1
|
Yu X, Gao H, Zhang J, Fang Q, Kang W, Shang H, Lou X, Guan M. ARC protects cochlear hair cells from neomycin-induced ototoxicity via the Ras/JNK signaling pathway. Toxicol Lett 2025; 403:111-119. [PMID: 39667535 DOI: 10.1016/j.toxlet.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The present study was designed to investigate the role and mechanism of the Apoptosis repressor with caspase recruitment domain (ARC) in protecting the neomycin-induced hair cell damage. HEI-OC1 cells and basilar membrane culture were applied to determine the effect of ARC. Plasmid transfection was used to regulate the ARC or Ras expression. We have found the ARC overexpression in HEI-OC1 cells can increase the cell viability and decrease cell apoptosis after neomycin injury. The cleaved caspase 3 was reduced in ARC overexpression group after neomycin treatment. The p-CREB expression was increased in ARC overexpression group, while the p-c-Jun expression was decreased after neomycin incubation. In HEI-OC1 cells and basilar membranes, JNK and Ras inhibitions both can reduce ARC expression, and Ras overexpression can increase the ARC expression. This study indicates that ARC can protect the hair cells from neomycin-induced apoptosis through Ras/JNK signaling pathway. Our findings provide new insights in preventing cochlear HC death after drug-induced ototoxicity.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanbing Gao
- The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhang
- Department of Pediatrics, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenjie Kang
- The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiqiong Shang
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyu Lou
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Guan
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
3
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
4
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Mittal R, McKenna K, Keith G, Lemos JRN, Mittal J, Hirani K. A systematic review of the association of Type I diabetes with sensorineural hearing loss. PLoS One 2024; 19:e0298457. [PMID: 38335215 PMCID: PMC10857576 DOI: 10.1371/journal.pone.0298457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Type 1 diabetes (T1D) has been associated with several comorbidities such as ocular, renal, and cardiovascular complications. However, the effect of T1D on the auditory system and sensorineural hearing loss (SNHL) is still not clear. The aim of this study was to conduct a systematic review to evaluate whether T1D is associated with hearing impairment. METHODS The databases PubMed, Science Direct, Scopus, and EMBASE were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Three reviewers independently screened, selected, and extracted data. The Joanna Briggs Institute (JBI) Critical Appraisal Tools for Analytical cross-sectional and case-control studies were used to perform quality assessment and risk of bias analysis on eligible studies. RESULTS After screening a total of 463 studies, 11 eligible original articles were included in the review to analyze the effects of T1D on the auditory system. The included studies comprised cross-sectional and case-control investigations. A total of 5,792 patients were evaluated across the 11 articles included. The majority of the studies showed that T1D was associated with hearing impairment compared to controls, including differences in PTAs and OAEs, increased mean hearing thresholds, altered acoustic reflex thresholds, and problems with the medial olivocochlear (MOC) reflex inhibitory effect. Significant risk factors included older age, increased disease duration, and higher HbA1C levels. CONCLUSIONS This systematic review suggests that there is a correlation between T1D and impairment on the auditory system. A multidisciplinary collaboration between endocrinologists, otolaryngologists, and audiologists will lead to early detection of hearing impairment in people with T1D resulting in early intervention and better clinical outcomes in pursuit of improving the quality of life of affected individuals. REGISTRATION This systematic review is registered in PROSPERO (CRD42023438576).
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
6
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
7
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Jonard L, Brotto D, Moreno-Pelayo MA, Del Castillo I, Kremer H, Pennings R, Caria H, Fialho G, Boudewyns A, Van Camp G, Ołdak M, Oziębło D, Deggouj N, De Siati RD, Gasparini P, Girotto G, Verstreken M, Dossena S, Roesch S, Battelino S, Trebušak Podkrajšek K, Warnecke A, Lenarz T, Lesinski-Schiedat A, Mondain M, Roux AF, Denoyelle F, Loundon N, Serey Gaut M, Trevisi P, Rubinato E, Martini A, Marlin S. Genetic Evaluation of Prelingual Hearing Impairment: Recommendations of an European Network for Genetic Hearing Impairment. Audiol Res 2023; 13:341-346. [PMID: 37218840 DOI: 10.3390/audiolres13030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 05/24/2023] Open
Abstract
The cause of childhood hearing impairment (excluding infectious pathology of the middle ear) can be extrinsic (embryofoetopathy, meningitis, trauma, drug ototoxicity, noise trauma, etc [...].
Collapse
Affiliation(s)
- Laurence Jonard
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Davide Brotto
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Miguel A Moreno-Pelayo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Ramón y Cajal deInvestigaciones Sani-tarias (IRYCIS), Genetics Department, University hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ignacio Del Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Ramón y Cajal deInvestigaciones Sani-tarias (IRYCIS), Genetics Department, University hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Hannie Kremer
- Department of Otorhinolaryngology and Department of Human Genetics, Hearing & Genes, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology and Department of Human Genetics, Hearing & Genes, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Helena Caria
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004 Lisboa, Portugal
- Biomedical Sciences Department, CIIAS-School of Health, Polytechnic Institute of Setubal, 2914-503 Setubal, Portugal
| | - Graça Fialho
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004 Lisboa, Portugal
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, 2000 Edegem, Belgium
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Naïma Deggouj
- ENT Department, UCLouvain, Academic Hospital Saint-Luc-Brussels, 1200 Bruxelles, Belgium
| | | | - Paolo Gasparini
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giorgia Girotto
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry and Molecular Genetics, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Athanasia Warnecke
- Department of Otorhinolaryngology-Head and Neck Surgery, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Oldenburg 26129, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology-Head and Neck Surgery, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence Hearing4all, German Research Foundation, Oldenburg 26129, Germany
| | - Anke Lesinski-Schiedat
- Medical Head German Hearing Center, Department of Otorhinolaryngology, Medical University of Hannover, D-30625 Hannover, Germany
| | - Michel Mondain
- ENT Department, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Françoise Denoyelle
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, INSERM UMR 1120, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Natalie Loundon
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, INSERM UMR 1120, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Margaux Serey Gaut
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Patrizia Trevisi
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Elisa Rubinato
- Medical Genetics, Institute for Ma-ternal and Child Health (IRCCS) "Burlo Garofolo", Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Martini
- ENT Unit, Neurosciences Department, University of Padova, 35122 Padova, Italy
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Génétique, Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| |
Collapse
|
9
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Lukasz D, Beirl A, Kindt K. Chronic neurotransmission increases the susceptibility of lateral-line hair cells to ototoxic insults. eLife 2022; 11:77775. [PMID: 36047587 PMCID: PMC9473691 DOI: 10.7554/elife.77775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.
Collapse
Affiliation(s)
- Daria Lukasz
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
12
|
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, Tanideh N, Shahriarirad R, Erfani A, Ranjbar K, Ashkani-Esfahani S. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosn J Basic Med Sci 2021; 21:672-701. [PMID: 34255619 PMCID: PMC8554700 DOI: 10.17305/bjbms.2021.5508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells, a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanie Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourfraidon Ghasrodashti
- Molecular Pathology and Cytogenetics Laboratory, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells. Biomedicines 2021; 9:biomedicines9111699. [PMID: 34829928 PMCID: PMC8616026 DOI: 10.3390/biomedicines9111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.
Collapse
|
14
|
Smith-Cortinez N, Yadak R, Hendriksen FGJ, Sanders E, Ramekers D, Stokroos RJ, Versnel H, Straatman LV. LGR5-Positive Supporting Cells Survive Ototoxic Trauma in the Adult Mouse Cochlea. Front Mol Neurosci 2021; 14:729625. [PMID: 34675775 PMCID: PMC8523910 DOI: 10.3389/fnmol.2021.729625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Sensorineural hearing loss is mainly caused by irreversible damage to sensory hair cells (HCs). A subgroup of supporting cells (SCs) in the cochlea express leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker for tissue-resident stem cells. LGR5+ SCs could be used as an endogenous source of stem cells for regeneration of HCs to treat hearing loss. Here, we report long-term presence of LGR5+ SCs in the mature adult cochlea and survival of LGR5+ SCs after severe ototoxic trauma characterized by partial loss of inner HCs and complete loss of outer HCs. Surviving LGR5+ SCs (confirmed by GFP expression) were located in the third row of Deiters' cells. We observed a change in the intracellular localization of GFP, from the nucleus in normal-hearing to cytoplasm and membrane in deafened mice. These data suggests that the adult mammalian cochlea possesses properties essential for regeneration even after severe ototoxic trauma.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rana Yadak
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ferry G J Hendriksen
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eefje Sanders
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Hough K, Verschuur CA, Cunningham C, Newman TA. Macrophages in the cochlea; an immunological link between risk factors and progressive hearing loss. Glia 2021; 70:219-238. [PMID: 34536249 DOI: 10.1002/glia.24095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
Macrophages are abundant in the cochlea; however, their role in hearing loss is not well understood. Insults to the cochlea, such as noise or insertion of a cochlear implant, cause an inflammatory response, which includes activation of tissue-resident macrophages. Activation is characterized by changes in macrophage morphology, mediator expression, and distribution. Evidence from other organs shows activated macrophages can become primed, whereby subsequent insults cause an elevated inflammatory response. Primed macrophages in brain pathologies respond to circulating inflammatory mediators by disproportionate synthesis of inflammatory mediators. This signaling occurs behind an intact blood-brain barrier, similar to the blood-labyrinth barrier in the cochlea. Local tissue damage can occur as the result of mediator release by activated macrophages. Damage is typically localized; however, if it is to structures with limited ability to repair, such as neurons or hair cells within the cochlea, it is feasible that this contributes to the progressive loss of function seen in hearing loss. We propose that macrophages in the cochlea link risk factors and hearing loss. Injury to the cochlea causes local macrophage activation that typically resolves. However, in susceptible individuals, some macrophages enter a primed state. Once primed, these macrophages can be further activated, as a consequence of circulating inflammatory molecules associated with common co-morbidities. Hypothetically, this would lead to further cochlear damage and loss of hearing. We review the evidence for the role of tissue-resident macrophages in the cochlea and propose that cochlear macrophages contribute to the trajectory of hearing loss and warrant further study.
Collapse
Affiliation(s)
- Kate Hough
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Carl A Verschuur
- Faculty of Engineering and Physical Sciences, Auditory Implant Centre, University of Southampton, Southampton, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience (TCIN), Dublin, Ireland
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, IfLS, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes (Basel) 2021; 12:genes12060805. [PMID: 34070435 PMCID: PMC8227183 DOI: 10.3390/genes12060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 01/15/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient’s healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient’s iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.
Collapse
|
18
|
Bergman JE, Davies C, Denton AJ, Ashman PE, Mittal R, Eshraghi AA. Advancements in Stem Cell Technology and Organoids for the Restoration of Sensorineural Hearing Loss. J Am Acad Audiol 2021; 32:636-645. [PMID: 34034344 DOI: 10.1055/s-0041-1728677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is a significant cause of morbidity worldwide and currently has no curative treatment. Technological advancements in stem cell therapy have led to numerous studies that examine the generation of otic sensory cells from progenitors to restore inner ear function. Recently, organoids have emerged as a promising technique to further advance the process of creating functional replacement cells after irreversible hearing loss. Organoids are the three-dimensional generation of stem cells in culture to model the tissue organization and cellular components of the inner ear. Organoids have emerged as a promising technique to create functioning cochlear structures in vitro and may provide crucial information for the utilization of stem cells to restore SNHL. PURPOSE The purpose of this review is to discuss the recent advancements in stem cell-based regenerative therapy for SNHL. RESULTS Recent studies have improved our understanding about the developmental pathways involved in the generation of hair cells and spiral ganglion neurons. However, significant challenges remain in elucidating the molecular interactions and interplay required for stem cells to differentiate and function as otic sensory cells. A few of the challenges encountered with traditional stem cell therapy may be addressed with organoids. CONCLUSION Stem cell-based regenerative therapy holds a great potential for developing novel treatment modalities for SNHL. Further advancements are needed in addressing the challenges associated with stem cell-based regenerative therapy and promote their translation from bench to bedside.
Collapse
Affiliation(s)
- Jenna E Bergman
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Camron Davies
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Alexa J Denton
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter E Ashman
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Coral Gables, Miami, Florida.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Spectral resolution and speech perception after cochlear implantation using the round window versus cochleostomy technique. The Journal of Laryngology & Otology 2021; 135:513-517. [PMID: 33958008 DOI: 10.1017/s0022215121001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate the spectral resolution achieved with a cochlear implant in users who were implanted using round window route electrode insertion versus a traditional cochleostomy technique. METHODS Twenty-six patients were classified into two groups according to the surgical approach: one group (n = 13) underwent cochlear implantation via the round window technique and the other group (n = 13) underwent surgery via cochleostomy. RESULTS A statistically significant difference was found in spectral ripple discrimination scores between the round window and cochleostomy groups. The round window group performed almost two times better than the cochleostomy group. Differences between Turkish matrix sentence test scores were not statistically significant. CONCLUSION The spectral ripple discrimination scores of patients who had undergone round window cochlear implant electrode insertion were superior to those of patients whose cochlear implants were inserted using a classical cochleostomy technique.
Collapse
|
20
|
Yu R, Wang P, Chen XW. The role of gfi1.2 in the development of zebrafish inner ear. Hear Res 2020; 396:108055. [DOI: 10.1016/j.heares.2020.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 06/30/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
|
21
|
Hearing Phenotypes of Patients with Hearing Loss Homozygous for the GJB2 c.235delc Mutation. Neural Plast 2020; 2020:8841522. [PMID: 32802038 PMCID: PMC7416285 DOI: 10.1155/2020/8841522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Hereditary hearing loss is characterized by remarkable phenotypic heterogeneity. Patients with the same pathogenic mutations may exhibit various hearing loss phenotypes. In the Chinese population, the c.235delC mutation is the most common pathogenic mutation of GJB2 and is closely related to hereditary recessive hearing loss. Here, we investigated the hearing phenotypes of patients with hearing loss associated with the homozygous c.235delC mutation, paying special attention to asymmetric interaural hearing loss. A total of 244 patients with the GJB2 c.235delC homozygous mutation encountered from 2007 to 2015 were enrolled. The severity of hearing loss was scaled with the American Speech-Language-Hearing Association (ASHA). Auditory phenotypes were analyzed, and three types of interaural asymmetry were defined based on audiograms: Type A (asymmetry of hearing loss severity), Type B (asymmetry of audiogram shape), and Type C (Type A plus Type B). Of the 488 ears (244 cases) examined, 71.93% (351) presented with profound hearing loss, 14.34% (70) with severe hearing loss, and 9.43% (46) with moderate to severe hearing loss. The most common audiogram shapes were descending (31.15%) and flat (24.18%). A total of 156 (63.93%) of the 244 patients exhibited asymmetric interaural hearing loss in terms of severity and/or audiogram shape. Type A was evident in 14 of these cases, Type B in 106, and Type C in 36. In addition, 211 of 312 ears (67.63%) in the interaural hearing asymmetry group showed profound hearing loss, and 59 (18.91%) exhibited severe hearing loss, with the most common audiogram shapes being flat (27.88%) and descending (22.12%). By contrast, in the interaural hearing symmetry group, profound hearing loss was observed in 140 ears (79.55%), and the most common audiograms were descending (46.59%) and residual (21.59%). Hearing loss associated with the GJB2 c.235delC homozygous mutation shows diverse phenotypes, and a considerable proportion of patients show bilateral hearing loss asymmetry.
Collapse
|
22
|
Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020; 747:144677. [PMID: 32304785 PMCID: PMC7244213 DOI: 10.1016/j.gene.2020.144677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos L Green
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
23
|
Shah V, Mittal R, Shahal D, Sinha P, Bulut E, Mittal J, Eshraghi AA. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in vitro Model of Electrode Insertion Trauma. Front Mol Neurosci 2020; 13:113. [PMID: 32760249 PMCID: PMC7372968 DOI: 10.3389/fnmol.2020.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants (CIs) are widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, insertion of electrode leads to inner trauma and activation of inflammatory and apoptotic signaling cascades resulting in loss of residual hearing in implanted individuals. Pharmaceutical interventions that can target these signaling cascades hold great potential for preserving residual hearing by preventing sensory cell damage. Bile salts have shown efficacy in various regions of the body as powerful antioxidants and anti-inflammatory agents. However, their efficacy against inner ear trauma has never been explored. The objective of this study was to determine whether taurodeoxycholic acid (TDCA), a bile salt derivative, can prevent sensory cell damage employing an in vitro model of electrode insertion trauma (EIT). The organ of Corti (OC) explants were dissected from postnatal day 3 (P-3) rats and placed in serum-free media. Explants were divided into control and experimental groups: (1) untreated controls; (2) EIT; (3) EIT+ TDCA (different concentrations). Hair cell (HC) density, analyses of apoptosis pathway (cleaved caspase 3), levels of reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) activity and Mitochondrial Membrane Potential (MMP) were assayed. Treatment with TDCA provided significant otoprotection against HC loss in a dose-dependent manner. The molecular mechanisms underlying otoprotection involved decreasing oxidative stress, lowering levels of iNOS, and abrogating generation of cleaved caspase 3. The results of the present study suggest that TDCA provides efficient otoprotection against EIT, in vitro and should be explored for developing pharmaceutical interventions to preserve residual hearing post-cochlear implantation.
Collapse
Affiliation(s)
- Viraj Shah
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rahul Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Shahal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Priyanka Sinha
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Erdogan Bulut
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeenu Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adrien A Eshraghi
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
24
|
Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. J Clin Med 2020; 9:jcm9061711. [PMID: 32498432 PMCID: PMC7355977 DOI: 10.3390/jcm9061711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in stem cell therapy have led to an increased interest within the auditory community in exploring the potential of mesenchymal stem cells (MSCs) in the treatment of inner ear disorders. However, the biocompatibility of MSCs with the inner ear, especially when delivered non-surgically and in the immunocompetent cochlea, is not completely understood. In this study, we determined the effect of intratympanic administration of rodent bone marrow MSCs (BM-MSCs) on the inner ear in an immunocompetent rat model. The administration of MSCs did not lead to the generation of any oxidative stress in the rat inner ear. There was no significant production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12, due to BM-MSCs administration into the rat cochlea. BM-MSCs do not activate caspase 3 pathway, which plays a central role in sensory cell damage. Additionally, transferase dUTP nick end labeling (TUNEL) staining determined that there was no significant cell death associated with the administration of BM-MSCs. The results of the present study suggest that trans-tympanic administration of BM-MSCs does not result in oxidative stress or inflammatory response in the immunocompetent rat cochlea.
Collapse
|
25
|
Wu TY, Lin JN, Luo ZY, Hsu CJ, Wang JS, Wu HP. 2,3,4',5-Tetrahydroxystilbene-2- O-β-D-Glucoside (THSG) Activates the Nrf2 Antioxidant Pathway and Attenuates Oxidative Stress-Induced Cell Death in Mouse Cochlear UB/OC-2 Cells. Biomolecules 2020; 10:biom10030465. [PMID: 32197448 PMCID: PMC7175305 DOI: 10.3390/biom10030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a critical role in the pathogenesis of hearing loss, and 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) exerts antioxidant effects by inhibiting reactive oxygen species (ROS) generation. With the aim of developing new therapeutic strategies for oxidative stress, this study investigated the protective mechanism of THSG in vitro using a normal mouse cochlear cell line (UB/OC-2). The THSG and ascorbic acid have similar free radical scavenger capacities. H2O2, but not THSG, reduced the UB/OC-2 cell viability. Moreover, H2O2 might induce apoptosis and autophagy by inducing morphological changes, as visualized by microscopy. As evidenced by Western blot analysis and monodansylcadaverine (MDC) staining, THSG might decrease H2O2-induced autophagy. According to a Western blotting analysis and Annexin V/PI and JC-1 staining, THSG might protect cells from H2O2-induced apoptosis and stabilize the mitochondrial membrane potential. Furthermore, THSG enhanced the translocation of nucleus factor erythroid 2-related factor 2 (Nrf2) into the nucleus and increased the mRNA and protein expression of antioxidant/detoxifying enzymes under H2O2-induced oxidative stress conditions. Collectively, our findings demonstrate that THSG, as a scavenging agent, can directly attenuate free radicals and upregulate antioxidant/detoxifying enzymes to protect against oxidative damage and show that THSG protects UB/OC-2 cells from H2O2-induced autophagy and apoptosis in vitro.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
| | - Zi-Yao Luo
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jen-Shu Wang
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (J.-N.L.); (Z.-Y.L.); (C.-J.H.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence:
| |
Collapse
|
26
|
Yin H, Guo J, Ding E, Zhang H, Han L, Zhu B. Salt-Inducible Kinase 3 Haplotypes Associated with Noise-Induced Hearing Loss in Chinese Workers. Audiol Neurootol 2020; 25:200-208. [PMID: 32126566 DOI: 10.1159/000506066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) is a common occupational disease that represents an irreversible hearing damage to the auditory system. It has been identified as a complicated disease involving both environmental and genetic factors. More efforts need to be made to explore the genes associated with susceptibility to NIHL. The main aim of this research is to detect the associations between SIK3 polymorphisms and NIHL susceptibility in Han people in China. METHODS A case-control study was performed in 586 cases and 639 controls in a textile factory matched for sex, age, smoking, drinking, work time with noise, and intensity of noise exposure. Three single nucleotide polymorphisms (SNPs) (rs493134, rs6589574, and rs7121898) of SIK3 were genotyped in the participants. Then, the main influences of the SNPs on and their interactions with NIHL were assessed. RESULTS Under the allelic model, distributions of rs493134 T, rs6589574 G, and rs7121898 A in the NIHL group are statistically different from those of the normal group (p = 0.001, p < 0.001, and p = 0.019, respectively). The following haplotype analysis shows that TAA (rs493134-rs6589574-rs7121898) may have a protective effect, while TGA (rs493134-rs6589574-rs7121898) (OR = 1.49, 95% CI = 1.25-1.79) may be a risk factor for NIHL. Multifactor dimensionality reduction analysis shows that the interaction of the 3 selected SNPs is associated with NIHL susceptibility (OR = 1.88, 95% CI = 1.50-2.36). CONCLUSION The results suggest that 3 SNPs (rs493134, rs6589574, and rs7121898) of SIK3 may be an important part of NIHL susceptibility and can be applied in the prevention, early diagnosis, and treatment of NIHL in noise-exposed Chinese workers.
Collapse
Affiliation(s)
- Haoyang Yin
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiadi Guo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Enmin Ding
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Baoli Zhu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, China, .,Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China,
| |
Collapse
|
27
|
Dong Y, He X, Wu W, Yang S, Peng A, Xiao Z, Liu Y, Gao S, Tan D, Liu XZ, Xie D. Congenital Middle Ear Malformation with Common Deafness Gene Mutation Analysis: A Review of 813 Profound Sensorineural Hearing Loss Child Patients. Anat Rec (Hoboken) 2019; 303:594-599. [PMID: 31876389 DOI: 10.1002/ar.24330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yunpeng Dong
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Otolaryngology—Head & Neck surgeryThe Affiliated Hospital of Xiangnan University Chenzhou Hunan China
| | - Xiangbo He
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Weijing Wu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Yang
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Anquan Peng
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Zian Xiao
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Yuyuan Liu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Shuichao Gao
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Donghui Tan
- Department of Otolaryngology—Head & Neck SurgeryLeonard M. Miller School of Medicine, University of Miami Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Otolaryngology—Head & Neck surgeryThe Affiliated Hospital of Xiangnan University Chenzhou Hunan China
| | - Dinghua Xie
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
28
|
Rissone A, Jimenez E, Bishop K, Carrington B, Slevin C, Wincovitch SM, Sood R, Candotti F, Burgess SM. A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. Dis Model Mech 2019; 12:dmm040170. [PMID: 31727854 PMCID: PMC6955229 DOI: 10.1242/dmm.040170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin Bishop
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Blake Carrington
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Claire Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
29
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
30
|
Giffen KP, Liu H, Kramer KL, He DZ. Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells. Front Neurosci 2019; 13:1117. [PMID: 31680844 PMCID: PMC6813431 DOI: 10.3389/fnins.2019.01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Non-mammalian vertebrates, including zebrafish, retain the ability to regenerate hair cells (HCs) due to unknown molecular mechanisms that regulate proliferation and conversion of non-sensory supporting cells (nsSCs) to HCs. This regenerative capacity is not conserved in mammals. Identification of uniquely expressed orthologous genes in zebrafish nsSCs may reveal gene candidates involved in the proliferation and transdifferentiation of zebrafish nsSCs to HCs in the inner ear. A list of orthologous protein-coding genes was generated based on an Ensembl Biomart comparison of the zebrafish and mouse genomes. Our previously published RNA-seq-based transcriptome datasets of isolated inner ear zebrafish nsSCs and HCs, and mouse non-sensory supporting pillar and Deiters’ cells, and HCs, were merged to analyze gene expression patterns between the two species. Out of 17,498 total orthologs, 11,752 were expressed in zebrafish nsSCs and over 10,000 orthologs were expressed in mouse pillar and Deiters’ cells. Differentially expressed genes common among the zebrafish nsSCs and mouse pillar and Deiters’ cells, compared to species-specific HCs, included 306 downregulated and 314 upregulated genes; however, over 1,500 genes were uniquely upregulated in zebrafish nsSCs. Functional analysis of genes uniquely expressed in nsSCs identified several transcription factors associated with cell fate determination, cell differentiation and nervous system development, indicating inherent molecular properties of nsSCs that promote self-renewal and transdifferentiation into new HCs. Our study provides a means of characterizing these orthologous genes, involved in proliferation and transdifferentiation of nsSCs to HCs in zebrafish, which may lead to identification of potential targets for HC regeneration in mammals.
Collapse
Affiliation(s)
- Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
31
|
Anderson CR, Xie C, Su MP, Garcia M, Blackshaw H, Schilder AGM. Local Delivery of Therapeutics to the Inner Ear: The State of the Science. Front Cell Neurosci 2019; 13:418. [PMID: 31649507 PMCID: PMC6794458 DOI: 10.3389/fncel.2019.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Advances in the understanding of the genetic and molecular etiologies of inner ear disorders have enabled the identification of therapeutic targets and innovative delivery approaches to the inner ear. As this field grows, the need for knowledge about effective delivery of therapeutics to the inner ear has become a priority. This review maps all clinical and pre-clinical research published in English in the field to date, to guide both researchers and clinicians about local drug delivery methods in the context of novel therapeutics. Methods: A systematic search was conducted using customized strategies in Cochrane, pubmed and EMBASE databases from inception to 30/09/2018. Two researchers undertook study selection and data extraction independently. Results: Our search returned 12,200 articles, of which 837 articles met the inclusion criteria. 679 were original research and 158 were reviews. There has been a steady increase in the numbers of publications related to inner ear therapeutics delivery over the last three decades, with a sharp rise over the last 2 years. The intra-tympanic route accounts for over 70% of published articles. Less than one third of published research directly assesses delivery efficacy, with most papers using clinical efficacy as a surrogate marker. Conclusion: Research into local therapeutic delivery to the inner ear has undergone a recent surge, improving our understanding of how novel therapeutics can be delivered. Direct assessment of delivery efficacy is challenging, especially in humans, and progress in this area is key to understanding how to make decisions about delivery of novel hearing therapeutics.
Collapse
Affiliation(s)
- Caroline R. Anderson
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Carol Xie
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Matthew P. Su
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Maria Garcia
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Helen Blackshaw
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anne G. M. Schilder
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
32
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
33
|
Kurihara S, Fujioka M, Hata J, Yoshida T, Hirabayashi M, Yamamoto Y, Ogawa K, Kojima H, Okano HJ. Anatomical and Surgical Evaluation of the Common Marmoset as an Animal Model in Hearing Research. Front Neuroanat 2019; 13:60. [PMID: 31244619 PMCID: PMC6563828 DOI: 10.3389/fnana.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/30/2023] Open
Abstract
Recent studies have indicated that direct administration of viral vectors or small compounds to the inner ear may aid in the treatment of Sensorineural hearing loss (SNHL). However, due to species differences between humans and rodents, translating experimental results into clinical applications remains challenging. The common marmoset (Callithrix jacchus), a New World monkey, is considered a pre-clinical animal model. In the present study, we describe morphometric data acquired from the temporal bone of the common marmoset in order to define the routes of topical drug administration to the inner ear. Dissection and diffusion tensor tractography (DTT) were performed on the fixed cadaverous heads of 13 common marmosets. To investigate potential routes for drug administration to the inner ear, we explored the anatomy of the round window, oval window (OW), semicircular canal, and endolymphatic sac (ES). Among these, the approach via the round window with posterior tympanotomy appeared feasible for delivering drugs to the inner ear without manipulating the tympanic membrane, minimizing the chances of conductive hearing loss. The courses of four critical nerves [including the facial nerve (FN)] were visualized using three-dimensional (3D) DTT, which may help to avoid nerve damage during surgery. Finally, to investigate the feasibility of actual drug administration, we measured the volume of the round window niche (RWN), which was approximately 0.9 μL. The present findings may help to establish experimental standards for evaluating new therapies in this primate model.
Collapse
Affiliation(s)
- Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan.,Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Yoshida
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan.,Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yutaka Yamamoto
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Abstract
This review summarizes paleontological data as well as studies on the morphology, function, and molecular evolution of the cochlea of living mammals (monotremes, marsupials, and placentals). The most parsimonious scenario is an early evolution of the characteristic organ of Corti, with inner and outer hair cells and nascent electromotility. Most remaining unique features, such as loss of the lagenar macula, coiling of the cochlea, and bony laminae supporting the basilar membrane, arose later, after the separation of the monotreme lineage, but before marsupial and placental mammals diverged. The question of when hearing sensitivity first extended into the ultrasonic range (defined here as >20 kHz) remains speculative, not least because of the late appearance of the definitive mammalian middle ear. The last significant change was optimizing the operating voltage range of prestin, and thus the efficiency of the outer hair cells' amplifying action, in the placental lineage only.
Collapse
Affiliation(s)
- Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
35
|
Fischer N, Johnson Chacko L, Glueckert R, Schrott-Fischer A. Age-Dependent Changes in the Cochlea. Gerontology 2019; 66:33-39. [DOI: 10.1159/000499582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/19/2022] Open
|
36
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
37
|
Abd El Raouf HHH, Galhom RA, Ali MHM, Nasr El-Din WA. Harderian gland-derived stem cells as a cytotherapy in a guinea pig model of carboplatin-induced hearing loss. J Chem Neuroanat 2019; 98:139-152. [PMID: 31047945 DOI: 10.1016/j.jchemneu.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stem cells therapy of hearing loss is a challenging field due to lacking self-regenerative capacity of cochlea. Harderian gland of guinea pigs was thought to harbour a unique type of progenitors which could restore the damaged cochlear tissues. THE AIM of this study was to isolate Harderian gland derived stem cells (HG-SCs) and investigate their efficacy in restoring the damaged cochlear tissue in carboplatin-induced hearing loss. METHODOLOGY Sixty female and 10 male pigmented guinea pigs were used; the male animals were HG-SCs donors, while the females were assigned into 3 groups; control, hearing loss (HL) and HG-SC-treated groups. Auditory reflexes were assessed throughout the study. The animals were euthanized 35 days after HG-SCs transplantation, the cochleae were extracted and processed for assessment by light microscope and scanning electron microscope. Morphometric assessment of stria vascularis thickness, hair cells and spiral ganglia neuronal number and optical density of TLR4 expression were done. RESULTS The isolated HG-SCs had the same morphological and phenotypical character as mesenchymal stem cells. HL group revealed destruction of organ of Corti, stria vascularis and spiral ganglion with decreased morphometric parameters. Restoration of both cochlear structure and function was observed in HG-SC-treated group along with a significant increase in IHCs, OHCs numbers, stria vascularis thickness and spiral ganglionic cell count to be close to the values of control group. CONCLUSION The isolated HG-SCs were proved to restore structure and function of cochlea in guinea pig model of hearing loss.
Collapse
Affiliation(s)
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona H Mohammed Ali
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Amin Nasr El-Din
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Anatomy Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2019; 303:516-526. [PMID: 30859735 DOI: 10.1002/ar.24107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/24/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Noise-induced hearing loss (NIHL) poses a significant burden on not only the economics of health care but also the quality of life of an individual, as we approach an unprecedented age of longevity. In this article, we will delineate the current landscape of management of NIHL. We discuss the most recent results from in vitro and in vivo studies that determine the effectiveness of established pharmacotherapy such as corticosteroid and potential emerging therapies like N-acetyl cysteine and neurotrophins (NTs), as well as highlight ongoing clinical trials for these therapeutic agents. We present an overview of how the recent advancements in the field of gene-based and stem cell-based therapies can help in developing effective therapeutic strategies for NIHL. Gene-based therapies have shown exciting results demonstrating cochlear cellular regeneration using Atoh1, NRF2 as well as NT gene therapy employing viral vectors. In addition, we will discuss the recent advancements in genome-editing technologies, such as CRISPR/Cas9, and its potential role in NIHL therapy. We will further discuss the current state of stem cell therapy as it pertains to treating neurodegenerative conditions including NIHL. Embryonic stem cells, adult-derived stem cells, and induced pluripotent stem cells all represent an enticing reservoir of replacing damaged cells as a result of NIHL. Finally, we will discuss the barriers that need to be overcome to translate these promising treatment modalities to the clinical practice in pursuit of improving quality of life of patients having NIHL. Anat Rec, 303:516-526, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
39
|
Helios is a key transcriptional regulator of outer hair cell maturation. Nature 2018; 563:696-700. [PMID: 30464345 PMCID: PMC6542691 DOI: 10.1038/s41586-018-0728-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022]
Abstract
The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.
Collapse
|
40
|
|
41
|
Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage. Neural Plast 2018; 2018:3170801. [PMID: 30123244 PMCID: PMC6079343 DOI: 10.1155/2018/3170801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Inner ear hair cells are mechanosensory receptors that perceive mechanical sound and help to decode the sound in order to understand spoken language. Exposure to intense noise may result in the damage to the inner ear hair cells, causing noise-induced hearing loss (NIHL). Particularly, the outer hair cells are the first and the most affected cells in NIHL. After acoustic trauma, hair cells lose their structural integrity and initiate a self-deterioration process due to the oxidative stress. The activation of different cellular death pathways leads to complete hair cell death. This review specifically presents the current understanding of the mechanism exists behind the loss of inner ear hair cell in the auditory portion after noise-induced trauma. The article also explains the recent hair cell protection strategies to prevent the damage and restore hearing function in mammals.
Collapse
|
42
|
Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018; 368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The isolated anatomical position and blood-labyrinth barrier hampers systemic drug delivery to the mammalian inner ear. Intratympanic placement of drugs and permeation via the round- and oval window are established methods for local pharmaceutical treatment. Mechanisms of drug uptake and pathways for distribution within the inner ear are hard to predict. The complex microanatomy with fluid-filled spaces separated by tight- and leaky barriers compose various compartments that connect via active and passive transport mechanisms. Here we provide a review on the inner ear architecture at light- and electron microscopy level, relevant for drug delivery. Focus is laid on the human inner ear architecture. Some new data add information on the human inner ear fluid spaces generated with high resolution microcomputed tomography at 15 μm resolution. Perilymphatic spaces are connected with the central modiolus by active transport mechanisms of mesothelial cells that provide access to spiral ganglion neurons. Reports on leaky barriers between scala tympani and the so-called cortilymph compartment likely open the best path for hair cell targeting. The complex barrier system of tight junction proteins such as occludins, claudins and tricellulin isolates the endolymphatic space for most drugs. Comparison of relevant differences of barriers, target cells and cell types involved in drug spread between main animal models and humans shall provide some translational aspects for inner ear drug applications.
Collapse
Affiliation(s)
- R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria; University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Austria.
| | - L Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - S Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Liu X, Li M, Smyth H, Zhang F. Otic drug delivery systems: formulation principles and recent developments. Drug Dev Ind Pharm 2018; 44:1395-1408. [PMID: 29659300 DOI: 10.1080/03639045.2018.1464022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.
Collapse
Affiliation(s)
- Xu Liu
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Mingshuang Li
- b Department of Communication Sciences and Disorders , The University of Texas at Austin , Austin , TX , USA
| | - Hugh Smyth
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Feng Zhang
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
44
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|