis using multiparametric cardiovascular imaging and multiomics techniques. PLoS One 2024; 19:e0303496. [PMID: 38739622 PMCID: PMC11090351 DOI: 10.1371/journal.pone.0303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Olukayode O. Aremu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Dipolelo Mokaila
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Tasnim Bana
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Mary Familusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lorna J. Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Laura J. Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Henry A. Adeola
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodgers Manganyi
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sebastian Skatulla
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Evangelista BA, Ragusa JV, Pellegrino K, Wu Y, Quiroga-Barber IY, Cahalan SR, Arooji OK, Madren JA, Schroeter S, Cozzarin J, Xie L, Chen X, White KK, Ezzell JA, Iannone MA, Cohen S, Traub RE, Li X, Bedlack R, Phanstiel DH, Meeker R, Stanley N, Cohen TJ. TDP-43 pathology links innate and adaptive immunity in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574541. [PMID: 38260395 PMCID: PMC10802498 DOI: 10.1101/2024.01.07.574541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Amyotrophic lateral sclerosis is the most common fatal motor neuron disease. Approximately 90% of ALS patients exhibit pathology of the master RNA regulator, Transactive Response DNA Binding protein (TDP-43). Despite the prevalence TDP-43 pathology in ALS motor neurons, recent findings suggest immune dysfunction is a determinant of disease progression in patients. Whether TDP-43 pathology elicits disease-modifying immune responses in ALS remains underexplored. In this study, we demonstrate that TDP-43 pathology is internalized by antigen presenting cells, causes vesicle rupture, and leads to innate and adaptive immune cell activation. Using a multiplex imaging platform, we observed interactions between innate and adaptive immune cells near TDP-43 pathological lesions in ALS brain. We used a mass cytometry-based whole-blood stimulation assay to provide evidence that ALS patient peripheral immune cells exhibit responses to TDP-43 aggregates. Taken together, this study provides a novel link between TDP-43 pathology and ALS immune dysfunction, and further highlights the translational and diagnostic implications of monitoring and manipulating the ALS immune response.
Collapse
|
12
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
13
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
14
|
Song Y, Lee D, Choi J, Lee JW, Hong K. Genome-wide association and replication studies for handedness in a Korean community-based cohort. Brain Behav 2023; 13:e3121. [PMID: 37337823 PMCID: PMC10498080 DOI: 10.1002/brb3.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Handedness is a conspicuous characteristic in human behavior, with a worldwide proportion of approximately 90% of people preferring to use the right hand for many tasks. In the Korean population, the proportion of left-handedness is relatively low at approximately 7%-10%, similar to that in other East-Asian cultures in which the use of the left hand for writing and other public activities has historically been oppressed. METHODS In this study, we conducted two genome-wide association studies (GWASs) between right-handedness and left-handedness, and between right-handedness and ambidexterity using logistic regression analyses using a Korean community-based cohort. We also performed association analyses with previously reported variants and our findings. RESULTS A total of 8806 participants were included for analysis, and the results identified 28 left-handedness-associated and 15 ambidexterity-associated loci; of these, two left-handedness loci (NEIL3 [rs11726465] and SVOPL [rs117495448]) and one ambidexterity locus (PDE8B/WDR41 [rs118077080]) showed near genome-wide significance. Association analyses with previously reported variants replicated ANKS1B (rs7132513) in left-handedness and ANKIB1 (rs2040498) in ambidexterity. CONCLUSION The variants and positional candidate genes identified and replicated in this study were largely associated with brain development, cerebral asymmetry, neurological processes, and neuropsychiatric diseases in line with previous findings. As the first East-Asian GWAS related to handedness, these results may provide an intriguing reference for further human neurologic research in the future.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family MedicineGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
- Healthcare Research Team, Health Promotion CenterGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Dasom Lee
- Theragen Bio Co. Ltd.Gyeonggi‐doSouth Korea
| | | | - Ji Won Lee
- Department of Family MedicineSeverance HospitalYonsei University College of MedicineSeoulSouth Korea
- Institute for Innovation in Digital HealthcareYonsei UniversitySeoulSouth Korea
| | | |
Collapse
|
15
|
Razick DI, Akhtar M, Wen J, Alam M, Dean N, Karabala M, Ansari U, Ansari Z, Tabaie E, Siddiqui S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023; 15:e40463. [PMID: 37456463 PMCID: PMC10349546 DOI: 10.7759/cureus.40463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuins (SIRT) are a class of histone deacetylases that regulate important metabolic pathways and play a role in several disease processes. Of the seven mammalian homologs currently identified, sirtuin 1 (SIRT1) is the best understood and most studied. It has been associated with several neurodegenerative diseases and cancers. As such, it has been further investigated as a therapeutic target in the treatment of disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). SIRT1 deacetylates histones such as H1 lysine 26, H3 lysine 9, H3 lysine 56, and H4 lysine 16 to regulate chromatin remodeling and gene transcription. The homolog has also been observed to express contradictory responses to tumor suppression and tumor promotion. Studies have shown that SIRT1 may have anti-inflammatory properties by inhibiting the effects of NF-κB, as well as stimulating upregulation of autophagy. The SIRT1 activators resveratrol and cilostazol have been shown to improve Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores in AD patients. In this review, we aim to explore the various roles of SIRT1 with regard to neuroprotection and neurodegeneration.
Collapse
Affiliation(s)
- Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nabeal Dean
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Muhammad Karabala
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Ubaid Ansari
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Zaid Ansari
- Internal Medicine, University of California Berkeley, Berkeley, USA
| | - Ethan Tabaie
- Neurosurgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Shakeel Siddiqui
- Anesthesiology, OrthoMed Staffing Anesthesiology Group, Dallas, USA
| |
Collapse
|
16
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
17
|
Old and Promising Markers Related to Autophagy in Traumatic Brain Injury. Int J Mol Sci 2022; 24:ijms24010072. [PMID: 36613513 PMCID: PMC9820105 DOI: 10.3390/ijms24010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the first causes of death and disability in the world. Because of the lack of macroscopical or histologic evidence of the damage, the forensic diagnosis of TBI could be particularly difficult. Considering that the activation of autophagy in the brain after a TBI is well documented in literature, the aim of this review is to find all autophagy immunohistological protein markers that are modified after TBI to propose a method to diagnose this eventuality in the brain of trauma victims. A systematic literature review on PubMed following PRISMA 2020 guidelines has enabled the identification of 241 articles. In all, 21 of these were enrolled to identify 24 markers that could be divided into two groups. The first consisted of well-known markers that could be considered for a first diagnosis of TBI. The second consisted of new markers recently proposed in the literature that could be used in combination with the markers of the first group to define the elapsed time between trauma and death. However, the use of these markers has to be validated in the future in human tissue by further studies, and the influence of other diseases affecting the victims before death should be explored.
Collapse
|
18
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
19
|
Zhu Y, Afolabi LO, Wan X, Shim JS, Chen L. TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biol 2022; 12:220098. [PMID: 35946309 PMCID: PMC9364147 DOI: 10.1098/rsob.220098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.
Collapse
Affiliation(s)
- Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Lukman O. Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Xiaochun Wan
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, People's Republic of China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100864, People's Republic of China
| |
Collapse
|
20
|
Hok-A-Hin YS, Dijkstra AA, Rábano A, Hoozemans JJ, Castillo L, Seelaar H, van Swieten JC, Pijnenburg YAL, Teunissen CE, Del Campo M. Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid. Neurobiol Dis 2022; 172:105813. [PMID: 35820647 DOI: 10.1016/j.nbd.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022] Open
Abstract
AIMS Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. METHODS APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. RESULTS APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. CONCLUSION APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands.
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Jeroen J Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Lucía Castillo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
21
|
Kacem I, Sghaier I, Ticozzi N, Mrabet S, Paverelli S, Nasri A, Ratti A, Ben Djebara M, Gargouri-Berrachid A, Silani V, Gouider R. Expanding the phenotype of TARDBP mutation in a Tunisian family with clinical phenotype heterogeneity. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:623-626. [DOI: 10.1080/21678421.2022.2089856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Imen Kacem
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Saloua Mrabet
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Silvia Paverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Amina Nasri
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - Mouna Ben Djebara
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Amina Gargouri-Berrachid
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
- Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| |
Collapse
|
22
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
23
|
Luo K, Wang Z, Zhuang K, Yuan S, Liu F, Liu A. Suberoylanilide hydroxamic acid suppresses axonal damage and neurological dysfunction after subarachnoid hemorrhage via the HDAC1/HSP70/TDP-43 axis. Exp Mol Med 2022; 54:1423-1433. [PMID: 35501375 DOI: 10.1038/s12276-022-00761-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Increased focus has been placed on the role of histone deacetylase inhibitors as crucial players in subarachnoid hemorrhage (SAH) progression. Therefore, this study was designed to expand the understanding of SAH by exploring the downstream mechanism of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in SAH. The expression of TDP-43 in patients with SAH and rat models of SAH was measured. Then, western blot analysis, immunofluorescence staining, and transmission electron microscope were used to investigate the in vitro effect of TDP-43 on a neuronal cell model of SAH established by oxyhemoglobin treatment. Immunofluorescence staining and coimmunoprecipitation assays were conducted to explore the relationship among histone deacetylase 1 (HDAC1), heat shock protein 70 (HSP70), and TDP-43. Furthermore, the in vivo effect of HDAC1 on SAH was investigated in rat models of SAH established by endovascular perforation. High expression of TDP-43 in the cerebrospinal fluid of patients with SAH and brain tissues of rat models of SAH was observed, and TDP-43 accumulation in the cytoplasm and the formation of inclusion bodies were responsible for axonal damage, abnormal nuclear membrane morphology, and apoptosis in neurons. TDP-43 degradation was promoted by the HDAC1 inhibitor SAHA via the acetylation of HSP70, alleviating SAH, and this effect was verified in vivo in rat models. In conclusion, SAHA relieved axonal damage and neurological dysfunction after SAH via the HSP70 acetylation-induced degradation of TDP-43, highlighting a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Kui Luo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Shishan Yuan
- Medical College, Hunan Normal University, 410000, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China. .,Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, China.
| | - Aihua Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China. .,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
| |
Collapse
|
24
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
25
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
26
|
Papaefthymiou A, Christodoulidis G, Koffas A, Doulberis M, Polyzos SA, Manolakis A, Potamianos S, Kapsoritakis A, Kountouras J. Role of autophagy in gastric carcinogenesis. World J Gastrointest Oncol 2021; 13:1244-1262. [PMID: 34721765 PMCID: PMC8529927 DOI: 10.4251/wjgo.v13.i10.1244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a common and highly fatal malignancy, and thus a pathophysiology-based reconsideration is necessary, given the absence of efficient therapeutic regimens. In this regard, emerging data reveal a significant role of autophagy in gastric oncogenesis, progression, metastasis and chemoresistance. Although autophagy comprises a normal primordial process, ensuring cellular homeostasis under energy depletion and stress conditions, alterations at any stage of the complex regulatory system could stimulate a tumorigenic and promoting cascade. Among others, Helicobacter pylori infection induces a variety of signaling molecules modifying autophagy, during acute infection or after chronic autophagy degeneration. Subsequently, defective autophagy allows malignant transformation and upon cancer establishment, an overactive autophagy is stimulated. This overexpressed autophagy provides energy supplies and resistance mechanisms to gastric cancer cells against hosts defenses and anticancer treatment. This review interprets the implicated autophagic pathways in normal cells and in gastric cancer to illuminate the potential preventive, therapeutic and prognostic benefits of understanding and intervening autophagy.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| | | | - Apostolos Koffas
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Michael Doulberis
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Anastasios Manolakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Spyros Potamianos
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| |
Collapse
|
27
|
A microfluidic approach to rescue ALS motor neuron degeneration using rapamycin. Sci Rep 2021; 11:18168. [PMID: 34518579 PMCID: PMC8438029 DOI: 10.1038/s41598-021-97405-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) is known to accumulate in ubiquitinated inclusions of amyotrophic lateral sclerosis affected motor neurons, resulting in motor neuron degeneration, loss of motor functions, and eventually death. Rapamycin, an mTOR inhibitor and a commonly used immunosuppressive drug, has been shown to increase the survivability of Amyotrophic Lateral Sclerosis (ALS) affected motor neurons. Here we present a transgenic, TDP-43-A315T, mouse model expressing an ALS phenotype and demonstrate the presence of ubiquitinated cytoplasmic TDP-43 aggregates with > 80% cell death by 28 days post differentiation in vitro. Embryonic stem cells from this mouse model were used to study the onset, progression, and therapeutic remediation of TDP-43 aggregates using a novel microfluidic rapamycin concentration gradient generator. Results using a microfluidic device show that ALS affected motor neuron survival can be increased by 40.44% in a rapamycin dosage range between 0.4-1.0 µM.
Collapse
|
28
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
29
|
Leskelä S, Hoffmann D, Rostalski H, Huber N, Wittrahm R, Hartikainen P, Korhonen V, Leinonen V, Hiltunen M, Solje E, Remes AM, Haapasalo A. FTLD Patient-Derived Fibroblasts Show Defective Mitochondrial Function and Accumulation of p62. Mol Neurobiol 2021; 58:5438-5458. [PMID: 34328616 PMCID: PMC8599259 DOI: 10.1007/s12035-021-02475-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically, genetically, and neuropathologically heterogeneous group of neurodegenerative syndromes, leading to progressive cognitive dysfunction and frontal and temporal atrophy. C9orf72 hexanucleotide repeat expansion (C9-HRE) is the most common genetic cause of FTLD, but pathogenic mechanisms underlying FTLD are not fully understood. Here, we compared cellular features and functional properties, especially related to protein degradation pathways and mitochondrial function, of FTLD patient–derived skin fibroblasts from C9-HRE carriers and non-carriers and healthy donors. Fibroblasts from C9-HRE carriers were found to produce RNA foci, but no dipeptide repeat proteins, and they showed unchanged levels of C9orf72 mRNA transcripts. The main protein degradation pathways, the ubiquitin–proteasome system and autophagy, did not show alterations between the fibroblasts from C9-HRE-carrying and non-carrying FTLD patients and compared to healthy controls. An increase in the number and size of p62-positive puncta was evident in fibroblasts from both C9-HRE carriers and non-carriers. In addition, several parameters of mitochondrial function, namely, basal and maximal respiration and respiration linked to ATP production, were significantly reduced in the FTLD patient–derived fibroblasts from both C9-HRE carriers and non-carriers. Our findings suggest that FTLD patient–derived fibroblasts, regardless of whether they carry the C9-HRE expansion, show unchanged proteasomal and autophagic function, but significantly impaired mitochondrial function and increased accumulation of p62 when compared to control fibroblasts. These findings suggest the possibility of utilizing FTLD patient–derived fibroblasts as a platform for biomarker discovery and testing of drugs targeted to specific cellular functions, such as mitochondrial respiration.
Collapse
Affiliation(s)
- Stina Leskelä
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Dorit Hoffmann
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Hannah Rostalski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nadine Huber
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211, Kuopio, Finland
| | - Päivi Hartikainen
- Neuro Center, Neurology, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Ville Korhonen
- Neuro Center, Neurosurgery, Kuopio University Hospital, 70029, Kuopio, Finland
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Ville Leinonen
- Neuro Center, Neurosurgery, Kuopio University Hospital, 70029, Kuopio, Finland
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211, Kuopio, Finland
| | - Eino Solje
- Neuro Center, Neurology, Kuopio University Hospital, 70029, Kuopio, Finland
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 8000, 90014, Oulu, Finland
- MRC Oulu, Oulu University Hospital, P.O. Box 8000, 90014, Oulu, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland.
| |
Collapse
|
30
|
Naglot S, Tomar AK, Singh N, Yadav S. Label-free proteomics of spermatozoa identifies candidate protein markers of idiopathic recurrent pregnancy loss. Reprod Biol 2021; 21:100539. [PMID: 34329819 DOI: 10.1016/j.repbio.2021.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Recurrent pregnancy loss (RPL) affects a large number of couples worldwide, increasing their mental and financial burdens. While female factors that contribute to RPL have been studied extensively, the role of male factors is largely unknown, and approximately 40 % RPL cases remain unexplained despite thorough clinical examinations. These cases are clinically termed as idiopathic RPL (iRPL). Several studies have recently found that spermatozoa play an important role, beyond fertilization, in iRPL, specifically in early embryonic development. Consequently, scientists explored spermatozoa to understand iRPL and revealed that both oxidative stress and DNA fragmentation contribute to RPL. In this study, we analyzed sperm samples from male partners of iRPL patients and fertile men who recently fathered a child by LC-MS/MS to identify proteomic markers of iRPL. A total of 1,988 proteins were quantified by a label-free method, and stringent statistical analysis was performed for the selection of candidate biomarkers of iRPL. Out of 1,647 proteins quantified, only 7 proteins qualified the selection criteria, which are lactotransferrin, ATP synthase subunit beta mitochondrial, fatty acid synthase, anterior gradient protein 2 homolog, hemoglobin subunit beta, short-chain specific acyl-CoA dehydrogenase mitochondrial, cytoplasmic dynein 1 heavy chain, and 14-3-3 protein sigma. We then performed gene annotations, pathways, and network analyses to gain more biological insights, identifying an association between oxidative stress and iRPL.
Collapse
Affiliation(s)
- Sarla Naglot
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
31
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
32
|
Chen L, Ma G, Wang P, Dong Y, Liu Y, Zhao Z, Guo J, Liang H, Yang L, Deng J. Establishment and verification of prognostic model for gastric cancer based on autophagy-related genes. Am J Cancer Res 2021; 11:1335-1346. [PMID: 33948361 PMCID: PMC8085875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023] Open
Abstract
Autophagy played a significant role in the development of cancer. In this study, we explored the value of autophagy-associated genes in gastric cancer. RNA sequencing and clinical information containing 375 gastric cancer and 32 normal tissues were gathered from the TCGA portal. Then we stochastically allocated the autophagy-associated genes (AAGs) to training and testing groups. Next, we screened the discrepantly expressed AAGs and the prognostic AAGs by Cox regression analysis and Lasso regression analysis. Afterwards, we structured the model by using the prognostic AAGs and plotted Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves to verify the performance of models in both groups. Besides, we utilized Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the molecular mechanisms of AAGs in gastric cancer. Finally, we demonstrated discrepant expression of AAGs within gastric cancer and non-tumor tissues at protein level with immunohistochemistry. 28 discrepantly expressed AAGs were screened from the TCGA database which contained 375 gastric cancer and 32 non-tumor samples. Cox and Lasso regression analyses were performed in training group and then we got 5 prognostic AAGs to establish the prognostic model. The patients who had high risk possessed worse overall survival (OS) both in training group (5-year OS, 47.6% vs 23.1%; P < 0.0001) and test group (5-year OS, 49.2% vs 0%, P=0.019). The proportion under ROC curves (AUC) were significant both in training group and test group (5-year AUC, 0.736 vs 0.809). Through this study, we constructed a model for gastric cancer patients which may provide individual treatment and superior prognosis.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Gang Ma
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Pengliang Wang
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Yinping Dong
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Yong Liu
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Zhenzhen Zhao
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Jiamei Guo
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| | - Liyuan Yang
- No. 966 Hospital of PLADandong 118000, Liaoning, P. R. China
| | - Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin 300060, P. R. China
- Key Laboratory of Cancer Prevention and TherapyTianjin 300060, P. R. China
- Tianjin’s Clinical Research Center for CancerTianjin 300060, P. R. China
| |
Collapse
|
33
|
Peggion C, Massimino ML, Stella R, Bortolotto R, Agostini J, Maldi A, Sartori G, Tonello F, Bertoli A, Lopreiato R. Nucleolin Rescues TDP-43 Toxicity in Yeast and Human Cell Models. Front Cell Neurosci 2021; 15:625665. [PMID: 33912014 PMCID: PMC8072491 DOI: 10.3389/fncel.2021.625665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Roberto Stella
- Food Safety Division, Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jessica Agostini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Arianna Maldi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR - Neuroscience Institute, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
34
|
Maj C, Chiarenza GA, Faraone SV, Miriam C, Gennarelli M, Bonvicini C, Scassellati C. Intermediate lengths of the C9ORF72 hexanucleotide repeat expansion may synergistically contribute to attention deficit hyperactivity disorder in child and his father: case report. Neurocase 2021; 27:138-146. [PMID: 33730968 DOI: 10.1080/13554794.2021.1887275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have summarized the abstract section as follows: "We report a son and his father affected by Attention Deficit Hyperactivity Disorder (ADHD). They belonged to a larger cohort (116 ADHD children, 20 related parents, 77 controls) wholly genotyped forC9ORF72 expansion. Ten ADHD susceptibility genes were further investigated in the family. We revealed that son and father shared an intermediateC9ORF72 expansion and common variants inCDH23, ITGAE and MTRR. Bioinformatics highlighted aC9ORF72-MTRR interaction. This case-report underlines that in relatives with ADHD, carrying variants in ADHD susceptibility genes, the intermediateC9ORF72 repeats might have a potentially pathogenetic synergistic effect, supporting the multifactorial polygenic aetiopathogenetic profile of disease".
Collapse
Affiliation(s)
- Carlo Maj
- Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.,Istitute for Genomic Statistics and Bioinformatics, Bonn, Germany
| | | | - Stephen V Faraone
- Department of Biomedicine, K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway; Department of Biomedicine, K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Ciani Miriam
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.,Section of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
35
|
Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative Disease and the NLRP3 Inflammasome. Front Pharmacol 2021; 12:643254. [PMID: 33776778 PMCID: PMC7987926 DOI: 10.3389/fphar.2021.643254] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy.
Collapse
Affiliation(s)
- Jonathan A. Holbrook
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Heledd H. Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Emily Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - James A. Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
- Leeds Centre for Cystic Fibrosis, St James’s University Hospital, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
36
|
Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021; 17:3306-3322. [PMID: 33632058 PMCID: PMC8632097 DOI: 10.1080/15548627.2021.1872189] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis. Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| |
Collapse
|
37
|
Li J, Pu K, Li C, Wang Y, Zhou Y. A Novel Six-Gene-Based Prognostic Model Predicts Survival and Clinical Risk Score for Gastric Cancer. Front Genet 2021; 12:615834. [PMID: 33692828 PMCID: PMC7938863 DOI: 10.3389/fgene.2021.615834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Autophagy plays a vital role in cancer initiation, malignant progression, and resistance to treatment. However, autophagy-related genes (ARGs) have rarely been analyzed in gastric cancer (GC). The purpose of this study was to analyze ARGs in GC using bioinformatic analysis and to identify new biomarkers for predicting the overall survival (OS) of patients with GC. Methods: The gene expression profiles and clinical data of patients with GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and ARGs were obtained from two other datasets (the Human Autophagy Database and Molecular Signatures Database). Lasso, univariate, and multivariate Cox regression analyses were performed to identify the OS-related ARGs. Finally, a six-ARG model was identified as a prognostic indicator using the risk-score model, and survival and prognostic performance were analyzed based on the Kaplan-Meier test and ROC curve. Estimate calculations were used to assess the immune status of this model, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed for investigating the functions and terms associated with the model-related genes in GC. Results: The six ARGs, DYNLL1, PGK2, HPR, PLOD2, PHYHIP, and CXCR4, were identified using Lasso and Cox regression analyses. Survival analysis revealed that the OS of GC patients in the high-risk group was significantly lower than that of the low-risk group (p < 0.05). The ROC curves revealed that the risk score model exhibited better prognostic performance with respect to OS. Multivariate Cox regression analysis indicated that the model was an independent predictor of OS and was not affected by most of the clinical traits (p < 0.05). The model-related genes were associated with immune suppression and several biological process terms, such as extracellular structure organization and matrix organization. Moreover, the genes were associated with the P13K-Akt signaling pathway, focal adhesion, and MAPK signaling pathway. Conclusions: This study presents potential prognostic biomarkers for GC patients that would aid in determining the best patient-specific course of treatment.
Collapse
Affiliation(s)
- Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chunmei Li
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
39
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
40
|
de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-322983. [PMID: 33177049 PMCID: PMC7803890 DOI: 10.1136/jnnp-2020-322983] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration.
Collapse
Affiliation(s)
- Eva Maria Johanna de Boer
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Viyanti K Orie
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Timothy Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Hugo M De Oliveira
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Matthew Silsby
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Matthew C Kiernan
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael A van Es
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Huang C, Yan S, Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 2020; 9:40. [PMID: 33126923 PMCID: PMC7597011 DOI: 10.1186/s40035-020-00219-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum–mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.
Collapse
Affiliation(s)
- Chunhui Huang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
42
|
Golbabapour S, Bagheri-Lankarani K, Ghavami S, Geramizadeh B. Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy. Curr Med Chem 2020; 27:6073-6095. [PMID: 30947648 DOI: 10.2174/0929867326666190402120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis is a necroinflammatory process of liver, featuring interface hepatitis
by T cells, macrophages and plasma cells that invade to periportal parenchyma. In this process, a
variety of cytokines are secreted and liver tissues undergo fibrogenesis, resulting in the apoptosis of
hepatocytes. Autophagy is a complementary mechanism for restraining intracellular pathogens to
which the innate immune system does not provide efficient endocytosis. Hepatocytes with their
particular regenerative features are normally in a quiescent state, and, autophagy controls the accumulation
of excess products, therefore the liver serves as a basic model for the study of autophagy.
Impairment of autophagy in the liver causes the accumulation of damaged organelles, misfolded
proteins and exceeded lipids in hepatocytes as seen in metabolic diseases. In this review, we introduce
autoimmune hepatitis in association with autophagy signaling. We also discuss some genes and
proteins of autophagy, their regulatory roles in the activation of hepatic stellate cells and the importance
of lipophagy and tyrosine kinase in hepatic fibrogenesis. In order to provide a comprehensive
overview of the regulatory role of autophagy in autoimmune hepatitis, the pathway analysis of autophagy
in autoimmune hepatitis is also included in this article.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Kamran Bagheri-Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, Medical school of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells. Cell Death Dis 2020; 11:874. [PMID: 33070168 PMCID: PMC7568721 DOI: 10.1038/s41419-020-03085-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Amitriptyline is a tricyclic antidepressant commonly prescribed for major depressive disorders, as well as depressive symptoms associated with various neurological disorders. A possible correlation between the use of tricyclic antidepressants and the occurrence of Parkinson's disease has been reported, but its underlying mechanism remains unknown. The accumulation of misfolded protein aggregates has been suggested to cause cellular toxicity and has been implicated in the common pathogenesis of neurodegenerative diseases. Here, we examined the effect of amitriptyline on protein clearance and its relevant mechanisms in neuronal cells. Amitriptyline exacerbated the accumulation of abnormal aggregates in both in vitro neuronal cells and in vivo mice brain by interfering with the (1) formation of aggresome-like aggregates and (2) autophagy-mediated clearance of aggregates. Amitriptyline upregulated LC3B-II, but LC3B-II levels did not increase further in the presence of NH4Cl, which suggests that amitriptyline inhibited autophagic flux rather than autophagy induction. Amitriptyline interfered with the fusion of autophagosome and lysosome through the activation of PI3K/Akt/mTOR pathway and Beclin 1 acetylation, and regulated lysosome positioning by increasing the interaction between proteins Arl8, SKIP, and kinesin. To the best of our knowledge, we are the first to demonstrate that amitriptyline interferes with autophagic flux by regulating the autophagosome maturation during autophagy in neuronal cells. The present study could provide neurobiological clue for the possible correlation between the amitriptyline use and the risk of developing neurodegenerative diseases.
Collapse
|
44
|
Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med 2020; 52:1652-1662. [PMID: 33051572 PMCID: PMC8080625 DOI: 10.1038/s12276-020-00513-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a highly conserved nuclear RNA/DNA-binding protein involved in the regulation of RNA processing. The accumulation of TDP-43 aggregates in the central nervous system is a common feature of many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Accumulating evidence suggests that prion-like spreading of aberrant protein aggregates composed of tau, amyloid-β, and α-synuclein is involved in the progression of neurodegenerative diseases such as AD and PD. Similar to those of prion-like proteins, pathological aggregates of TDP-43 can be transferred from cell-to-cell in a seed-dependent and self-templating manner. Here, we review clinical and experimental studies supporting the prion-like spreading of misfolded TDP-43 and discuss the molecular mechanisms underlying the propagation of these pathological aggregated proteins. The idea that misfolded TDP-43 spreads in a prion-like manner between cells may guide novel therapeutic strategies for TDP-43-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.
| |
Collapse
|
45
|
Rostalski H, Hietanen T, Leskelä S, Behánová A, Abdollahzadeh A, Wittrahm R, Mäkinen P, Huber N, Hoffmann D, Solje E, Remes AM, Natunen T, Takalo M, Tohka J, Hiltunen M, Haapasalo A. BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Front Neurol 2020; 11:550140. [PMID: 33123074 PMCID: PMC7573144 DOI: 10.3389/fneur.2020.550140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia.
Collapse
Affiliation(s)
- Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Hietanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Behánová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ali Abdollahzadeh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorit Hoffmann
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center (MRC) Oulu, Oulu University Hospital, Oulu, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Umahara T, Uchihara T, Hirao K, Shimizu S, Hanyu H. Phosphorylated TDP-43 localizes to chronic cerebral infarctions in human brains. Histol Histopathol 2020; 35:1023-1028. [PMID: 32557523 DOI: 10.14670/hh-18-235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transactivation response DNA-binding protein of 43 kDa (TDP-43) is a nuclear protein pivotal in RNA processing. Because phosphorylated TDP43 (pTDP-43) has been identified as a component of the ubiquitin-positive and tau-negative inclusions observed in the brains of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) patients, it is considered to play a major role in neurodegenerative processes. We previously reported that pTDP-43 is located in macrophages of atherosclerotic lesions of human carotid and major cerebral arteries. We hence hypothesized that pTDP-43 might be localized in the macrophages of other human brain lesions. Therefore, we investigated the immunolocalization of pTDP-43 in human brains with chronic cerebral infarction. Furthermore, we investigated the colocalization of pTDP-43 and the 14-3-3 eta isoform and found that pTDP-43 was localized in many macrophages located in chronic cerebral infarctions, in 6 out of the 15 human brains analyzed. pTDP-43 colocalized with the 14-3-3 eta isoform in these lesions. This is the first demonstration of pTDP-43 immunolocalization in chronic cerebral infarctions in human brains. We believe that our findings may be useful towards further understanding the pathophysiological roles of TDP-43 in various neurological disorders.
Collapse
Affiliation(s)
- Takahiko Umahara
- Department of Neurology, Mizuno Memorial Rehabilitation Hospital, Nisharai, Adachi-ku, Tokyo, Japan. .,Department of Geriatric Medicine, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo, Japan
| | - Kentaro Hirao
- Department of Geriatric Medicine, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
47
|
Riku Y. Reappraisal of the anatomical spreading and propagation hypothesis about TDP-43 aggregation in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 2020; 40:426-435. [PMID: 32157757 DOI: 10.1111/neup.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Neuronal inclusion of transactivation response DNA-binding protein 43 kDa (TDP-43) is known to be a pathologic hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43, which is physiologically a nuclear protein, is mislocalized from the nucleus and aggregated within the cytoplasm of affected neurons in ALS and FTLD patients. Neuropathologic or experimental studies have addressed mechanisms underlying spreading of TDP-43 inclusions in the central nervous system of ALS and FTLD patients. On the basis of postmortem observations, it is hypothesized that TDP-43 inclusions spread along the neural projections. A centrifugal gradient of TDP-43 pathology in certain anatomical systems and axonal or synaptic aggregation of TDP-43 may support the hypothesis. Experimental studies have revealed cell-to-cell propagation of aggregated or truncated TDP-43, which indicates a direct transmission of TDP-43 inclusions to contiguous cells. However, discrepancies remain between the cell-to-cell propagation suggested in the experimental models and the anatomical spreading of TDP-43 aggregations based on postmortem observations. Trans-synaptic transmission, rather than the direct cell-to-cell transmission, may be consistent with the anatomical spreading of TDP-43 aggregations, but cellular mechanisms of trans-synaptic transmission of aggregated proteins remain to be elucidated. Moreover, the spreading of TDP-43 inclusions varies among patients and genetic backgrounds, which indicates host-dependent factors for spreading of TDP-43 aggregations. Perturbation of cellular TDP-43 clearance may be a possible factor modifying the aggregation and spreading. This review discusses postmortem and experimental evidence that address mechanisms of spreading of TDP-43 pathology in the central nervous system of ALS and FTLD patients.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan.,Department of Neuropathology Raymond Escourolle, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| |
Collapse
|
48
|
Huang W, Zhou Y, Tu L, Ba Z, Huang J, Huang N, Luo Y. TDP-43: From Alzheimer's Disease to Limbic-Predominant Age-Related TDP-43 Encephalopathy. Front Mol Neurosci 2020; 13:26. [PMID: 32180703 PMCID: PMC7059763 DOI: 10.3389/fnmol.2020.00026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of TAR DNA-binding protein 43 (TDP-43) in 1995, our understanding of its role continues to expand as research progresses. In particular, its role in the pathogenesis of Alzheimer’s disease (AD) has drawn increasing interest in recent years. TDP-43 may participate in various pathogenic mechanisms underlying AD, such as amyloid β deposition, tau hyperphosphorylation, mitochondrial dysfunction, and neuroinflammation. Because AD is complex and heterogeneous, and because of the distinct characteristics of TDP-43, mostly seen in the oldest-old and those with more severe clinical phenotype, subcategorization based on specific features or biomarkers may significantly improve diagnosis and treatment. AD-like cognitive dysfunction associated with TDP-43 pathology may therefore be a distinct encephalopathy, referred to as limbic-predominant age-related TDP-43 encephalopathy (LATE).
Collapse
Affiliation(s)
- Wendi Huang
- Department of Pediatrics, Guizhou Medical University, Guizhou, China
| | - Yongjian Zhou
- School of Graduate Studies, Zunyi Medical University, Guizhou, China
| | - Lin Tu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Zhisheng Ba
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Juan Huang
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Nanqu Huang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| |
Collapse
|
49
|
Su D, Wang W, Wu X, Li M, Yan X, Hua Z, Liu J, Zhu Z, Hu K, Ren J. Meriolin1 induces cell cycle arrest, apoptosis, autophagy and targeting the Akt/MAPKs pathways in human neuroblastoma SH-SY5Y cells. ACTA ACUST UNITED AC 2020; 72:561-574. [PMID: 32034768 DOI: 10.1111/jphp.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Meriolins, a kind of chemical hybrid between meridianins and variolins, have lately been determined as kinase inhibitors and reportedly have antitumour activity. However, there is currently no in-depth study for the action mechanism. This study aimed to elucidate the potentially antitumour action mechanism of Meriolin1 on human neuroblastoma (SH-SY5Y) cells. METHODS Firstly, cell viability was detected by MTT assay. Secondly, cell cycle, cell apoptosis, cell autophagy, reactive oxygen species and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. Then, cell cycle-associated proteins, Bcl-2 family proteins, Akt/MAPK proteins and autophagy-associated proteins expressions were evaluated by Western blot. Bcl-2 and Bax mRNA expressions were also evaluated by qRT-PCR. Furthermore, cell adhesion assay and Hoechst 33258 fluorescent staining were carried out to detect the effect of Meriolin1 on cell adhesion and morphology. Finally, to gain further insight into mechanism of action of Meriolin1 to CDK protein, the molecular docking study was performed by using the CDOCKER module of DS software. KEY FINDINGS Meriolin1 could exert the antitumour activity on SH-SY5Y cells by inducing cell cycle arrest, cell autophagy, the mitochondrion-dependent cell apoptosis and targeting the Akt/MAPKs signalling pathway. CONCLUSIONS Meriolin1 might be a promising therapeutic candidate for neuroblastoma.
Collapse
Affiliation(s)
- Dan Su
- Changzhou No.2 People's Hospital, Changzhou, Jiangsu, China
| | - Wenbin Wang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Xinyue Wu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Minyue Li
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Xuelong Yan
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Zhonghong Hua
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Jiahui Liu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Zhiyu Zhu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Jie Ren
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
50
|
Vicencio E, Beltrán S, Labrador L, Manque P, Nassif M, Woehlbier U. Implications of Selective Autophagy Dysfunction for ALS Pathology. Cells 2020; 9:cells9020381. [PMID: 32046060 PMCID: PMC7072226 DOI: 10.3390/cells9020381] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Sebastián Beltrán
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Luis Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| |
Collapse
|