1
|
Wang B, Wang J, Beacher NJ, Lin DT, Zhang Y. Cell-type specific epigenetic and transcriptional mechanisms in substance use disorder. Front Cell Neurosci 2025; 19:1552032. [PMID: 40226298 PMCID: PMC11985801 DOI: 10.3389/fncel.2025.1552032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Substance use disorder (SUD) is a chronic and relapse-prone neuropsychiatric disease characterized by impaired brain circuitry within multiple cell types and neural circuits. Recent advancements in single-cell transcriptomics, epigenetics, and neural circuit research have unveiled molecular and cellular alterations associated with SUD. These studies have provided valuable insights into the transcriptional and epigenetic regulation of neuronal and non-neuronal cells, particularly in the context of drug exposure. Critical factors influencing the susceptibility of individuals to SUD include the regulation of gene expression during early developmental stages, neuroadaptive responses to psychoactive substances, and gene-environment interactions. Here we briefly review some of these mechanisms underlying SUD, with an emphasis on their crucial roles in in neural plasticity and maintenance of addiction and relapse in neuronal and non-neuronal cell-types. We foresee the possibility of integrating multi-omics technologies to devise targeted and personalized therapeutic strategies aimed at both the prevention and treatment of SUD. By utilizing these advanced methodologies, we can gain a deeper understanding of the fundamental biology of SUD, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Bin Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiale Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
2
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Hong N, Yoon SR, Ahn JC. Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure. Pharmacol Biochem Behav 2025; 248:173956. [PMID: 39793712 DOI: 10.1016/j.pbb.2025.173956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems. Near-infrared (NIR) light, in particular, has been shown to prevent apoptosis, and neuroinflammation, as well as to improve cognitive functions. In this study, we aimed to investigate whether 830-nm laser irradiation could mitigate cognitive deficits in a chronic alcohol mouse model. Chronic alcoholism was induced in C57BL/6 mice through continuous ethanol gavage for 4 weeks at a dosage of 5 g/kg/day. Gavaging was performed 3 times per week for 4 weeks. Mice were transcranial irradiated by 830-nm laser, following making a chronic alcohol mouse model. Laser irradiation (50 mW/cm2) was performed 5 times per week for 3 weeks. To verify memory and cognitive defeats of a chronic alcohol mouse model, we performed animal behavior tasks such as Morris water maze, Y maze, and novel objective recognition. Our results confirmed the cognitive impairment in the chronic alcohol mouse model compared to the control group in conducted tasks. However, cognitive and spatial memory significantly improved following 830-nm laser irradiation. Additionally, we confirmed whether the behavior tasks result from histological changes. We performed immunofluorescence staining in the hippocampus region (CA3, CA1 and hilus) using astrocyte (GFAP) and microglia (Iba1) markers. As a result, reactive astrocyte was significantly increased in the chronic alcohol mouse model compared to control mice, whereas the number of GFAP-positive cells was significantly reduced by 830-nm laser irradiation. These findings indicate that chronic alcohol exposure induces spatial memory and cognitive impairment, which can be effectively rescued through near-infrared laser irradiation.
Collapse
Affiliation(s)
- Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung-Ryeong Yoon
- Department of Medical Science, Graduate School of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
4
|
Libard S, Tamsen F, Alafuzoff I. Alcohol consumers with liver pathology rarely display α-synuclein pathology. Acta Neuropathol 2024; 148:13. [PMID: 39085656 PMCID: PMC11291549 DOI: 10.1007/s00401-024-02772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
It has been suggested that alcohol consumption protects against Parkinson's disease (PD). Here we assessed postmortem tissue samples from the brains and livers of 100 subjects with ages at death ranging from 51 to 93. Twenty percent of these subjects were demented. We used standardized assessment strategies to assess both the brain and liver pathologies (LP). Our cohort included subjects with none, mild, moderate, and severe LP caused by alcohol consumption. We noted a significant negative correlation of categorical data between liver steatosis and α-synuclein (αS) in the brain and a significant negative correlation between the extent of liver steatosis and fibrosis and the extent of αS in the brain. There was a significant negative association between the observation of Alzheimer's type II astrocytes and αS pathology in the brain. No association was noted between LP and hyperphosphorylated τ (HPτ). No significant correlation could be seen between the extent of LP and the extent of HPτ, amyloid β protein (Aβ) or transactive DNA binding protein 43 (TDP43) in the brain. There were significant correlations observed between the extent of HPτ, Aβ, αS, and TDP43 in the brain and between liver steatosis, inflammation, and fibrosis. Subjects with severe LP displayed a higher frequency of Alzheimer's type II astrocytes compared to those with no, or mild, LP. The assessed protein alterations were not more prevalent or severe in subjects with Alzheimer's type II astrocytes in the brain. In all cases, dementia was attributed to a combination of altered proteins, i.e., mixed dementia and dementia was observed in 30% of those with mild LP when compared with 13% of those with severe LP. In summary, our results are in line with the outcome obtained by the two recent meta-analyses suggesting that subjects with a history of alcohol consumption seldom develop an α-synucleinopathy.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Pathology, Uppsala University Hospital, 75185, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Tamsen
- Department of Surgical Sciences, Forensic Medicine, Uppsala University, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, 75185, Uppsala, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Govender D, Moloko L, Papathanasopoulos M, Tumba N, Owen G, Calvey T. Ibogaine administration following repeated morphine administration upregulates myelination markers 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP) mRNA and protein expression in the internal capsule of Sprague Dawley rats. Front Neurosci 2024; 18:1378841. [PMID: 39114487 PMCID: PMC11303312 DOI: 10.3389/fnins.2024.1378841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Ibogaine is a psychedelic alkaloid being investigated as a possible treatment for opioid use disorder. Ibogaine has a multi-receptor profile with affinities for mu and kappa opioid as well as NMDA receptors amongst others. Due to the sparsity of research into ibogaine's effects on white matter integrity and given the growing evidence that opioid use disorder is characterized by white matter pathology, we set out to investigate ibogaine's effects on two markers of myelination, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). Fifty Sprague Dawley rats were randomly assigned to five experimental groups of n = 10; (1) a saline control group received daily saline injections for 10 days, (2) a morphine control group received escalating morphine doses from 5 to 15 mg/kg over 10 days, (3) an ibogaine control group that received 10 days of saline followed by 50 mg/kg ibogaine hydrochloride, (4) a combination morphine and ibogaine group 1 that received the escalating morphine regime followed by 50 mg/kg ibogaine hydrochloride and (5) a second combination morphine and ibogaine group 2 which followed the same morphine and ibogaine regimen yet was terminated 72 h after administration compared to 24 h in the other groups. White matter from the internal capsule was dissected and qPCR and western blotting determined protein and gene expression of CNP and MBP. Morphine upregulated CNPase whereas ibogaine alone had no effect on CNP mRNA or protein expression. However, ibogaine administration following repeated morphine administration had an immediate effect by increasing CNP mRNA expression. This effect diminished after 72 h and resulted in a highly significant upregulation of CNPase protein at 72 h post administration. Ibogaine administration alone significantly upregulated protein expression yet downregulated MBP mRNA expression. Ibogaine administration following repeated morphine administration significantly upregulated MBP mRNA expression which increased at 72 h post administration resulting in a highly significant upregulation of MBP protein expression at 72 h post administration. These findings indicate that ibogaine is able to upregulate genes and proteins involved in the process of remyelination following opioid use and highlights an important mechanism of action of ibogaine's ability to treat substance use disorders.
Collapse
Affiliation(s)
- Demi Govender
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Leila Moloko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Tumba
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin Owen
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Calvey
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Huggett SB, Selveraj S, McGeary JE, Ikeda A, Yuan E, Loeffel LB, Rohan HCP. Bulk and Single-cell Transcriptomic Brain Data Identify Overlapping Processes and Cell-types with Human AUD and Mammalian Models of Alcohol Use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601528. [PMID: 39005451 PMCID: PMC11245012 DOI: 10.1101/2024.07.02.601528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This study explores the neurobiological underpinnings of alcohol use disorder (AUD) by integrating bulk and single-cell transcriptomic data from humans, primates, and mice across three brain regions associated with addiction (i.e., prefrontal cortex (PFC), nucleus accumbens (NAc), and central amygdala (CeA)). We compared AUD RNA expression and cell-type abundance from 92 human brain to data from 53 primates and 90 mice engaged in diverse alcohol use paradigms. The findings revealed significant and reproducible correlations between human AUD and mammalian models of alcohol use that vary by tissue, species, and behavioral paradigm. The strongest correlations occurred between primate and mouse models of binge drinking (i.e., high drinking in the dark). Certain primate models demonstrated that the brain RNA correlations with human alcohol use disorder (AUD) were approximately 40% as strong as the correlations observed within human samples themselves. By integrating single-cell transcriptomic data, this study observed decreased oligodendrocyte proportions in the PFC and NAc of human AUD with similar trends in animal models. Gene co-expression network analyses revealed conserved systems associated with human AUD and animal models of heavy/binge alcohol consumption. Gene co-expression networks were enriched for pathways related to inflammation, myelination, and synaptic plasticity and the genes within them accounted for ~20% of the heritability in human alcohol consumption. Identified hub genes were associated with relevant traits (e.g., impulsivity, motivation) in humans and mice. This study sheds light on conserved biological entities underlying AUD and chronic alcohol use, providing insights into the cellular, genetic, and neuromolecular basis across species.
Collapse
Affiliation(s)
- Spencer B Huggett
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA, USA
| | - Sharmila Selveraj
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA, USA
| | - John E McGeary
- Department of Psychiatry, Alpert Medical School of Brown University, Providence RI, USA
- Providence VA Medical Center, Providence, RI, USA
| | - Ami Ikeda
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA, USA
| | - Emerald Yuan
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA, USA
| | - Lauren B Loeffel
- VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - H C Palmer Rohan
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, GA, USA
- Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
7
|
Allard RL, Mayfield J, Barchiesi R, Salem NA, Mayfield RD. Toll-like receptor 7: A novel neuroimmune target to reduce excessive alcohol consumption. Neurobiol Stress 2024; 31:100639. [PMID: 38765062 PMCID: PMC11101708 DOI: 10.1016/j.ynstr.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns in foreign pathogens and intrinsic danger/damage signals from cells. TLR7 is a nucleic acid sensing endosomal TLR that is activated by single-stranded RNAs from microbes or by small noncoding RNAs that act as endogenous ligands. TLR7 signals through the MyD88 adaptor protein and activates the transcription factor interferon regulatory factor 7 (IRF7). TLR7 is found throughout the brain and is highly expressed in microglia, the main immune cells of the brain that have also been implicated in alcohol drinking in mice. Upregulation of TLR7 mRNA and protein has been identified in postmortem hippocampus and cortex from AUD subjects that correlated positively with lifetime consumption of alcohol. Similarly, Tlr7 and downstream signaling genes were upregulated in rat hippocampal and cortical slice cultures after chronic alcohol exposure and in these regions after chronic binge-like alcohol treatment in mice. In addition, repeated administration of the synthetic TLR7 agonists imiquimod (R837) or resiquimod (R848) increased voluntary alcohol drinking in different rodent models and produced sustained upregulation of IRF7 in the brain. These findings suggest that chronic TLR7 activation may drive excessive alcohol drinking. In the brain, this could occur through increased levels of endogenous TLR7 activators, like microRNAs and Y RNAs. This review explores chronic TLR7 activation as a pathway of dysregulated neuroimmune signaling in AUD and the endogenous small RNA ligands in the brain that could perpetuate innate immune responses and escalate alcohol drinking.
Collapse
Affiliation(s)
- Ruth L. Allard
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riccardo Barchiesi
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nihal A. Salem
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Çon N, Mercan S, Küçüköner A, Çalişkan N. Adolescent intermittent ethanol use in male rats do not change cerebellar cell numbers but initiate astroglial reaction. Int J Dev Neurosci 2024; 84:177-189. [PMID: 38327108 DOI: 10.1002/jdn.10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28-42 days old corresponds to 10-18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.
Collapse
Affiliation(s)
- Nurhan Çon
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Sevcan Mercan
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Asuman Küçüköner
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Nüket Çalişkan
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
9
|
Xunzhong Q, Miao G, Guangtao S, Huiying Z, Chenglong H, Xiaogang Z, Shunjie B, Xinyan H, Chengji W, Zuoyi H, Xiaofeng Z. Inhibition of the Rho/ROCK pathway promotes the expression of developmental and migration-related genes in astrocytes exposed to alcohol. Alcohol 2024; 115:5-12. [PMID: 37481044 DOI: 10.1016/j.alcohol.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 07/24/2023]
Abstract
Astrocytes are an important regulator of alcohol dependence. Furthermore, the downregulation of Rho-associated coiled coil-containing protein kinase 2 (ROCK2) attenuates alcohol-induced inflammation and oxidative stress in astrocytes. On the basis of these findings, we examined the effects of alcohol and a Rho/RACK kinases inhibitor on astrocyte function and investigated their effects on mRNA expression to further explore the protective mechanisms of a Rho/RACK kinases inhibitor in astrocytes after alcohol exposure. CTX TNA2 astrocytes were cultured with alcohol and Rho/RACK kinases inhibitor intervention before undergoing transcriptome sequencing, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and wound healing assays. Alcohol exposure modulated cell morphology and inhibited astrocyte migration, whereas Fasudil improved cell morphology and promoted astrocyte migration after alcohol exposure. Transcriptome sequencing results indicated that alcohol exposure modulates the expression of genes involved in astrocyte development. Fasudil reversed the effects of alcohol exposure on the astrocyte developmental process. Four genes related to the developmental process and migration - Ccl2, Postn, Itga8, and Serpine1 - with the highest protein-protein interaction correlations (node degree >7) were selected for verification by qRT-PCR, and the results were consistent with those of the sequencing and wound healing assays. Our results suggest that the Rho/ROCK pathway is essential for alcohol to be able to interfere with astrocyte development and migration gene expression. The Rho/ROCK pathway inhibitor Fasudil reversed the adverse effects of alcohol exposure on astrocytes and may have clinical applications.
Collapse
Affiliation(s)
- Qi Xunzhong
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Guo Miao
- Jiamusi University, Jiamusi, People's Republic of China
| | - Sun Guangtao
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Zhao Huiying
- Department of Neurology, Yichun Forestry Administration Central Hospital, Yichun, People's Republic of China
| | - Huang Chenglong
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhong Xiaogang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China; College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bai Shunjie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huang Xinyan
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Wu Chengji
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Huang Zuoyi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China.
| | - Zhu Xiaofeng
- Mudanjiang Medical College, Mudanjiang, People's Republic of China.
| |
Collapse
|
10
|
Zheng H, Zhang P, Shi S, Zhang X, Cai Q, Gong X. Sub-anesthetic dose of esketamine decreases postoperative opioid self-administration after spine surgery: a retrospective cohort analysis. Sci Rep 2024; 14:3909. [PMID: 38365958 PMCID: PMC10873399 DOI: 10.1038/s41598-024-54617-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
The use of intraoperative sub-anesthetic esketamine for postoperative analgesia is controversial. In this study, the impact of sub-anesthetic esketamine on postoperative opioid self-administration was determined. Patients who underwent spinal surgery with patient-controlled analgesia (PCA) from January 2019 to December 2021 were respectively screened for analysis. Postoperative PCA was compared between patients who received a sub-anesthetic esketamine dose and patients who were not treated with esketamine (non-esketamine group) with or without propensity score matching. Negative binomial regression analysis was used to identify factors associated with postoperative PCA. Patients who received intraoperative sub-anesthetic esketamine self-administered less PCA (P = 0.001). Azasetron, esketamine, and dexamethasone lowered the self-administration of PCA (IRR with 95% confidential interval, 0.789 [0.624, 0.993]; 0.581 [0.458, 0.741]; and 0.777 [0.627, 0.959], respectively). Fixation surgery and drinking were risk factors for postoperative PCA (1.737 [1.373, 2.188] and 1.332 [1.032, 1.737] for fixation surgery and drinking, respectively). An intraoperative sub-anesthetic dose of esketamine decreases postoperative opioid self-administration. Azasetron and dexamethasone also decrease postoperative opioid consumption. The study is registered at www.chictr.org.cn (ChiCTR2300068733).
Collapse
Affiliation(s)
- Hongyu Zheng
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Peng Zhang
- Department of Emergency, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xue Zhang
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
11
|
Rasool AE, Furlong T, Prasad AA. Microglia activity in the human basal ganglia is altered in alcohol use disorder and reversed with remission from alcohol. Addict Biol 2024; 29:e13374. [PMID: 38380734 PMCID: PMC10898843 DOI: 10.1111/adb.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/10/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Alcohol use disorder (AUD) is characterized by cycles of abuse, withdrawal, and relapse. Neuroadaptations in the basal ganglia are observed in AUD; specifically in the putamen, globus pallidus (GP), and ventral pallidum (VP). These regions are associated with habit formation, drug-seeking behaviors, and reward processing. While previous studies have shown the crucial role of glial cells in drug seeking, it remains unknown whether glial cells in the basal ganglia are altered in AUD. Glial cells in the putamen, GP, and VP were examined in human post-mortem tissue of AUD and alcohol remission cases. Immunohistochemistry was performed to analyze cell count, staining intensity, and morphology of microglia and astrocytes, using markers Iba-1 and GFAP. Morphological analysis revealed a significant decrease in microglia cell size and process retraction, indicating activation or a dystrophic microglia phenotype in individuals with AUD compared to controls. Microglia staining intensity was also higher in the GP and VP in AUD cases, whereas microglia staining intensity and cell size in remission cases were not different to control cases. In contrast, no astrocyte changes were observed in examined brain regions for both AUD and remission cases compared to controls. These results suggest alcohol exposure alters microglia, potentially contributing to dysfunctions in the basal ganglia that maintain addiction, and abstinence from alcohol may reverse microglia changes and associated dysfunctions. Overall, this study further characterizes AUD neuropathology and implicates microglia in the putamen, GP, and VP as a potential target for therapy.
Collapse
Affiliation(s)
- Ameer Elena Rasool
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Teri Furlong
- School of MedicineUniversity of New SouthSydneyNew South WalesAustralia
| | - Asheeta A. Prasad
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- School of PsychologyUniversity of New SouthSydneyNew South WalesAustralia
| |
Collapse
|
12
|
Durazzo TC, Stephens LH, Meyerhoff DJ. Regional cortical thickness recovery with extended abstinence after treatment in those with alcohol use disorder. Alcohol 2024; 114:51-60. [PMID: 37657667 PMCID: PMC10902196 DOI: 10.1016/j.alcohol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Several cross-sectional investigations reported widespread cortical thinning in those with alcohol use disorder (AUD). The few longitudinal studies investigating cortical thickness changes during abstinence are limited to the first month of sobriety. Consequently, cortical thickness changes during extended abstinence in those with AUD is unclear. In this study, AUD participants were studied at approximately 1 week (n = 68), 1 month (n = 88), and 7.3 months (n = 40) of abstinence. Forty-five never-smoking controls (CON) completed a baseline study, and 15 were reassessed after approximately 9.6 months. Participants completed magnetic resonance imaging studies at 1.5T, and cortical thickness for 34 bilateral regions of interest (ROI) was quantitated with FreeSurfer. AUD participants demonstrated significant linear thickness increases in 25/34 ROI over 7.3 months of abstinence. The rate of change from 1 week to 1 month was greater than 1 month to 7.3 months in 19/34 ROIs. Proatherogenic conditions were associated with lower thickness recovery in anterior frontal, inferior parietal, and lateral/mesial temporal regions. After 7.3 months of abstinence, AUD participants were statistically equivalent to CON on cortical thickness in 24/34 ROIs; the cortical thickness differences between AUD and CON in the banks superior temporal gyrus, post central, posterior cingulate, superior parietal, supramarginal, and superior frontal cortices were driven by thinner cortices in AUD with proatherogenic conditions relative to CON. In actively smoking AUD, increasing pack-years was associated with decreasing thickness recovery primarily in the anterior frontal ROIs. Widespread bilateral cortical thickness recovery over 7.3 months of abstinence was the central finding for this AUD cohort. The longitudinal and cross-sectional findings for AUD with proatherogenic suggests alterations in perfusion or vascular integrity may relate to structural recovery in those with AUD. These results support the adaptive and beneficial effects of sustained sobriety on brain structural recovery in people with AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Sierra-Pacific Mental Illness Research and Education Clinical Centers, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Lauren H Stephens
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco Veterans Administration Medical Center, San Francisco, CA, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
13
|
Cui X, Li J, Wang C, Ishaq HM, Zhang R, Yang F. Relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder. Pharmacol Biochem Behav 2024; 235:173695. [PMID: 38128765 DOI: 10.1016/j.pbb.2023.173695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Alcohol use disorder is a chronic recurrent encephalopathy, and its pathogenesis has not been fully understood. Among possible explanations, neuroinflammation caused by the disorders of brain central immune signaling has been identified as one possible mechanism of alcohol use disorder. As the basic components of cells and important bioactive molecules, sphingolipids are essential in regulating many cellular activities. Recent studies have shown that sphingolipids-mediated neuroinflammation may be involved in the development of alcohol use disorder. METHODS PubMed databases were searched for literature on sphingolipids and alcohol use disorder (alcohol abuse, alcohol addiction, alcohol dependence, and alcohol misuse) including evidence of the relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder (formation, withdrawal, treatment). RESULTS Disorders of sphingolipid metabolism, including the different types of sphingolipids and regulatory enzyme activity, have been found in patients with alcohol use disorder as well as animal models, which in turn cause neuro-inflammation in the central nervous system. Thus, these disorders may also be an important mechanism in the development of alcohol use disorder in patients. In addition, different sphingolipids may have different or even reverse effects on alcohol use disorder. CONCLUSIONS The sphingolipids-mediated neuroinflammation plays an important role in the development of alcohol use disorder. This review proposes a potential approach to prevent and treat alcohol use disorders by manipulating sphingolipid metabolism.
Collapse
Affiliation(s)
- XiaoJian Cui
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - JiaZhen Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - ChuanSheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - RuiLin Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| | - Fan Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
14
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Barlattani T, Grandinetti P, Di Cintio A, Montemagno A, Testa R, D’Amelio C, Olivieri L, Tomasetti C, Rossi A, Pacitti F, De Berardis D. Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review. Curr Neuropharmacol 2024; 22:2016-2033. [PMID: 39234773 PMCID: PMC11333792 DOI: 10.2174/1570159x22666240130091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders. METHODS We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications. RESULTS Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder. CONCLUSION This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Paolo Grandinetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alexsander Di Cintio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Alessio Montemagno
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Roberta Testa
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Chiara D’Amelio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Luigi Olivieri
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Carmine Tomasetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| |
Collapse
|
16
|
Sushma, Mishra S, Kanchan S, Divakar A, Jha G, Sharma D, Kapoor R, Kumar Rath S. Alcohol induces ER stress and apoptosis by inducing oxidative stress and disruption of calcium homeostasis in glial cells. Food Chem Toxicol 2023; 182:114192. [PMID: 37980976 DOI: 10.1016/j.fct.2023.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Alcohol has teratogenic effects that can cause developmental abnormalities and alter anatomical and functional characteristics of the developed brain and other organs. Glial cells play a crucial role in alcohol metabolism and protect neurons from toxic effects of alcohol. However, chronic alcohol exposure can lead to uncontrollable levels of reactive oxygen species, resulting in the death of glial cells and exposing neuronal cells to the toxic effects of alcohol. The exact molecular mechanism of alcohol-induced glial cell death has not been fully explored. This study reported that different concentrations of alcohol induce different expressions of ER stress markers in glial cells, focusing on the role of endoplasmic reticulum (ER) stress. Alcohol-induced concentration-dependent toxicity in both cells also induced oxidative stress, leading to mitochondrial damage. The expression of p53 and apoptotic proteins was significantly up-regulated after alcohol exposure, while Bcl2 (anti-apoptotic) was down-regulated. The signalling pathway for ER stress was activated and up-regulated marker proteins in a concentration-dependent manner. Cells pre-treated with BAPTA-AM and NAC showed significant resistance against alcohol assault compared to other cells. These in vitro findings will prove valuable for defining the mechanism by which alcohol modulates oxidative stress, mitochondrial and ER damage leading to glial cell death.
Collapse
Affiliation(s)
- Sushma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India.
| |
Collapse
|
17
|
Paladino L, Rappa F, Barone R, Macaluso F, Zummo FP, David S, Szychlinska MA, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Marino Gammazza A. NF-kB Regulation and the Chaperone System Mediate Restorative Effects of the Probiotic Lactobacillus fermentum LF31 in the Small Intestine and Cerebellum of Mice with Ethanol-Induced Damage. BIOLOGY 2023; 12:1394. [PMID: 37997993 PMCID: PMC10669058 DOI: 10.3390/biology12111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
Probiotics are live microorganisms that yield health benefits when consumed, generally by improving or restoring the intestinal flora (microbiota) as part of the muco-microbiotic layer of the bowel. In this work, mice were fed with ethanol alone or in combination with the probiotic Lactobacillus fermentum (L. fermentum) for 12 weeks. The modulation of the NF-κB signaling pathway with the induction of Hsp60, Hsp90, and IkB-α by the probiotic occurred in the jejunum. L. fermentum inhibited IL-6 expression and downregulated TNF-α transcription. NF-κB inactivation concurred with the restoration of the intestinal barrier, which had been damaged by ethanol, via the production of tight junction proteins, ameliorating the ethanol-induced intestinal permeability. The beneficial effect of the probiotic on the intestine was repeated for the cerebellum, in which downregulation of glial inflammation-related markers was observed in the probiotic-fed mice. The data show that L. fermentum exerted anti-inflammatory and cytoprotective effects in both the small intestine and the cerebellum, by suppressing ethanol-induced increased intestinal permeability and curbing neuroinflammation. The results also suggest that L. fermentum could be advantageous, along with the other available means, for treating intestinal diseases caused by stressors associated with inflammation and dysbiosis.
Collapse
Affiliation(s)
- Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Institute of Translational Pharmacology (IFT), Italy National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Filippo Macaluso
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Sabrina David
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, UKE-Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| |
Collapse
|
18
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
19
|
Ambati R, Kho LK, Prentice D, Thompson A. Osmotic demyelination syndrome: novel risk factors and proposed pathophysiology. Intern Med J 2023; 53:1154-1162. [PMID: 35717664 DOI: 10.1111/imj.15855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/30/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Osmotic demyelination syndrome (ODS) is non-inflammatory demyelination in response to an osmotic challenge. It can be pontine or extrapontine in presentation. AIMS To retrospectively review cases involving ODS and define the spectrum of causes, risk factors, clinical and radiological presentations, and functional outcomes. RESULTS The study utilised data from 15 patients with a mean age of 53.6 years. Malnutrition (9; 60%) and chronic alcoholism (10; 66.7%) were the most common associated disorders. Two (13.3%) patients had severe hyponatraemia (<120 mmol/L). The average highest single-day change was 5.1 mmol/L. Radiologically, 14 (93.3%) had pontine and 6 (40%) had extra-pontine lesions. Hypokalaemia (14; 93.3%) and hypophosphataemia (9; 60%) were commonly associated. Common clinical manifestations include altered consciousness/encephalopathy (9; 60%), dysphagia (4; 26.7%) and limb weakness (4; 26.7%). At 3 months, two (14.3%) had died and six (40%) were functionally independent (modified Rankin scale 0-2). CONCLUSION We found that ODS occurred despite appropriate correction rates of hyponatraemia. Factors such as malnutrition, chronic alcoholism, hypokalaemia and hypophosphataemia are thought to play a role in its pathogenesis. Approximately half of the patients survived and became functionally independent.
Collapse
Affiliation(s)
- Ravi Ambati
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Neurology, St. John of God Midland Hospital, Perth, Western Australia, Australia
| | - Lay K Kho
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Neurology, St. John of God Midland Hospital, Perth, Western Australia, Australia
| | - David Prentice
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Neurology, St. John of God Midland Hospital, Perth, Western Australia, Australia
| | - Andrew Thompson
- Neurological Intervention and Imaging Service of WA (NIISwa), Royal Perth and Sir Charles Gairdner Hospitals, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Li D, Yang H, Lyu M, Zhou L, Zhang Y, Kang C, Wang J, Wang Y. Association between Behavioural Risks and Alzheimer's Disease: Elucidated with an Integrated Analysis of Gene Expression Patterns and Molecular Mechanisms. Neurosci Biobehav Rev 2023; 150:105207. [PMID: 37146892 DOI: 10.1016/j.neubiorev.2023.105207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/12/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Alzheimer's disease (AD) remains a global health challenge. Previous studies have reported linkages between AD and multiple behavioural risk exposures, however, the underlying biological mechanisms and crucial genes of gene expression patterns driven by behavioural risks on the onset or progression of AD remains ambiguous. In this study, we performed an integrated analysis on the influence of behavioural risks including smoking, excessive alcohol consumption, physical inactivity, and non-healthy dietary pattern on AD with a comprehensive strategy. Our results demonstrated that multiple behavioural risk exposures could independently or collectively influence diverse hierarchical levels of gene expression patterns through multiple biological mechanisms such as Wnt, mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), nuclear factor (NF)-κB, phosphatidylinositol 3-kinase (PI3K)-Akt, and insulin (INS) signalling pathways-mediated pathological processes, thereby prodromally or intermediately impacting AD. Our study provided insights into understanding the association of behavioural risk exposures with AD and informative support for further studies.
Collapse
Affiliation(s)
- Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongxi Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingqian Lyu
- Department of Computer Science, RWTH Aachen University, Aachen, 52062, Germany
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yuan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunsheng Kang
- epartment of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Yaogang Wang
- School of Integrative Medicine, Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Public Health, Tianjin Medical University, Tianjin, 300070, China; National Institute of Health Data Science at Peking University, Peking University, Beijing, 100191, China.
| |
Collapse
|
21
|
Gruol DL, Calderon D, French K, Melkonian C, Huitron-Resendiz S, Cates-Gatto C, Roberts AJ. Neuroimmune interactions with binge alcohol drinking in the cerebellum of IL-6 transgenic mice. Neuropharmacology 2023; 228:109455. [PMID: 36775097 PMCID: PMC10029700 DOI: 10.1016/j.neuropharm.2023.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The neuroimmune system of the brain, which is comprised primarily of astrocytes and microglia, regulates a variety of homeostatic mechanisms that underlie normal brain function. Numerous conditions, including alcohol consumption, can disrupt this regulatory process by altering brain levels of neuroimmune factors. Alcohol and neuroimmune factors, such as proinflammatory cytokines IL-6 and TNF-alpha, act at similar targets in the brain, including excitatory and inhibitory synaptic transmission. Thus, alcohol-induced production of IL-6 and/or TNF-alpha could be important contributing factors to the effects of alcohol on the brain. Recent studies indicate that IL-6 plays a role in alcohol drinking and the effects of alcohol on the brain activity following the cessation of alcohol consumption (post-alcohol period), however information on these topics is limited. Here we used homozygous and heterozygous female and male transgenic mice with increased astrocyte expression of IL-6 to examined further the interactions between alcohol and IL-6 with respect to voluntary alcohol drinking, brain activity during the post-alcohol period, IL-6 signal transduction, and expression of synaptic proteins. Wildtype littermates (WT) served as controls. The transgenic mice model brain neuroimmune status with respect to IL-6 in subjects with a history of persistent alcohol use. Results showed a genotype dependent reduction in voluntary alcohol consumption in the Drinking in the Dark protocol and in frequency-dependent relationships between brain activity in EEG recordings during the post-alcohol period and alcohol consumption. IL-6, TNF-alpha, IL-6 signal transduction partners pSTAT3 and c/EBP beta, and synaptic proteins were shown to play a role in these genotypic effects.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Delilah Calderon
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katharine French
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Claudia Melkonian
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
22
|
Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system - Where aging and excess alcohol intersect. Alcohol 2023; 107:153-167. [PMID: 36150610 PMCID: PMC10023388 DOI: 10.1016/j.alcohol.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.
Collapse
Affiliation(s)
- Erika R Carlson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Steven P Guerin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
23
|
Zhao Y, Yang X, Cheng S, Li C, He D, Cai Q, Wei W, Qin X, Zhang N, Shi S, Chu X, Meng P, Zhang F. Assessing the effect of interaction between lifestyle and longitudinal changes in brain structure on sleep phenotypes. Cereb Cortex 2023:7030864. [PMID: 36750265 DOI: 10.1093/cercor/bhac526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Longitudinal changes in brain structure and lifestyle can affect sleep phenotypes. However, the influence of the interaction between longitudinal changes in brain structure and lifestyle on sleep phenotypes remains unclear. Genome-wide association study dataset of longitudinal changes in brain structure was obtained from published study. Phenotypic data of lifestyles and sleep phenotypes were obtained from UK Biobank cohort. Using genotype data from UK Biobank, we calculated polygenetic risk scores of longitudinal changes in brain structure phenotypes. Linear/logistic regression analysis was conducted to evaluate interactions between longitudinal changes in brain structure and lifestyles on sleep duration, chronotype, insomnia, snoring and daytime dozing. Multiple lifestyle × longitudinal changes in brain structure interactions were detected for 5 sleep phenotypes, such as physical activity×caudate_age2 for daytime dozing (OR = 1.0389, P = 8.84 × 10-3) in total samples, coffee intake×cerebellar white matter volume_age2 for daytime dozing (OR = 0.9652, P = 1.13 × 10-4) in females. Besides, we found 4 overlapping interactions in different sleep phenotypes. We conducted sex stratification analysis and identified one overlapping interaction between female and male. Our results support the moderate effects of interaction between lifestyle and longitudinal changes in brain structure on sleep phenotypes, and deepen our understanding of the pathogenesis of sleep disorders.
Collapse
Affiliation(s)
- Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
24
|
Nuñez-delMoral A, Bianchi PC, Brocos-Mosquera I, Anesio A, Palombo P, Camarini R, Cruz FC, Callado LF, Vialou V, Erdozain AM. The Matricellular Protein Hevin Is Involved in Alcohol Use Disorder. Biomolecules 2023; 13:biom13020234. [PMID: 36830603 PMCID: PMC9953008 DOI: 10.3390/biom13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.
Collapse
Affiliation(s)
- Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Paula C. Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Augusto Anesio
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fabio C. Cruz
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Vincent Vialou
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Université, 75005 Paris, France
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| | - Amaia M. Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| |
Collapse
|
25
|
van den Oord EJCG, Xie LY, Zhao M, Aberg KA, Clark SL. A single-nucleus transcriptomics study of alcohol use disorder in the nucleus accumbens. Addict Biol 2023; 28:e13250. [PMID: 36577731 DOI: 10.1111/adb.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022]
Abstract
Gene expression studies offer promising opportunities to better understand the processes underlying alcohol use disorder (AUD). As cell types differ in their function, gene expression profiles will typically vary across cell types. When studying bulk tissue, failure to account for this cellular diversity has a detrimental impact on the ability to detect disease associations. We therefore assayed the transcriptomes of 32,531 individual nuclei extracted from the nucleus accumbens (NAc) of nine donors with AUD and nine controls (72% male). Our study identified 17 clearly delineated cell types. We detected 26 transcriptome-wide significant differentially expressed genes (DEGs) that mainly involved medium spiny neurons with both D1-type and D2-type dopamine receptors, microglia (MGL) and oligodendrocytes. A higher than expected number of DEGs replicated in an existing single nucleus gene expression study of alcohol dependence in the prefrontal cortex (enrichment ratio 1.91, p value 0.019) with two genes remaining significant after a Bonferroni correction. Our most compelling result involved CD53 in MGL that replicated in the same cell type in the prefrontal cortex and was previously implicated in studies of DNA methylation, bulk gene expression and genetic variants. Several DEGs were previously reported to be associated with AUD (e.g., PER1 and MGAT5). The DEGs for MSN.3 seemed involved in neurodegeneration, disruption of circadian rhythms, alterations in glucose metabolism and changes in synaptic plasticity. For MGL, the DEGs implicated neuroinflammation and immune-related processes and for OLI, disruptions in myelination. This identification of the specific cell-types from which the association signals originate will be key for designing proper follow-up experiments and, eventually, novel clinical interventions.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
27
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
28
|
Clergue-Duval V, Vrillon A, Jeanblanc J, Questel F, Azuar J, Fouquet G, Mouton-Liger F, Rollet D, Hispard E, Bouaziz-Amar E, Bloch V, Dereux A, Cognat E, Marie-Claire C, Laplanche JL, Bellivier F, Paquet C, Naassila M, Vorspan F. Plasma tau, NfL, GFAP and UCHL1 as candidate biomarkers of alcohol withdrawal-associated brain damage: A pilot study. Addict Biol 2022; 27:e13232. [PMID: 36301211 DOI: 10.1111/adb.13232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023]
Abstract
In this translational study, we investigated the plasma tau protein, neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCHL1), which are established biomarkers of neurological injury, as predictive biomarkers of alcohol withdrawal-associated brain toxicity. In the clinical study, patients with severe alcohol use disorder (AUD) on D1 of hospitalization for alcohol cessation (AC) (N = 36) were compared to severe AUD patients with at least 3 months of abstinence (N = 16). Overall, patients were 40 men (76.9%), aged 49.8 years [SD ±9.9]. Tau, NfL, GFAP and UCHL1 levels were measured using SIMOA and analysed with a quasipoisson regression model adjusted for age and sex. The NfL level was higher in the AC group (p = 0.013). In the AC group, the tau (p = 0.021) and UCHL1 (p = 0.021) levels were positively associated with the dose of diazepam per weight, and the tau (p = 0.045), NfL (p = 4.9 × 10-3 ) and UCHL1 (p = 0.036) levels were higher in the presence of signs of Wernicke's encephalopathy (n = 9). In the preclinical study, NfL and GFAP levels were assessed in the alcohol deprivation effect (ADE) procedure (N = 17) and control Wistar rats (N = 15). Furthermore, ADE rats were prospectively assessed: after 24 h (T1) and 3 weeks of AC (T2) (paired-samples Wilcoxon and Mann-Whitney tests). The NfL level was higher in the ADE model than in the control rats at both T1 and T2 (p = 0.033 and p = 1.3 × 10-3 ) and higher at T2 than at T1 (p = 0.040). Plasma tau, NfL and UCHL1 are potential biomarkers of brain suffering during alcohol withdrawal.
Collapse
Affiliation(s)
- Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Agathe Vrillon
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Centre de Neurologie Cognitive, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Jérôme Jeanblanc
- Inserm UMRS-1247 Groupe de recherche sur l'alcool et les pharmacodépendances, Université de Picardie Jules Verne, Amiens, France.,FHU Améliorer le pronostic des troubles Addictifs et Mentaux par une Médecine Personnalisée (A2M2P), Amiens, France
| | - Frank Questel
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Julien Azuar
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Grégory Fouquet
- Inserm UMRS-1247 Groupe de recherche sur l'alcool et les pharmacodépendances, Université de Picardie Jules Verne, Amiens, France.,FHU Améliorer le pronostic des troubles Addictifs et Mentaux par une Médecine Personnalisée (A2M2P), Amiens, France
| | - François Mouton-Liger
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Centre de Neurologie Cognitive, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Dorian Rollet
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Eric Hispard
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Elodie Bouaziz-Amar
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Département de Biochimie et Biologie Moléculaire, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,UFR de Pharmacie, Université Paris Cité, Paris, France
| | - Vanessa Bloch
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Pharmacie, Université Paris Cité, Paris, France.,Service de Pharmacie, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Alexandra Dereux
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Resalcog (Réseau pour la prise en charge des troubles cognitifs liés à l'alcool), Paris, France
| | - Emmanuel Cognat
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Centre de Neurologie Cognitive, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Cynthia Marie-Claire
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France
| | - Jean-Louis Laplanche
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,Département de Biochimie et Biologie Moléculaire, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,UFR de Pharmacie, Université Paris Cité, Paris, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France
| | - Claire Paquet
- Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Centre de Neurologie Cognitive, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Mickael Naassila
- Inserm UMRS-1247 Groupe de recherche sur l'alcool et les pharmacodépendances, Université de Picardie Jules Verne, Amiens, France.,FHU Améliorer le pronostic des troubles Addictifs et Mentaux par une Médecine Personnalisée (A2M2P), Amiens, France.,UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, APHP GHU Nord, Site Lariboisière Fernand-Widal, Paris, France.,Inserm UMRS-1144 Optimisation thérapeutique en neuropsychopharmacologie, Université Paris Cité, Paris, France.,FHU Network of Research in Substance Use Disorders (NOR-SUD), Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France
| |
Collapse
|
29
|
Rikitake M, Hata J, Iida M, Seki F, Ito R, Komaki Y, Yamada C, Yoshimaru D, Okano HJ, Shirakawa T. Analysis of Brain Structure and Neural Organization in Dystrophin-Deficient Model Mice with Magnetic Resonance Imaging at 7 T. Open Neuroimag J 2022. [DOI: 10.2174/18744400-v15-e2202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Dystrophin strengthens muscle cells; however, in muscular dystrophy, dystrophin is deficient due to an abnormal sugar chain. This abnormality occurs in skeletal muscle and in brain tissue.
Objective:
This study aimed to non-invasively analyze the neural organization of the brain in muscular dystrophy. We used a mouse model of muscular dystrophy to study whether changes in brain structure and neurodegeneration following dystrophin deficiency can be assessed by 7T magnetic resonance imaging.
Methods:
C57BL/10-mdx (X chromosome-linked muscular dystrophy) mice were used as the dystrophic mouse model and healthy mice were used as controls. Ventricular enlargement is one of the most common brain malformations in dystrophin-deficient patients. Therefore, we examined whether ventricular enlargement was observed in C57BL/10-mdx using transverse-relaxation weighted images. Brain parenchyma analysis was performed using diffusion MRI with diffusion tensor images and neurite orientation dispersion and density imaging. Parenchymal degeneration was assessed in terms of directional diffusion, nerve fiber diffusion, and dendritic scattering density.
Results:
For the volume of brain ventricles analyzed by T2WI, the average size was 1.5 times larger in mdx mice compared to control mice. In the brain parenchyma, a significant difference (p < 0.05) was observed in parameters indicating disturbances in the direction of nerve fibers and dendritic scattering density in the white matter region.
Conclusion:
Our results show that changes in brain structure due to dystrophin deficiency can be assessed in detail without tissue destruction by combining diffusion tensor images and neurite orientation dispersion and density imaging analyses.
Collapse
|
30
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
31
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
32
|
Vizuete AFK, Mussulini BH, Zenki KC, Baggio S, Pasqualotto A, Rosemberg DB, Bogo MR, de Oliveira DL, Rico EP. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology 2021; 88:57-64. [PMID: 34728274 DOI: 10.1016/j.neuro.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1β and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Suelen Baggio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Amanda Pasqualotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Diogo Lösch de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
33
|
Guo F, Zhang YF, Liu K, Huang X, Li RX, Wang SY, Wang F, Xiao L, Mei F, Li T. Chronic Exposure to Alcohol Inhibits New Myelin Generation in Adult Mouse Brain. Front Cell Neurosci 2021; 15:732602. [PMID: 34512271 PMCID: PMC8429601 DOI: 10.3389/fncel.2021.732602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022] Open
Abstract
Chronic alcohol consumption causes cognitive impairments accompanying with white matter atrophy. Recent evidence has shown that myelin dynamics remain active and are important for brain functions in adulthood. For example, new myelin generation is required for learning and memory functions. However, it remains undetermined whether alcohol exposure can alter myelin dynamics in adulthood. In this study, we examine the effect of chronic alcohol exposure on myelin dynamics by using genetic approaches to label newly generated myelin (NG2-CreERt; mT/mG). Our results indicated that alcohol exposure (either 5% or 10% in drinking water) for 3 weeks remarkably reduced mGFP + /NG2- new myelin and mGFP + /CC1 + new oligodendrocytes in the prefrontal cortex and corpus callosum of 6-month-old NG2-CreERt; mT/mG mice as compared to controls without changing the mGFP + /NG2 + oligodendrocyte precursor cells (OPCs) density, suggesting that alcohol exposure may inhibit oligodendrocyte differentiation. In support with these findings, the alcohol exposure did not significantly alter apoptotic cell number or overall MBP expression in the brains. Further, the alcohol exposure decreased the histone deacetylase1 (HDAC1) expression in mGFP + /NG2 + OPCs, implying epigenetic mechanisms were involved in the arrested OPC differentiation. Together, our results indicate that chronic exposure to alcohol can inhibit myelinogenesis in the adult mouse brain and that may contribute to alcohol-related cognitive impairments.
Collapse
Affiliation(s)
- Feng Guo
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China.,The First Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi-Fan Zhang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China.,The First Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kun Liu
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui-Xue Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu-Yue Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
34
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
35
|
Pearl PL, Gibson KM, Roullet JB, DiBacco M. Author Response: Novel ALDH5A1 Variants and Genotype: Phenotype Correlation in SSADH Deficiency. Neurology 2021. [DOI: 10.1212/wnl.0000000000012040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Marshall SA. Glial cells as influencers and maladaptive consequences of alcohol use disorders. J Neurosci Res 2021; 99:1905-1907. [PMID: 34062005 DOI: 10.1002/jnr.24868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/06/2022]
Affiliation(s)
- S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA.,Department of Psychology & Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:733-750. [PMID: 32447612 PMCID: PMC7680720 DOI: 10.1007/s10571-020-00879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
38
|
Astrocytes promote ethanol-induced enhancement of intracellular Ca 2+ signals through intercellular communication with neurons. iScience 2021; 24:102436. [PMID: 33997707 PMCID: PMC8105650 DOI: 10.1016/j.isci.2021.102436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Ethanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable in vitro system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes. Neuronally-derived purinergic signaling primed a subpopulation of astrocytes to respond to subsequent acute EtOH exposures (SEastrocytes: signal enhanced astrocytes) with greater calcium signal strength. Generation of SEastrocytes arose from astrocytic hemichannel-derived ATP and accumulation of its metabolite adenosine within the astrocyte microenvironment to modulate adenylyl cyclase and phospholipase C activity. These results highlight an important role of astrocytes in shaping the overall physiological responsiveness to EtOH and emphasize the unique plasticity of astrocytes to adapt to single and multiple exposures of EtOH.
Collapse
|
39
|
Nwachukwu KN, Evans WA, Sides TR, Trevisani CP, Davis A, Marshall SA. Chemogenetic manipulation of astrocytic signaling in the basolateral amygdala reduces binge-like alcohol consumption in male mice. J Neurosci Res 2021; 99:1957-1972. [PMID: 33844860 DOI: 10.1002/jnr.24841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
Binge drinking is a common occurrence in the United States, but a high concentration of alcohol in the blood has been shown to have reinforcing and reciprocal effects on the neuroimmune system in both dependent and non-dependent scenarios. The first part of this study examined alcohol's effects on the astrocytic response in the central amygdala and basolateral amygdala (BLA) in a non-dependent model. C57BL/6J mice were given access to either ethanol, water, or sucrose during a "drinking in the dark" paradigm, and astrocyte number and astrogliosis were measured using immunohistochemistry. Results indicate that non-dependent consumption increased glial fibrillary acidic protein (GFAP) density but not the number of GFAP+ cells, suggesting that non-dependent ethanol is sufficient to elicit astrocyte activation. The second part of this study examined how astrocytes impacted behaviors and the neurochemistry related to alcohol using the chemogenetic tool, DREADDs (designer receptors exclusively activated by designer drugs). Transgenic GFAP-hM3Dq mice were administered clozapine N-oxide both peripherally, affecting the entire central nervous system (CNS), or directly into the BLA. In both instances, GFAP-Gq-signaling activation significantly reduced ethanol consumption and correlating blood ethanol concentrations. However, GFAP-Gq-DREADD activation throughout the CNS had more broad effects resulting in decreased locomotor activity and sucrose consumption. More targeted GFAP-Gq-signaling activation in the BLA only impacted ethanol consumption. Finally, a glutamate assay revealed that after GFAP-Gq-signaling activation glutamate concentrations in the amygdala were partially normalized to control levels. Altogether, these studies support the theory that astrocytes represent a viable target for alcohol use disorder therapies.
Collapse
Affiliation(s)
- Kala N Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - William A Evans
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Tori R Sides
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Christopher P Trevisani
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Ambryia Davis
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA.,Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA.,Department of Psychology & Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Pervin Z, Stephen JM. Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic options for alcohol-induced neurotoxication. AIMS Neurosci 2021; 8:390-413. [PMID: 34183988 PMCID: PMC8222771 DOI: 10.3934/neuroscience.2021021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/06/2022] Open
Abstract
The central nervous system (CNS) is the major target for adverse effects of alcohol and extensively promotes the development of a significant number of neurological diseases such as stroke, brain tumor, multiple sclerosis (MS), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Excessive alcohol consumption causes severe neuro-immunological changes in the internal organs including irreversible brain injury and it also reacts with the defense mechanism of the blood-brain barrier (BBB) which in turn leads to changes in the configuration of the tight junction of endothelial cells and white matter thickness of the brain. Neuronal injury associated with malnutrition and oxidative stress-related BBB dysfunction may cause neuronal degeneration and demyelination in patients with alcohol use disorder (AUD); however, the underlying mechanism still remains unknown. To address this question, studies need to be performed on the contributing mechanisms of alcohol on pathological relationships of neurodegeneration that cause permanent neuronal damage. Moreover, alcohol-induced molecular changes of white matter with conduction disturbance in neurotransmission are a likely cause of myelin defect or axonal loss which correlates with cognitive dysfunctions in AUD. To extend our current knowledge in developing a neuroprotective environment, we need to explore the pathophysiology of ethanol (EtOH) metabolism and its effect on the CNS. Recent epidemiological studies and experimental animal research have revealed the association between excessive alcohol consumption and neurodegeneration. This review supports an interdisciplinary treatment protocol to protect the nervous system and to improve the cognitive outcomes of patients who suffer from alcohol-related neurodegeneration as well as clarify the pathological involvement of alcohol in causing other major neurological disorders.
Collapse
Affiliation(s)
- Zinia Pervin
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| |
Collapse
|
41
|
Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021; 18:17. [PMID: 33823899 PMCID: PMC8025355 DOI: 10.1186/s12987-021-00250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood-brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.
Collapse
Affiliation(s)
- Stephanie A Ihezie
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Iny Elizebeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Abstract
Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
43
|
Ye L, Orynbayev M, Zhu X, Lim EY, Dereddi RR, Agarwal A, Bergles DE, Bhat MA, Paukert M. Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nat Commun 2020; 11:6157. [PMID: 33268792 PMCID: PMC7710743 DOI: 10.1038/s41467-020-19475-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Norepinephrine adjusts sensory processing in cortical networks and gates plasticity enabling adaptive behavior. The actions of norepinephrine are profoundly altered by recreational drugs like ethanol, but the consequences of these changes on distinct targets such as astrocytes, which exhibit norepinephrine-dependent Ca2+ elevations during vigilance, are not well understood. Using in vivo two-photon imaging, we show that locomotion-induced Ca2+ elevations in mouse astroglia are profoundly inhibited by ethanol, an effect that can be reversed by enhancing norepinephrine release. Vigilance-dependent astroglial activation is abolished by deletion of α1A-adrenergic receptor from astroglia, indicating that norepinephrine acts directly on these ubiquitous glial cells. Ethanol reduces vigilance-dependent Ca2+ transients in noradrenergic terminals, but has little effect on astroglial responsiveness to norepinephrine, suggesting that ethanol suppresses their activation by inhibiting norepinephrine release. Since abolition of astroglia Ca2+ activation does not affect motor coordination, global suppression of astroglial networks may contribute to the cognitive effects of alcohol intoxication. The effects of norepinephrine on sensory processing in cortical networks are altered by recreational drugs like ethanol. The authors show that ethanol suppresses the activation of astrocytes by inhibiting norepinephrine release which may contribute to the cognitive effects of alcohol intoxication.
Collapse
Affiliation(s)
- Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Murat Orynbayev
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiangyu Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Eunice Y Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ram R Dereddi
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
44
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
45
|
Torres AK, Tapia-Rojas C, Cerpa W, Quintanilla RA. Stimulation of Melanocortin Receptor-4 (MC4R) Prevents Mitochondrial Damage Induced by Binge Ethanol Protocol in Adolescent Rat Hippocampus. Neuroscience 2020; 438:70-85. [PMID: 32416118 DOI: 10.1016/j.neuroscience.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
Binge drinking is a common pattern of adolescent alcohol consumption characterized by a high alcohol intake within a short period of time; which may seriously affect brain function, triggering in some cases an addictive behavior. Current evidence indicates that alcohol addictive conduct is related to the impairment of the Melanocortin System (MCS). This system participates in the regulation of food intake and promotes anti-inflammatory response in the brain. However, the cellular mechanisms involved in the protective effects induced by MCS against binge-alcohol intoxication are still unknown. Here, we studied the effects of MCS activation on mitochondrial and oxidative damage induced by a binge-like protocol in the hippocampus of adolescent rats. We used a pharmacological activator of MC4R (RO27-3225) and evaluated its effects against oxidative injury, mitochondrial failure, and bioenergetics impairment induced by binge ethanol protocol in the hippocampus of adolescent's rats. Our results indicate that MC4R agonist reduces hippocampal oxidative damage promoting antioxidant (Nrf-2) and mitochondrial biogenesis (PGC1-alpha) pathways in animals subjected to the binge-like protocol. Additionally, MC4R activation prevented mitochondrial potential loss and increased mitochondrial mass that were significantly reduced by binge ethanol protocol. Finally, RO27-3225 treatment increased ATP production and mitochondrial respiratory complex expression in adolescent rats exposed to ethanol. Altogether, these findings show that activation of the MCS pathway through MC4R prevents these negative effects of binge ethanol protocol, suggesting a possible role of the MCS in the reduction of the neurotoxic effects induced by alcohol intoxication in adolescents.
Collapse
Affiliation(s)
- Angie K Torres
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
46
|
Çomakli S, Özdemir S, Değirmençay Ş. Canine distemper virus induces downregulation of GABA A,GABA B, and GAT1 expression in brain tissue of dogs. Arch Virol 2020; 165:1321-1331. [PMID: 32253618 DOI: 10.1007/s00705-020-04617-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetic, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
47
|
Sousa SS, Sampaio A, Marques P, López-Caneda E, Gonçalves ÓF, Crego A. Functional and structural connectivity of the executive control network in college binge drinkers. Addict Behav 2019; 99:106009. [PMID: 31487578 DOI: 10.1016/j.addbeh.2019.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023]
Abstract
Binge Drinking (BD) is a pattern of excessive alcohol consumption highly prevalent among college students, and has been associated with structural and functional alterations of brain networks. Recent advances in the resting-state connectivity analysis have boosted the research of the network-level connectivity disturbances associated with many psychiatric and neurological disorders, including addiction. Accordingly, atypical functional connectivity patterns in resting-state networks such as the Executive Control Network (ECN) have been found in substance users and alcohol-dependent individuals. In this study, we assessed for the first time the ECN functional and structural connectivity in a group of 34 college students, 20 (10 women) binge drinkers (BDs) in comparison with a group of 14 (8 women) alcohol abstinent controls (AACs). Overall, our findings documented increased resting-state functional connectivity (rsFC) in the BDs left middle frontal cortex of the left ECN in comparison to the AACs, while no structural connectivity differences were observed between groups. Pearson correlations revealed a positive association between the left middle frontal gyrus rsFC and the frequency of BD episodes per month, in the BD group. These findings suggest that maintaining a pattern of acute and intermittent alcohol consumption during important stages of brain development, as the transition from adolescence to adulthood, is associated with impaired ECN rsFC despite no group differences being yet noticed in the ECN structural connectivity.
Collapse
Affiliation(s)
- Sónia S Sousa
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Adriana Sampaio
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo López-Caneda
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Óscar F Gonçalves
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital. Harvard Medical School, Charlestown campus: 79/96 13th Street, Charlestown, MA 02129, USA; Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, 404 International Village, Boston, MA 02115, USA
| | - Alberto Crego
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
48
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
49
|
Stoica SI, Tănase I, Ciobanu V, Onose G. Initial researches on neuro-functional status and evolution in chronic ethanol consumers with recent traumatic spinal cord injury. J Med Life 2019; 12:97-112. [PMID: 31406510 PMCID: PMC6685305 DOI: 10.25122/jml-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/01/2022] Open
Abstract
We found differences related to the neuro-functional deficiency and clinical progress, among non-consumers and chronic consumers of ethanol, with recent traumatic spinal cord injury (SCI). We present a synthesis of related data on lesion mechanisms in post-traumatic myelogenous disorders, namely some of the alcohols and their actions on the nervous system, with details on the influences exerted, in such afflictions, by the chronic consumption of ethanol. The subject is not frequently approached - according to a literature review with systematic elements, which we have done before - thus constituting a niche that deserves to be further explored. The applicative component of the article highlights statistical data resulted from a retrospective study regarding the specialized casuistry from the Neuromuscular Recovery Clinic of the "Bagdasar Arseni" Emergency Clinical Hospital, following the comparative analysis of two groups of patients with recent SCI: non-consumers - the control group (n=780) - and chronic ethanol consumers - the study group (n=225) - with the addition of a prospective pilot component. Data processing has been achieved with SPSS 24. The American Spinal Injury Association Impairment Scale (AIS) mean motor scores differ significantly (tests: Mann-Whitney and t) between the control and study group in favor of the second, both at admission (p<0.001) and at discharge (p<0.001). AIS mean sensitive scores differ between the two lots, and also in favor of the study, but statistically significant only at discharge (p=0.048); the difference at admission is not significant (p=0.51) - possibly because of alcoholic-nutritional polyneuropathy. These findings, with numerous related details, later presented in the text, are surprising, which requires further studies and attempts of understanding.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Ioana Tănase
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest (PUB), Bucharest, Romania
| | - Gelu Onose
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| |
Collapse
|
50
|
Schwitzer T, Schwan R, Angioi-Duprez K, Lalanne L, Giersch A, Laprevote V. Cannabis use and human retina: The path for the study of brain synaptic transmission dysfunctions in cannabis users. Neurosci Biobehav Rev 2019; 106:11-22. [PMID: 30773228 DOI: 10.1016/j.neubiorev.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Owing to the difficulty of obtaining direct access to the functioning brain, new approaches are needed for the indirect exploration of brain disorders in neuroscience research. Due to its embryonic origin, the retina is part of the central nervous system and is well suited to the investigation of neurological functions in psychiatric and addictive disorders. In this review, we focus on cannabis use, which is a crucial public health challenge, since cannabis is one of the most widely used addictive drugs in industrialized countries. We first explain why studying retinal function is relevant when exploring the effects of cannabis use on brain function. Next, we describe both the retinal electrophysiological measurements and retinal dysfunctions observed after acute and regular cannabis use. We then discuss how these retinal dysfunctions may inform brain synaptic transmission abnormalities. Finally, we present various directions for future research on the neurotoxic effects of cannabis use.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Maison des Addictions, CHRU Nancy, Nancy, France
| | | | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Pôle de Psychiatrie Santé Mentale et Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|