1
|
Chan JC, Lee CT, Say YH, Lin YF, Tsai MC. Exercise as a mediator between childhood adversity and psychological distress: Can BDNF moderate the mediating effect? J Psychiatr Res 2025; 182:277-283. [PMID: 39826378 DOI: 10.1016/j.jpsychires.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Adverse childhood events (ACEs) have been associated with an increased risk of psychiatric disorders in young adulthood. To identify at-risk individuals and potential strategies to combat the negative impacts of ACE, this study investigated the mediating role of exercise in the relationship between psychological distress and ACEs. Further, we examined the moderating effect of the BDNF polymorphism in the mediation relationship. METHODS Participants (N = 750, Mage = 20.1 years) completed questionnaires assessing ACEs divided into adverse environment (AE) and childhood maltreatment (CM), exercise, and psychological distress. Salivary genomic DNA was used for genotyping. The significance of the moderated mediation model was assessed using bootstrapping. RESULTS There was a significant association between ACEs and psychological distress mediated by exercise. After addition of BDNF polymorphism, we found that the effect of ACEs on psychological distress through exercise was moderated by the BDNF polymorphism (index of moderated mediation = -0.19, [-0.48, -0.04], p-value ≤0.05). Further dividing ACE into AE and CM, the moderated mediation relationship remains significant only with AE (index of moderated mediation = -0.41, [-0.99, -0.10], p-value ≤0.05). CONCLUSIONS The interaction between BDNF polymorphism and exercise may be a suitable target for interventions in ACEs-experienced individuals for the prevention or reduction of psychological distress.
Collapse
Affiliation(s)
- Jia Chi Chan
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-How Say
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yu-Fang Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Humanities and Social Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front Neurol 2025; 15:1505879. [PMID: 39935805 PMCID: PMC11810746 DOI: 10.3389/fneur.2024.1505879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
This review explores the impact of physical exercise on brain-derived neurotrophic factor (BDNF) and its relationship with neurodegenerative diseases. The key role of BDNF in maintaining brain health is highlighted, and recent studies are analyzed that indicate an increase in BDNF levels following physical activity, particularly in young adults. Additionally, the interaction between the BDNF Val66Met genetic polymorphism and exercise on cognitive function is examined. The review emphasizes the possibility of exercise as a complementary therapy for neurodegenerative diseases, although further research is required to fully understand its effects.
Collapse
Affiliation(s)
- Ana Romero Garavito
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Valery Díaz Martínez
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | | | - José Vicente Negrete Díaz
- Programa de Fisioterapia, Universidad de Guanajuato, Guanajuato, Mexico
- Programa de Psicologia Clinica, Universidad de Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
3
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Mbiydzenyuy NE, Qulu LA. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis 2024; 39:1613-1636. [PMID: 39083184 PMCID: PMC11535056 DOI: 10.1007/s11011-024-01393-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 11/05/2024]
Abstract
This comprehensive review explores the intricate relationship between the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and aggression. It provides a detailed overview of the physiology and functioning of these axes, as well as the implications for aggressive behavior. The HPA axis, responsible for the stress response, is activated in response to various stressors and can influence aggressive behavior. Glucocorticoids, such as cortisol, play a crucial role in stress-induced activation of the HPA axis and have been implicated in aggressive tendencies. Chronic stress can dysregulate the HPA axis, leading to alterations in cortisol levels and potentially contributing to aggressive behavior. The HPG axis, particularly the androgen hormone testosterone, is also closely linked to aggression. Animal and human studies have consistently shown a positive association between testosterone levels and aggression. The androgen receptors in the brain's neural circuitry play a critical role in modulating aggressive behavior. Interactions between the HPA and HPG axes further contribute to the regulation of aggression. Feedback mechanisms and crosstalk between these axes provide a complex system for the modulation of both stress and reproductive functions, which can impact aggressive behavior. Additionally,the influence of stress on reproductive functions, particularly the role of androgens in stress-induced aggression, adds further complexity to this relationship. The review also discusses the future directions and implications for clinical interventions. Understanding the neurobiological mechanisms underlying aggression requires integrating molecular, cellular, and circuit-level approaches. Translational perspectives, including animal models and human studies, can bridge the gap between basic research and clinical applications. Finally, therapeutic strategies for aggression-related disorders are explored, highlighting the importance of targeted interventions based on a comprehensive understanding of the interactions between the HPA and HPG axes. In conclusion, this review provides a comprehensive overview of the physiological and neurobiological mechanisms underlying aggression, with a specific focus on the interplay between the HPA and HPG axes. By elucidating the complex interactions between stress, hormones, and aggressive behavior, this research paves the way for future investigations and potential therapeutic interventions for aggression-related disorders.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa
| | - Lihle-Appiah Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa.
| |
Collapse
|
5
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
6
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
7
|
Li Z, Kong W, Park HY, Koo SJ, Bang M, Park JT, Lee E, An SK. Association of hair cortisol concentration with brain-derived neurotrophic factor gene methylation: The role of sex as a moderator. Stress Health 2024; 40:e3401. [PMID: 38581566 DOI: 10.1002/smi.3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Hair cortisol concentration (HCC) reflects the long-term activity of the hypothalamus-pituitary-adrenal (HPA) axis in response to stress. Brain-derived neurotrophic factor DNA methylation (BDNF DNAM) may affect HCC, and sex and Val66Met may contribute to this association. Thus, the aim of this study was to investigate the associations between HCC and Brain-derived neurotrophic factor (BDNF) DNAM, and the moderating effects of Val66Met and sex. We recruited 191 healthy young participants (96 women, mean age 23.0 ± 2.6 years) and collected body samples to evaluate HCC, and to determine BDNF DNAM and Val66Met genotypes. We analyzed the effects of BDNF DNAM, sex, and Val66Met on HCC. We also evaluated the associations between BDNF DNAM and HCC in groups separated by sex and genotypes. We found a marked association of BDNF DNAM with HCC across men and women. After dividing the data by sex, a positive correlation of HCC with BDNF DNAM was found only in women. There was no substantial moderation effect of Val66Met genotypes on the association between BDNF DNAM and HCC. Therefore, BDNF DNAM was found to have positive association with HCC only in healthy young women, indicating that sex moderates the association of BDNF DNAM with long-term HPA axis activity.
Collapse
Affiliation(s)
- Zhenxu Li
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei University College of Medicine, Seoul, South Korea
| | - Wanji Kong
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Yoon Park
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Jun Koo
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program in Cognitive Science, Yonsei University, Seoul, South Korea
| | - Minji Bang
- Department of Psychiatry, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, South Korea
| | - Jung Tak Park
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Lee
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | - Suk Kyoon An
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program in Cognitive Science, Yonsei University, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| |
Collapse
|
8
|
Li J, Huang X, An Y, Chen X, Chen Y, Xu M, Shan H, Zhang M. The role of snapin in regulation of brain homeostasis. Neural Regen Res 2024; 19:1696-1701. [PMID: 38103234 PMCID: PMC10960280 DOI: 10.4103/1673-5374.389364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023] Open
Abstract
Brain homeostasis refers to the normal working state of the brain in a certain period, which is important for overall health and normal life activities. Currently, there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance. Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses. Recently, many researchers have reported the association between snapin and neurologic and psychiatric disorders, demonstrating that snapin can improve brain homeostasis. Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae. This article aims to explore the role of snapin in restoring brain homeostasis after injury or diseases, highlighting its significance in maintaining brain homeostasis and treating brain diseases. Additionally, it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections, with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.
Collapse
Affiliation(s)
- Jiawen Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Smit AJT, Wu GWY, Rampersaud R, Reus VI, Wolkowitz OM, Mellon SH. Serum brain-derived neurotrophic factor, Val66Met polymorphism and open-label SSRI treatment response in Major Depressive Disorder. Psychoneuroendocrinology 2024; 165:107045. [PMID: 38636352 DOI: 10.1016/j.psyneuen.2024.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been implicated in the therapeutic action of antidepressants and possibly in the pathophysiology of Major Depressive Disorder (MDD). Clinical studies of peripheral blood levels of BDNF in MDD have provided conflicting results, and there are also conflicting reports regarding the predictive value of peripheral BDNF levels for antidepressant treatment response. The present study investigated the association between serum BDNF levels, the BDNF Val66Met polymorphism (rs6265), clinical characteristics and SSRI treatment response. METHODS This open-label clinical trial included 99 physically healthy, unmedicated MDD participants and 70 healthy controls. Following a baseline assessment, 53 of the MDD participants completed an eight-week, open-label course of SSRI antidepressant treatment. Serum BDNF levels and Hamilton Rating Scale for Depression (HDRS) ratings were examined at baseline and after eight weeks of treatment. Antidepressant response was defined as a decrease in HDRS ratings of > 50% from baseline to the end-of-treatment. Finally, serum BDNF levels and SSRI treatment response were compared between MDD participants who were heterozygous or homozygous for the Met allele ("Met-carriers") and individuals homozygous for the Val allele. RESULTS Serum BDNF levels at baseline were significantly higher in the unmedicated MDD participants compared to healthy controls (15.90 ng/ml vs 13.75 ng/ml, t (167) = -2.041, p = 0.043). In a post-hoc analysis, this difference was seen in the female but not male participants (16.85 ng/ml vs 14.06 ng/ml, t (91) = -2.067, p = 0.042; 14.86 ng/ml vs 13.31 ng/ml, t (74) = -0.923, p = 0.359). Baseline serum BDNF levels were not associated with treatment responder status or with absolute change in depression ratings over the course of 8-week SSRI treatment (p = 0.599). In both Responders and Non-responders, no significant changes in serum BDNF levels were found over the 8-week period of SSRI-treatment (16.32 ng/ml vs 16.23 ng/ml, t (18) = 0.060, p = 0.953; 16.04 ng/ml vs 15.61 ng/ml, t (29) = 0.438, p = 0.665, respectively). Further, no differences were found in serum BDNF levels prior to treatment between MDD Met-carriers and MDD Val/Val homozygotes (15.32 ng/ml vs 16.36 ng/ml, t (85) = 0.747, p = 0.457), and no differences were found in post-treatment serum BDNF (F1,42= 0.031, p = 0.862). However, MDD Val/Val homozygotes showed significantly greater antidepressant responses at week 8 than did MDD Met-carriers (F1,46 = 4.366, p = 0.043). CONCLUSION Our results do not support sufficient reliability of using peripheral BDNF to characterize depression or to predict antidepressant response in clinical use. The role of sex in moderating BDNF differences in depression, and the role of BDNF gene polymorphisms in predicting antidepressant response, remain to be further investigated. We conclude that, while central nervous system BDNF is likely involved in antidepressant efficacy and in aspects of MDD pathophysiology, its reflection in serum BDNF levels is of limited diagnostic or prognostic utility.
Collapse
Affiliation(s)
- Anna J T Smit
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
10
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Angelopoulou E, Bougea A, Hatzimanolis A, Stefanis L, Scarmeas N, Papageorgiou S. Mild Behavioral Impairment in Parkinson's Disease: An Updated Review on the Clinical, Genetic, Neuroanatomical, and Pathophysiological Aspects. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:115. [PMID: 38256375 PMCID: PMC10820007 DOI: 10.3390/medicina60010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric symptoms (NPS), including depression, anxiety, apathy, visual hallucinations, and impulse control disorders, are very common during the course of Parkinson's disease (PD), occurring even at the prodromal and premotor stages. Mild behavioral impairment (MBI) represents a recently described neurobehavioral syndrome, characterized by the emergence of persistent and impactful NPS in later life, reflecting arisk of dementia. Accumulating evidence suggests that MBI is highly prevalent in non-demented patients with PD, also being associated with an advanced disease stage, more severe motor deficits, as well as global and multiple-domain cognitive impairment. Neuroimaging studies have revealed that MBI in patients with PD may be related todistinct patterns of brain atrophy, altered neuronal connectivity, and distribution of dopamine transporter (DAT) depletion, shedding more light on its pathophysiological background. Genetic studies in PD patients have also shown that specific single-nucleotide polymorphisms (SNPs) may be associated with MBI, paving the way for future research in this field. In this review, we summarize and critically discuss the emerging evidence on the frequency, associated clinical and genetic factors, as well as neuroanatomical and neurophysiological correlates of MBI in PD, aiming to elucidate the underlying pathophysiology and its potential role as an early "marker" of cognitive decline, particularly in this population. In addition, we aim to identify research gaps, and propose novel relative areas of interest that could aid in our better understanding of the relationship of this newly defined diagnostic entity with PD.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Anastasia Bougea
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Alexandros Hatzimanolis
- Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Leonidas Stefanis
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| | - Nikolaos Scarmeas
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sokratis Papageorgiou
- Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.P.)
| |
Collapse
|
12
|
Tsugiyama LE, Macedo Moraes RC, Cavalcante Moraes YA, Francis-Oliveira J. Promising new pharmacological targets for depression: The search for efficacy. Drug Discov Today 2023; 28:103804. [PMID: 37865307 DOI: 10.1016/j.drudis.2023.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Pharmacological treatment of major depressive disorder (MDD) still relies on the use of serotonergic drugs, despite their limited efficacy. A few mechanistically new drugs have been developed in recent years, but many fail in clinical trials. Several hypotheses have been proposed to explain MDD pathophysiology, indicating that physiological processes such as neuroplasticity, circadian rhythms, and metabolism are potential targets. Here, we review the current state of pharmacological treatments for MDD, as well as the preclinical and clinical evidence for an antidepressant effect of molecules that target non-serotonergic systems. We offer some insights into the challenges facing the development of new antidepressant drugs, and the prospect of finding more effectiveness for each target discussed.
Collapse
Affiliation(s)
- Lucila Emiko Tsugiyama
- Kansai Medical University, Graduate School of Medicine, iPS Cell Applied Medicine, Hirakata, Osaka, Japan
| | - Ruan Carlos Macedo Moraes
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil
| | | | - Jose Francis-Oliveira
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Jaehne EJ, Semaan H, Grosman A, Xu X, Schwarz Q, van den Buuse M. Enhanced methamphetamine sensitisation in a rat model of the brain-derived neurotrophic factor Val66Met variant: Sex differences and dopamine receptor gene expression. Neuropharmacology 2023; 240:109719. [PMID: 37742717 DOI: 10.1016/j.neuropharm.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and the Val66Met polymorphism may play a role in the development of psychosis and schizophrenia. The aim of this study was to investigate long-term effects of methamphetamine (Meth) on psychosis-like behaviour and dopamine receptor and dopamine transporter gene expression in a novel rat model of the BDNF Val66Met polymorphism. At the end of a 7-day subchronic Meth treatment, female rats with the Met/Met genotype selectively showed locomotor hyperactivity sensitisation to the acute effect of Meth. Male rats showed tolerance to Meth irrespective of Val66Met genotype. Two weeks later, female Met/Met rats showed increased locomotor activity following both saline treatment or a low dose of Meth, a hyperactivity which was not observed in other genotypes or in males. Baseline PPI did not differ between the groups but the disruption of PPI by acute treatment with apomorphine was absent in Meth-pretreated Met/Met rats. Female Met/Met rats selectively showed down-regulation of dopamine D2 receptor gene expression in striatum. Behavioural effects of MK-801 or its locomotor sensitisation by prior Meth pretreatment were not influenced by genotype. These data suggest a selective vulnerability of female Met/Met rats to short-term and long-term effects of Meth, which could model increased vulnerability to psychosis development associated with the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hayette Semaan
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Adam Grosman
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
Farcas A, Hindmarch C, Iftene F. BDNF gene Val66Met polymorphisms as a predictor for clinical presentation in schizophrenia - recent findings. Front Psychiatry 2023; 14:1234220. [PMID: 37886115 PMCID: PMC10598753 DOI: 10.3389/fpsyt.2023.1234220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Schizophrenia is a highly heritable, severe psychiatric disorder that involves dysfunctions in thinking, emotions, and behavior, with a profound impact on a person's ability to function normally in their daily life. Research efforts continue to focus on elucidating possible genetic underlying mechanisms of the disorder. Although the genetic loci identified to date to be significantly associated with schizophrenia risk do not represent disease-causing factors, each one of them could be seen as a possible incremental contributor. Considering the importance of finding new and more efficient pharmacological approaches to target the complex symptomatology of this disorder, in this scoping review, we are focusing on the most recent findings in studies aiming to elucidate the contribution of one of the genetic factors involved - the BDNF gene Val66Met polymorphisms. Here we performed a systematic search in Pubmed, Embase, and Web of Science databases with the search terms: (BDNF gene polymorphism) AND (schizophrenia) for articles published in the last 5 years. To be selected for this review, articles had to report on studies where genotyping for the BDNF Val66Met polymorphism was performed in participants diagnosed with schizophrenia (or schizophrenia spectrum disorders or first-episode psychosis). The search provided 35 results from Pubmed, 134 results from Embase, and 118 results from the Web of Science database. Twenty-two articles were selected to be included in this review, all reporting on studies where an implication of the BDNF Val66Met polymorphisms in the disorder's pathophysiology was sought to be elucidated. These studies looked at BDNF gene Val66Met polymorphism variants, their interactions with other genes of interest, and different facets of the illness. The Met/Met genotype was found to be associated with higher PANSS positive scores. Furthermore, Met/Met homozygous individuals appear to present with worse cognitive function and lower levels of serum BDNF. In the Val/Val genotype carriers, increased BDNF levels were found to correlate with weight gain under Risperidone treatment. However, due to heterogeneous results, the diversity in study populations and studies' small sample sizes, generalizations cannot be made. Our findings emphasize the need for further research dedicated to clarifying the role of gene polymorphisms in antipsychotic treatment to enhance specificity and efficacy in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adriana Farcas
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| | - Charles Hindmarch
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Medicine, Queen’s University, Kingston, ON, Canada
- Queen’s Cardiopulmonary Unit, Translational Institute of Medicine, Queen’s University, Kingston, ON, Canada
| | - Felicia Iftene
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
15
|
Shkundin A, Halaris A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J Pers Med 2023; 13:1395. [PMID: 37763162 PMCID: PMC10533016 DOI: 10.3390/jpm13091395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is crucial for various aspects of neuronal development and function, including synaptic plasticity, neurotransmitter release, and supporting neuronal differentiation, growth, and survival. It is involved in the formation and preservation of dopaminergic, serotonergic, GABAergic, and cholinergic neurons, facilitating efficient stimulus transmission within the synaptic system and contributing to learning, memory, and overall cognition. Furthermore, BDNF demonstrates involvement in neuroinflammation and showcases neuroprotective effects. In contrast, BDNF antisense RNA (BDNF-AS) is linked to the regulation and control of BDNF, facilitating its suppression and contributing to neurotoxicity, apoptosis, and decreased cell viability. This review article aims to comprehensively overview the significance of single nucleotide polymorphisms (SNPs) in BDNF/BDNF-AS genes within psychiatric conditions, with a specific focus on their associations with depression, schizophrenia, and bipolar disorder. The independent influence of each BDNF/BDNF-AS gene variation, as well as the interplay between SNPs and their linkage disequilibrium, environmental factors, including early-life experiences, and interactions with other genes, lead to alterations in brain architecture and function, shaping vulnerability to mental health disorders. The potential translational applications of BDNF/BDNF-AS polymorphism knowledge can revolutionize personalized medicine, predict disease susceptibility, treatment outcomes, and guide the selection of interventions tailored to individual patients.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
16
|
Hogarth S, Jaehne EJ, Xu X, Schwarz Q, van den Buuse M. Interaction of Brain-Derived Neurotrophic Factor with the Effects of Chronic Methamphetamine on Prepulse Inhibition in Mice Is Independent of Dopamine D3 Receptors. Biomedicines 2023; 11:2290. [PMID: 37626786 PMCID: PMC10452514 DOI: 10.3390/biomedicines11082290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the present study was to gain a better understanding of the role of brain-derived neurotrophic factor (BDNF) and dopamine D3 receptors in the effects of chronic methamphetamine (METH) on prepulse inhibition (PPI), an endophenotype of psychosis. We compared the effect of a three-week adolescent METH treatment protocol on the regulation of PPI in wildtype mice, BDNF heterozygous mice (HET), D3 receptor knockout mice (D3KO), and double-mutant mice (DM) with both BDNF heterozygosity and D3 receptor knockout. Chronic METH induced disruption of PPI regulation in male mice with BDNF haploinsufficiency (HET and DM), independent of D3 receptor knockout. Specifically, these mice showed reduced baseline PPI, as well as attenuated disruption of PPI induced by acute treatment with the dopamine receptor agonist, apomorphine (APO), or the glutamate NMDA receptor antagonist, MK-801. In contrast, there were no effects of BDNF heterozygosity or D3 knockout on PPI regulation in female mice. Chronic METH pretreatment induced the expected locomotor hyperactivity sensitisation, where female HET and DM mice also showed endogenous sensitisation. Differential sex-specific effects of genotype and METH pretreatment were observed on dopamine receptor and dopamine transporter gene expression in the striatum and frontal cortex. Taken together, these results show a significant involvement of BDNF in the long-term effects of METH on PPI, particularly in male mice, but these effects appear independent of D3 receptors. The role of this receptor in psychosis endophenotypes therefore remains unclear.
Collapse
Affiliation(s)
- Samuel Hogarth
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| | - Emily J. Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| | - Xiangjun Xu
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia (Q.S.)
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia (Q.S.)
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| |
Collapse
|
17
|
Ancelin M, Jaussent I, Ritchie K, Besset A, Ryan J, Dauvilliers Y. Brain-derived neurotrophic factor (BDNF) variants and promoter I methylation are associated with prolonged nocturnal awakenings in older adults. J Sleep Res 2023; 32:e13838. [PMID: 36737401 PMCID: PMC10909562 DOI: 10.1111/jsr.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is important for sleep physiology. This study investigates whether BDNF variants and promoter I methylation may be implicated in sleep disturbances in older adults. Genotyping was performed for seven BDNF single nucleotide polymorphisms (SNPs) in 355 community-dwelling older adults (aged ≥65 years) and BDNF exon 1 promoter methylation was measured in blood samples at baseline (n = 153). Self-reported daytime sleepiness and insomnia, ambulatory polysomnography measures of sleep continuity and architecture, and psychotropic drug intake were assayed during follow-up. Logistic regression adjusted for age, sex, comorbidities, body mass index, and psychotropic drug intake. Associations were found specifically between wake time after sleep onset (WASO) and four SNPs in the participants not taking psychotropic drugs, whereas in those taking drugs, the associations were either not significant (rs6265 and rs7103411) or in the reverse direction (rs11030101 and rs28722151). Higher BDNF methylation levels were found at most CpG units in those with long WASO and this varied according to psychotropic drug use. The reference group with short WASO not taking drugs showed the lowest methylation levels and the group with long WASO taking treatment, the highest levels. Some SNPs also modified the associations, the participants carrying the low-risk genotype having the lower methylation levels. This genetic and epigenetic study demonstrated blood BDNF promoter methylation to be a potential biomarker of prolonged nocturnal awakenings in older people. Our results suggest the modifying effect of psychotropic drugs and BDNF genetic variants in the associations between methylation and WASO.
Collapse
Affiliation(s)
| | | | - Karen Ritchie
- INM, INSERMUniv MontpellierMontpellierFrance
- Institut du Cerveau TrocadéroParisFrance
| | | | - Joanne Ryan
- Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Yves Dauvilliers
- INM, INSERMUniv MontpellierMontpellierFrance
- Sleep‐Wake Disorders UnitDepartment of Neurology, Gui‐de‐Chauliac HospitalCHU MontpellierFrance
| |
Collapse
|
18
|
Jaehne EJ, Antolasic EJ, Creutzberg KC, Begni V, Riva MA, van den Buuse M. Impaired fear memory in a rat model of the Brain-Derived Neurotrophic Factor Val66Met polymorphism is reversed by chronic exercise. Neurobiol Learn Mem 2023; 203:107779. [PMID: 37269900 DOI: 10.1016/j.nlm.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release in the brain and has been implicated in fear and anxiety disorders, including post-traumatic stress disorder. Exercise has been shown to have benefits in affective disorders but the role of BDNF Val66Met remains unclear. Male and female BDNF Val66Met rats were housed in automated running-wheel cages from weaning while controls were housed in standard cages. During adulthood, all rats underwent standard three-day fear conditioning testing, with three tone/shock pairings on day 1 (acquisition), and extinction learning and memory (40 tones/session) on day 2 and day 3. Expression of BDNF and stress-related genes were measured in the frontal cortex. Extinction testing on day 2 revealed significantly lower freezing in response to initial cue exposure in control Met/Met rats, reflecting impaired fear memory. This deficit was reversed in both male and female Met/Met rats exposed to exercise. There were no genotype effects on acquisition or extinction of fear, however chronic exercise increased freezing in all groups at every stage of testing. Exercise furthermore led to increased expression of Bdnf in the prefrontal cortex of females and its isoforms in both sexes, as well as increased expression of FK506 binding protein 51 (Fkpb5) in females and decreased expression of Serum/glucocorticoid-regulated kinase (Sgk1) in males independent of genotype. These results show that the Met/Met genotype of the Val66Met polymorphism affects fear memory, and that chronic exercise selectively reverses this genotype effect. Chronic exercise also led to an overall increase in freezing in all genotypes which may contribute to results.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Antolasic
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Jaehne EJ, McInerney E, Sharma R, Genders SG, Djouma E, van den Buuse M. A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. BIOLOGY 2023; 12:799. [PMID: 37372084 DOI: 10.3390/biology12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol use disorder. The Val66Met polymorphism is a common variant of the BDNF gene (rs6265) which reduces activity-dependent BDNF release, and has been suggested as a risk factor for psychiatric disorders and substance use. Using an operant self-administration paradigm, this study aimed to investigate ethanol preference and ethanol seeking in a novel rat model of the BDNF Val66Met polymorphism, Val68Met rats. Male and female BDNF Val68Met rats of three genotypes (Val/Val, Val/Met and Met/Met) were trained to lever press for a 10% ethanol solution. There was no effect of Val68Met genotype on acquisition of stable response to ethanol or its extinction. Met/Met rats of both sexes had a slight, but significantly lower breakpoint during progressive ratio sessions while female rats with the Met/Met genotype demonstrated a lower propensity for reinstatement of responding to cues. There were no effects of Val68Met genotype on anxiety-like behaviour or locomotor activity. In conclusion, Met/Met rats showed lower motivation to continue to press for a reward, and also a decreased propensity to relapse, suggesting a possible protective effect of the Met/Met genotype against alcohol use disorder, at least in females.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Elizabeth McInerney
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Ronan Sharma
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Shannyn G Genders
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Elvan Djouma
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
- Department of Pharmacology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
20
|
Buhusi M, Griffin D, Buhusi CV. Brain-Derived Neurotrophic Factor Val66Met Genotype Modulates Latent Inhibition: Relevance for Schizophrenia. Schizophr Bull 2023; 49:626-634. [PMID: 36484490 PMCID: PMC10154718 DOI: 10.1093/schbul/sbac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Latent inhibition (LI) is a measure of selective attention and learning relevant to Schizophrenia (SZ), with 2 abnormality poles: Disrupted LI in acute SZ, thought to underlie positive symptoms, and persistent LI (PLI) in schizotypy and chronic SZ under conditions where normal participants fail to show LI. We hypothesized that Brain-Derived Neurotrophic Factor (BDNF)-Met genotype shifts LI toward the PLI pole. STUDY DESIGN We investigated the role of BDNF-Val66Met polymorphism and neural activation in regions involved in LI in mice, and the interaction between the BDNF and CHL1, a gene associated with SZ. STUDY RESULTS No LI differences occurred between BDNF-wild-type (WT) (Val/Val) and knock-in (KI) (Met/Met) mice after weak conditioning. Chronic stress or stronger conditioning disrupted LI in WT but not KI mice. Behavior correlated with activation in infralimbic and orbitofrontal cortices, and nucleus accumbens. Examination of LI in CHL1-KO mice revealed no LI with no Met alleles (BDNF-WTs), PLI in CHL1-WT mice with 1 Met allele (BDNF-HETs), and PLI in both CHL1-WTs and CHL1-KOs with 2 Met alleles (BDNF-KIs), suggesting a shift to LI persistence with the number of BDNF-Met alleles in the CHL1 model of acute SZ. CONCLUSIONS Results support a role for BDNF polymorphisms in gene-gene and gene-environment interactions relevant to SZ. BDNF-Met allele may reduce expression of some acute SZ symptoms, and may increase expression of negative symptoms in individuals with chronic SZ. Evaluation of (screening for) SZ phenotypes associated with mutations at a particular locus (eg, CHL1), may be masked by strong effects at different loci (eg, BDNF).
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Daniel Griffin
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| |
Collapse
|
21
|
Vyas N, Wimberly CE, Beaman MM, Kaplan SJ, Rasmussen LJH, Wertz J, Gifford EJ, Walsh KM. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 2023; 151:106071. [PMID: 36857833 PMCID: PMC10073327 DOI: 10.1016/j.psyneuen.2023.106071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
There is continued interest in identifying dysregulated biomarkers that mediate associations between adverse childhood experiences (ACEs) and negative long-term health outcomes. However, little is known regarding how ACE exposure modulates neural biomarkers to influence poorer health outcomes in ACE-exposed children. To address this, we performed a systematic review and meta-analysis of the impact of ACE exposure on Brain Derived Neurotrophic Factor (BDNF) levels - a neural biomarker involved in childhood and adult neurogenesis and long-term memory formation. Twenty-two studies were selected for inclusion within the systematic review, ten of which were included in meta-analysis. Most included studies retrospectively assessed impacts of childhood maltreatment in clinical populations. Sample size, BDNF protein levels in ACE-exposed and unexposed subjects, and standard deviations were extracted from ten publications to estimate the BDNF ratio of means (ROM) across exposure categories. Overall, no significant difference was found in BDNF protein levels between ACE-exposed and unexposed groups (ROM: 1.08; 95 % CI: 0.93-1.26). Age at sampling, analyte type (e.g., sera, plasma, blood), and categories of ACE exposure contributed to high between-study heterogeneity, some of which was minimized in subset-based analyses. These results support continued investigation into the impact of ACE exposure on neural biomarkers and highlight the potential importance of analyte type and timing of sample collection on study results.
Collapse
Affiliation(s)
- Neha Vyas
- Duke University, Trinity College of Arts and Sciences, Durham, NC, USA
| | - Courtney E Wimberly
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA
| | - M Makenzie Beaman
- Duke University School of Medicine, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA
| | | | - Line J H Rasmussen
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Jasmin Wertz
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; University of Edinburgh, Department of Psychology, Edinburgh, UK
| | - Elizabeth J Gifford
- Duke Children's Health and Discovery Initiative, Durham, NC, USA; Duke University Sanford School of Public Policy, Center for Child and Family Policy, Durham, NC, USA
| | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA.
| |
Collapse
|
22
|
Rovný R, Marko M, Michalko D, Mitka M, Cimrová B, Vančová Z, Jarčušková D, Dragašek J, Minárik G, Riečanský I. BDNF Val66Met polymorphism is associated with consolidation of episodic memory during sleep. Biol Psychol 2023; 179:108568. [PMID: 37075935 DOI: 10.1016/j.biopsycho.2023.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is an essential regulator of synaptic plasticity, a candidate neurobiological mechanism underlying learning and memory. A functional polymorphism in the BDNF gene, Val66Met (rs6265), has been linked to memory and cognition in healthy individuals and clinical populations. Sleep contributes to memory consolidation, yet information about the possible role of BDNF in this process is scarce. To address this question, we investigated the relationship between the BDNF Val66Met genotype and consolidation of episodic declarative and procedural (motor) non-declarative memories in healthy adults. The carriers of Met66 allele, as compared with Val66 homozygotes, showed stronger forgetting overnight (24hours after encoding), but not over shorter time (immediately or 20minutes after word list presentation). There was no effect of Val66Met genotype on motor learning. These data suggest that BDNF plays a role in neuroplasticity underlying episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomír Michalko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Mitka
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Vančová
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Dominika Jarčušková
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | | | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Psychiatry, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| |
Collapse
|
23
|
Cavaleri D, Moretti F, Bartoccetti A, Mauro S, Crocamo C, Carrà G, Bartoli F. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: insight from meta-analyses. Neurosci Biobehav Rev 2023; 149:105159. [PMID: 37019247 DOI: 10.1016/j.neubiorev.2023.105159] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/10/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) has received considerable attention as a potential biomarker of major depressive disorder (MDD) and antidepressant response. We conducted an overview of meta-analyses investigating the relationship of BDNF with MDD, related clinical features, and antidepressant treatment. Based on a systematic screening on main electronic databases, 11 systematic reviews with meta-analyses were included. Available evidence suggests that people with MDD have peripheral and central BDNF levels lower than non-depressed individuals. A negative correlation between blood BDNF and symptom severity emerged, while no association with suicidality was detected. Moreover, an increase in blood BDNF levels after antidepressant treatment, proportional to symptom improvement, was reported. BDNF levels seem to be increased in both treatment responders and remitters, remaining stable in non-responders. Conversely, no variations of BDNF concentrations after non-pharmacological interventions (electroconvulsive therapy, repetitive transcranial magnetic stimulation, and physical activity) were found. The findings of this overview appear consistent with the neurotrophic hypothesis of depression, suggesting that BDNF may play a role in both MDD pathophysiology and pharmacological treatment response.
Collapse
|
24
|
Hsu CY, Sheu WHH, Lee IT. Brain-derived neurotrophic factor associated with kidney function. Diabetol Metab Syndr 2023; 15:16. [PMID: 36782254 PMCID: PMC9926783 DOI: 10.1186/s13098-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND We examined the relationship between brain-derived neurotrophic factor (BDNF) and chronic kidney disease (CKD). METHODS First, a cross-sectional study was conducted in 480 participants without known diabetes. An oral glucose tolerance test (OGTT) was administered after overnight fasting, and blood samples were collected at 0, 30, and 120 min. Second, a total of 3003 participants were enrolled for the case-control genetic analysis. After assigning them to a case or a control group based on age and CKD status, we investigated the association between BDNF gene variants and susceptibility to CKD. RESULTS A higher fasting serum BDNF quartile was significantly associated with a lower prevalence of CKD (P value for trend < 0.001). Based on the receiver operating characteristic analysis, the fasting BDNF level had a larger area under the curve for differentiating CKD (0.645, 95% CI 0.583‒0.707) than the BDNF levels at both 30 min (0.547, 95% CI 0.481‒0.612) and 120 min (0.598, 95% CI 0.536‒0.661). A significantly lower CKD prevalence (odds ratio = 0.30, 95% CI 0.12‒0.71) was observed in the highest quartile of fasting BDNF level than that in the lowest quartile, whereas no interquartile differences were observed for BDNF levels determined at 30 or 120 min during the OGTT. Furthermore, BDNF-associated variants, including rs12098908, rs12577517, and rs72891405, were significantly associated with CKD. CONCLUSIONS The BDNF level at fasting, but not at 30 and 120 min after glucose intake, was an independent indicator of CKD. In addition, significant associations were observed between three BDNF gene variants and CKD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Medical Education Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
25
|
Islas-Preciado D, Splinter TFL, Ibrahim M, Black N, Wong S, Lieblich SE, Liu-Ambrose T, Barha CK, Galea LAM. Sex and BDNF Val66Met polymorphism matter for exercise-induced increase in neurogenesis and cognition in middle-aged mice. Horm Behav 2023; 148:105297. [PMID: 36623432 DOI: 10.1016/j.yhbeh.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Females show greater benefits of exercise on cognition in both humans and rodents, which may be related to brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP), the Val66Met polymorphism, within the human BDNF gene, causes impaired activity-dependent secretion of neuronal BDNF and impairments to some forms of memory. We evaluated whether sex and BDNF genotype (Val66Met polymorphism (Met/Met) versus wild-type (Val/Val)) influenced the ability of voluntary running to enhance cognition and hippocampal neurogenesis in mice. Middle-aged C57BL/6J (13 months) mice were randomly assigned to either a control or an aerobic training (AT) group (running disk access). Mice were trained on the visual discrimination and reversal paradigm in a touchscreen-based technology to evaluate cognitive flexibility. BDNF Met/Met mice had fewer correct responses compared to BDNF Val/Val mice on both cognitive tasks. Female BDNF Val/Val mice showed greater cognitive flexibility compared to male mice regardless of AT. Despite running less than BDNF Val/Val mice, AT improved performance in both cognitive tasks in BDNF Met/Met mice. AT increased neurogenesis in the ventral hippocampus of BDNF Val/Val mice of both sexes and increased the proportion of mature type 3 doublecortin-expressing cells in the dorsal hippocampus of female mice only. Our results indicate AT improved cognitive performance in BDNF Met/Met mice and increased hippocampal neurogenesis in BDNF Val/Val mice in middle age. Furthermore, middle-aged female mice may benefit more from AT than males in terms of neuroplasticity, an effect that was influenced by the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Dannia Islas-Preciado
- Department of Psychology, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada; Lab de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, México
| | | | - Muna Ibrahim
- Department of Psychology, University of British Columbia, Canada
| | - Natasha Black
- Department of Psychology, University of British Columbia, Canada
| | - Sarah Wong
- Department of Psychology, University of British Columbia, Canada
| | | | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada
| | - Cindy K Barha
- Department of Physical Therapy, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada.
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
26
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging Behav 2023; 17:282-293. [PMID: 36630045 DOI: 10.1007/s11682-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology LIM44, Department and Institute of Radiology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | | |
Collapse
|
27
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
28
|
Elhadidy ME, Kilany A, Gebril OH, Nashaat NH, Zeidan HM, Elsaied A, Hashish AF, Abdelraouf ER. BDNF Val66Met Polymorphism: Suggested Genetic Involvement in Some Children with Learning Disorder. J Mol Neurosci 2023; 73:39-46. [PMID: 36550387 PMCID: PMC9894953 DOI: 10.1007/s12031-022-02095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an essential role in neuronal survival, especially in areas responsible for memory and learning. The BDNF Val66Met polymorphism has been described as a cognitive modifier in people with neuropsychiatric disorders. BDNF levels have been found to be low in children with learning disorder (LD). However, Val66Met polymorphism has not been studied before in such children. The aim was to investigate the presence of BDNF val66Met polymorphism in a group of children with specific LD and to verify its impact on their cognitive abilities. The participants in this cross-sectional study (N = 111) were divided into two groups: one for children with LD and the other for neurotypical (NT) ones. Children with LD (N = 72) were diagnosed according to the DSM-5 criteria. Their abilities were evaluated using Stanford-Binet Intelligence Scale, dyslexia assessment test, Illinois Test of Psycholinguistic Abilities, and phonological awareness test. Genotyping of BDNF Val66Met polymorphism was performed for all participants. The frequency of the Met allele was 26% among children with LD (6 children had homozygous, 26 had heterozygous genotype). The percentage of participants with deficits in reading, writing, and phonemic segmentation was higher in Met allele carriers when compared to non-Met allele carriers in LD group. The frequency of Met allele among NT children was 3.85% (0 homozygous, 3 children had heterozygous genotype) (p = 0.00001). The high frequency of Val66Met polymorphism among children with LD introduces the BDNF gene as a genetic modifier of learning performance in some children who manifest specific learning disorder (developmental dyslexia).
Collapse
Affiliation(s)
- Mohamed E Elhadidy
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Pediatric Neurology Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ola Hosny Gebril
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Neveen Hassan Nashaat
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
- Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Hala M Zeidan
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Amal Elsaied
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
29
|
Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, Riva MA, van den Buuse M. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol 2023; 65:e22347. [PMID: 36567651 DOI: 10.1002/dev.22347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jessica N Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Nikki Lam
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Lina Schonfeld
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federico De Rosa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
30
|
Zeng B, Yue Y, Liu T, Ahn H, Li C. The Influence of the BDNF Val66Met Variant on the Association Between Physical Activity/Grip Strength and Depressive Symptoms in Persons With Diabetes. Clin Nurs Res 2022; 31:1462-1471. [PMID: 36168703 DOI: 10.1177/10547738221119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rs6265 in the brain-derived neurotrophic factor (BDNF) is associated with depression in people with diabetes. Both physical activity (PA) and grip strength are negatively associated with depression. We conducted cross-sectional analyses of the wave 10 survey data for a nationally representative sample of 1,051 diabetes participants of the Health and Retirement Study. Both greater PA (β = -.15) and stronger grip strength (β = -.02) were independently associated with depression. Although the interaction between BDNF rs6265 and PA on depressive symptoms was not significant, the negative PA-depression association was stronger among female non-Met carriers (β = -.19) and male Met carriers (β = -.14). Meanwhile, grip strength was associated with depression only in Met carriers (β = -.04), and similar association was observed in both males and females. In conclusion, female non-Met carriers and male Met carriers may benefit from PA.
Collapse
Affiliation(s)
- Bin Zeng
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, China
| | - Yan Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Tingting Liu
- Florida State University College of Nursing, Tallahassee, USA
| | - Hyochol Ahn
- Florida State University College of Nursing, Tallahassee, USA
| | | |
Collapse
|
31
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
32
|
Musazzi L, Tornese P, Sala N, Lee FS, Popoli M, Ieraci A. Acute stress induces an aberrant increase of presynaptic release of glutamate and cellular activation in the hippocampus of BDNF Val/Met mice. J Cell Physiol 2022; 237:3834-3844. [PMID: 35908196 PMCID: PMC9796250 DOI: 10.1002/jcp.30833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Paolo Tornese
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Nathalie Sala
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Francis S. Lee
- Department of PsychiatryWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Maurizio Popoli
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | | |
Collapse
|
33
|
Asadi MR, Talebi M, Gharesouran J, Sabaie H, Jalaiei A, Arsang-Jang S, Taheri M, Sayad A, Rezazadeh M. Analysis of ROQUIN, Tristetraprolin (TTP), and BDNF/miR-16/TTP regulatory axis in late onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:933019. [PMID: 36016853 PMCID: PMC9397504 DOI: 10.3389/fnagi.2022.933019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous degenerative disorder of the brain that is on the rise worldwide. One of the critical processes that might be disturbed in AD is gene expression regulation. Tristetraprolin (TTP) and RC3H1 gene (ROQUIN) are two RNA-binding proteins (RBPs) that target AU-rich elements (AREs) and constitutive decay elements (CDEs), respectively. TTP and ROQUIN, members of the CCCH zinc-finger protein family, have been demonstrated to fine-tune numerous inflammatory factors. In addition, miR-16 has distinct characteristics and may influence the target mRNA through the ARE site. Interestingly, BDNF mRNA has ARE sites in the 3’ untranslated region (UTR) and can be targeted by regulatory factors, such as TTP and miR-16 on MRE sequences, forming BDNF/miR-16/TTP regulatory axis. A number of two microarray datasets were downloaded, including information on mRNAs (GSE106241) and miRNAs (GSE157239) from individuals with AD and corresponding controls. R software was used to identify BDNF, TTP, ROQUIN, and miR-16 expression levels in temporal cortex (TC) tissue datasets. Q-PCR was also used to evaluate the expression of these regulatory factors and the expression of BDNF in the blood of 50 patients with AD and 50 controls. Bioinformatic evaluation showed that TTP and miR-16 overexpression might act as post-transcriptional regulatory factors to control BDNF expression in AD in TC samples. Instead, this expression pattern was not found in peripheral blood samples from patients with AD compared to normal controls. ROQUIN expression was increased in the peripheral blood of patients with AD. Hsa-miR-16-5p levels did not show significant differences in peripheral blood samples. Finally, it was shown that TTP and BDNF, based on evaluating the receiver operating characteristic (ROC), effectively identify patients with AD from healthy controls. This study could provide a new perspective on the molecular regulatory processes associated with AD pathogenic mechanisms linked to the BDNF growth factor, although further research is needed on the possible roles of these factors in AD.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Arsang-Jang
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Arezou Sayad,
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Maryam Rezazadeh,
| |
Collapse
|
34
|
Ng H, Alfian SD, Abdulah R, Barliana MI. BDNF val66met genotype is not associated with psychological distress: A cross-sectional study in Indonesian Pharmacy young adults. Medicine (Baltimore) 2022; 101:e29481. [PMID: 35905264 PMCID: PMC9333470 DOI: 10.1097/md.0000000000029481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The number of mental disorders has been increasing but has yet to receive sufficient attention. In particular, healthcare students and professionals tend to have high stress burden. Finding the root cause of psychological distress is important to formulate a method for early detection and prevention. The association of brain-derived neurotrophic factor val66met polymorphism to neuropsychiatric disorders has been widely studied. To study the interplay between brain-derived neurotrophic factor val66met polymorphism and sociodemographic factors in the pathogenesis of psychological distress among Indonesian Pharmacy students. Level of psychological distress and sociodemographic profiling was collected by using the Kessler Psychological Distress Scale and sociodemographic questionnaires, respectively. Genotyping was performed using polymerase chain reaction-amplified refractory mutation system. Pearson's chi square and binomial logistic tests were used to evaluate the correlation. This study recruited 148 participants. The psychological distress levels of the participants were well (27.03%), mild (37.16%), moderate (25.00%), and severe (10.81%). Genotypic distributions were AA (25.67%), GA (50.68%), and GG (23.65%). No statistical significance between genotype and psychological distress was found in the study (P = .076). The sociodemographic factors also showed non significance, except for the source of tuition fee among women students (P = .049). Psychological distress is not affected by genotypic and sociodemographic factors. Further confirmatory research with larger and broader populations is required.
Collapse
Affiliation(s)
- Henry Ng
- Department of Biological Pharmacy, Biotechnology Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Sofa Dewi Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa I. Barliana
- Department of Biological Pharmacy, Biotechnology Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- *Correspondence: Melisa I. Barliana, Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, Jatinangor 45363, Indonesia (e-mail: )
| |
Collapse
|
35
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:8011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson's disease, Alzheimer's disease, Huntington's disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no "one size fits all" therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| |
Collapse
|
36
|
Tiwari S, Qi L, Wong J, Han Z. Association of peripheral manifestation of brain-derived neurotrophic factor with depression: A meta-analysis. Brain Behav 2022; 12:e32581. [PMID: 35510613 PMCID: PMC9226806 DOI: 10.1002/brb3.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The relationship between brain-derived neurotrophic factor (BDNF) and depression is a hot topic in research as several results of preclinical and clinical studies have shown controversial results. Our meta-analysis aims to evaluate and update the current status of peripheral BDNF with depression. METHODS We performed a meta-analysis by comprehensively searching PubMed and Web of Science for English-language literature from inception to 1st of June 2020. The search terms included brain-derived neurotrophic factor or BDNF in combination with depression, without year restriction. Using STATA software, data were pooled using a random-effects model. RESULTS In our literature search, 24 studies involving 1130 depressed patients and 1378 healthy individuals met our inclusion criteria. The results of our meta-analysis showed that the peripheral levels of BDNF levels significantly decreased in depression than nondepressed healthy controls (SMD = -0.89, 95% CI = -1.41, -0.38, p < .0001); however, the significant heterogeneity among studies (Q = 740.91, I2 = 96.8; p < .001) was discovered. Trim-and-fill estimations for the adjustment of publication bias indicated that publication bias had no impact on our results. Our sub-group analysis showed that a history of depression and alcohol consumption had an effect on the level of BDNF. In addition, age and gender did not affect the heterogeneity of BDNF in the meta-analysis. CONCLUSIONS Although decreased peripheral expression of BDNF certainly presents a risk of depression, we cannot find a definite relationship between the peripheral level of BDNF with depression to use BDNF as a reliable biomarker to assess the depression in clinical practice. We propose that future research should consider all the factors affecting BDNF and assess the level of proBDNF and mBDNF separately while evaluating the patients with depression objectively.
Collapse
Affiliation(s)
- Sagun Tiwari
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P. R. China.,International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lili Qi
- Department of Emergency Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of TCM, Shanghai, P. R. China
| | - John Wong
- School of Nursing and Department of Occupational Therapy, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P. R. China
| |
Collapse
|
37
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|
38
|
Sims SK, Wilken-Resman B, Smith CJ, Mitchell A, McGonegal L, Sims-Robinson C. Brain-Derived Neurotrophic Factor and Nerve Growth Factor Therapeutics for Brain Injury: The Current Translational Challenges in Preclinical and Clinical Research. Neural Plast 2022; 2022:3889300. [PMID: 35283994 PMCID: PMC8906958 DOI: 10.1155/2022/3889300] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) are among the leading causes of death and disability worldwide with impairments ranging from mild to severe. Many therapies are aimed at improving functional and cognitive recovery by targeting neural repair but have encountered issues involving efficacy and drug delivery. As a result, therapeutic options for patients are sparse. Neurotrophic factors are one of the key mediators of neural plasticity and functional recovery. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as potential therapeutic options to increase neural repair and recovery as they promote neuroprotection and regeneration. BDNF and NGF have demonstrated the ability to improve functional recovery in preclinical and to a lesser extent clinical studies. Direct and indirect methods to increase levels of neurotrophic factors in animal models have been successful in improving postinjury outcome measures. However, the translation of these studies into clinical trials has been limited. Preclinical experiments have largely failed to result in significant impacts in clinical research. This review will focus on the administration of these neurotrophic factors in preclinical and clinical stroke and TBI and the challenges in translating these therapies from the bench to the clinic.
Collapse
Affiliation(s)
- Serena-Kaye Sims
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | | | - Crystal J. Smith
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | - Ashley Mitchell
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | - Lilly McGonegal
- College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | |
Collapse
|
39
|
The Effects of Prenatal Exposure to Pregabalin on the Development of Ventral Midbrain Dopaminergic Neurons. Cells 2022; 11:cells11050852. [PMID: 35269474 PMCID: PMC8909856 DOI: 10.3390/cells11050852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Pregabalin is widely used as a treatment for multiple neurological disorders; however, it has been reported to have the potential for misuse. Due to a lack of safety studies in pregnancy, pregabalin is considered the last treatment option for various neurological diseases, such as neuropathic pain. Therefore, pregabalin abuse in pregnant women, even at therapeutic doses, may impair fetal development. We used primary mouse embryonic neurons to investigate whether exposure to pregabalin can impair the morphogenesis and differentiation of ventral midbrain neurons. This study focused on ventral midbrain dopaminergic neurons, as they are responsible for cognition, movement, and behavior. The results showed that pregabalin exposure during early brain development induced upregulation of the dopaminergic progenitor genes Lmx1a and Nurr1 and the mature dopaminergic gene Pitx3. Interestingly, pregabalin had different effects on the morphogenesis of non-dopaminergic ventral midbrain neurons. Importantly, our findings illustrated that a therapeutic dose of pregabalin (10 μM) did not affect the viability of neurons. However, it caused a decrease in ATP release in ventral midbrain neurons. We demonstrated that exposure to pregabalin during early brain development could interfere with the neurogenesis and morphogenesis of ventral midbrain dopaminergic neurons. These findings are crucial for clinical consideration of the use of pregabalin during pregnancy.
Collapse
|
40
|
Chen MH, Lin YS, Tsai SJ. Associations between brain-derived neurotrophic factor val66met polymorphism, melancholic feature, and treatment refractoriness in patients with treatment-resistant depression. TAIWANESE JOURNAL OF PSYCHIATRY 2022. [DOI: 10.4103/tpsy.tpsy_15_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Wei Y, Liu S, Cai J, Tang X, Zhang J, Xu M, Liu Q, Wei C, Mo X, Huang S, Lin Y, Mai T, Tan D, Luo T, Gou R, Lu H, Qin J, Zhang Z. Associations of TFEB Gene Polymorphisms With Cognitive Function in Rural Chinese Population. Front Aging Neurosci 2022; 13:757992. [PMID: 34970136 PMCID: PMC8713571 DOI: 10.3389/fnagi.2021.757992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The study aimed to investigate the relationship between transcription factor EB (TFEB) gene polymorphisms, including their haplotypes, and the cognitive functions of a selected population in Gongcheng County, Guangxi. Methods: A case-control study approach was used. The case group comprised 339 individuals with cognitive impairment, as assessed by their Mini-Mental State Examination scores; the control population also comprised 339 individuals who were matched by sex and age (± 5 years) in a 1:1 ratio. TFEB gene polymorphisms were genotyped in 678 participants (190 men and 488 women, aged 30-91 years) by using the Sequenom MassARRAY platform. Results: Multifactorial logistic regression analysis showed that in the dominant model, the risk of developing cognitive impairment was 1.547 times higher in cases with the TFEB rs14063A allele (AG + AA) than in those with the GG genotype (adjusted odds ratio [OR] = 1.547, Bonferroni correction confidence interval = 1.021-2.345). Meanwhile, the presence of the TFEB rs1062966T allele (CT + TT) was associated with a lower risk of cognitive impairment in comparison with the presence of the CC genotype (adjusted OR = 0.636, Bonferroni correction confidence interval = 0.405-0.998). In the co-dominant model, the risk of developing cognitive impairment was 1.553 times higher in carriers of the TFEB rs14063AG genotype than in carriers of the GG genotype (adjusted OR = 1.553, Bonferroni correction confidence interval = 1.007-2.397). After the Bonferroni correction and adjustment for confounding factors, the association of TFEB rs1062966 with cognitive function persisted in the analyses stratified by education level. Ethnically stratified analysis showed a significant association between TFEB rs1062966 and cognitive function in the Yao population. The multilocus linkage disequilibrium analysis indicated that the identified single nucleotide polymorphisms were not inherited independently. The haplotype analysis suggested that the rs14063A-rs1062966C-rs2278068C-rs1015149T haplotype of the TFEB gene increased the risk of cognitive impairment (P < 0.05) and that the rs14063G-rs1062966T-rs2278068C-rs1015149C haplotype was associated with a reduced risk of cognitive impairment (P < 0.05). Conclusion: TFEB rs1062966 polymorphisms and their rs14063A-rs1062966C-rs2278068C-rs1015149T and rs14063G-rs1062966T-rs2278068C-rs1015149C haplotypes are genetic factors that may affect cognitive function among the rural Chinese population.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Junling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Chunmei Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Shenxiang Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Yinxia Lin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Tingyu Mai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Dechan Tan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Tingyu Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Ruoyu Gou
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Huaxiang Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China.,Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning, China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Guangxi, China.,Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guangxi, China
| |
Collapse
|
42
|
Paul P, Nadella RK, Sen S, Ithal D, Mahadevan J, Reddy Y C J, Jain S, Purushottam M, Viswanath B. Association study of BDNF Val66Met gene polymorphism with bipolar disorder and lithium treatment response in Indian population. J Psychopharmacol 2021; 35:1510-1516. [PMID: 34311608 DOI: 10.1177/02698811211032609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The association of the Val66Met (rs6265) polymorphism in the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder (BD) and response to lithium treatment has been suggested, though inconsistently. The considerable diversity of allele frequency across different populations contributes to this. There is no data from South Asia till date. Hence, we examined the association of this polymorphism in BD cases from India, and its association with lithium treatment response. METHODS BD patients (N = 301) were recruited from the clinical services of National Institute of Mental Health and Neurosciences (NIMHANS), India. Lithium treatment response for 190 BD subjects was assessed using Alda scale by NIMH life charts. Patients with total score ⩾7 were defined as lithium responders (N = 115) and patients with score <7 were defined as lithium non-responders (N = 75). Healthy controls (N = 484) with no lifetime history of neuropsychiatric illness or a family history of mental illness were recruited as control set. Genotyping was performed by TaqMan genotyping assay. RESULTS Genotype and allele frequency of BDNF Val66Met SNP was significantly different (χ2 = 7.78, p = 0.02) in cases compared to controls, and the Val(G) allele was more frequent (χ2 = 7.08, p = 0.008) in BD patients. However, no significant difference is noted in genotype or allele frequencies of this polymorphism between the lithium responders and non-responders. CONCLUSIONS The Val(G) allele of BDNF Val66Met polymorphism is associated with risk of BD in this sample, but it is not related to response to lithium.
Collapse
Affiliation(s)
- Pradip Paul
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Kumar Nadella
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Somdatta Sen
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Dhruva Ithal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Janardhan Reddy Y C
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Samieri C, Yassine HN, Melo van Lent D, Lefèvre-Arbogast S, van de Rest O, Bowman GL, Scarmeas N. Personalized nutrition for dementia prevention. Alzheimers Dement 2021; 18:1424-1437. [PMID: 34757699 DOI: 10.1002/alz.12486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
The role of nutrition has been investigated for decades under the assumption of one-size-fits-all. Yet there is heterogeneity in metabolic and neurobiological responses to diet. Thus a more personalized approach may better fit biological reality and have increased efficacy to prevent dementia. Personalized nutrition builds on the food exposome, defined as the history of diet-related exposures over the lifetime, and on its interactions with the genome and other biological characteristics (eg, metabolism, the microbiome) to shape health. We review current advances of personalized nutrition in dementia research. We discuss key questions, success milestones, and future roadmap from observational epidemiology to clinical studies through basic science. A personalized nutrition approach based on the best prescription for the most appropriate target population in the most relevant time-window has the potential to strengthen dementia-prevention efforts.
Collapse
Affiliation(s)
- Cécilia Samieri
- Univ. Bordeaux, ISPED, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Debora Melo van Lent
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Gene L Bowman
- Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health and Science University, Portland, Oregon, USA.,Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
44
|
Ibrahim P, Almeida D, Nagy C, Turecki G. Molecular impacts of childhood abuse on the human brain. Neurobiol Stress 2021; 15:100343. [PMID: 34141833 PMCID: PMC8187840 DOI: 10.1016/j.ynstr.2021.100343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Childhood abuse (CA) is a prevalent global health concern, increasing the risk of negative mental health outcomes later in life. In the literature, CA is commonly defined as physical, sexual, and emotional abuse, as well as neglect. Several mental disorders have been associated with CA, including depression, bipolar disorder, schizophrenia, and post-traumatic stress disorder, along with an increased risk of suicide. It is thought that traumatic life events occurring during childhood and adolescence may have a significant impact on essential brain functions, which may persist throughout adulthood. The interaction between the brain and the external environment can be mediated by epigenetic alterations in gene expression, and there is a growing body of evidence to show that such changes occur as a function of CA. Disruptions in the HPA axis, myelination, plasticity, and signaling have been identified in individuals with a history of CA. Understanding the molecular impact of CA on the brain is essential for the development of treatment and prevention measures. In this review, we will summarize studies that highlight the molecular changes associated with CA in the human brain, along with supporting evidence from peripheral studies and animal models. We will also discuss some of the limitations surrounding the study of CA and propose extracellular vesicles as a promising future approach in the field.
Collapse
Affiliation(s)
- Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Daniel Almeida
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
46
|
Ahmed AO, Kramer S, Hofman N, Flynn J, Hansen M, Martin V, Pillai A, Buckley PF. A Meta-Analysis of Brain-Derived Neurotrophic Factor Effects on Brain Volume in Schizophrenia: Genotype and Serum Levels. Neuropsychobiology 2021; 80:411-424. [PMID: 33706323 PMCID: PMC8619762 DOI: 10.1159/000514126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
AIM The Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene has established pleiotropic effects on schizophrenia incidence and morphologic alterations in the illness. The effects of brain-derived neurotrophic factor (BDNF) on brain volume measurements are however mixed seeming to be less established for most brain regions. The current meta-analytic review examined (1) the association of the Val66Met SNP and brain volume alterations in schizophrenia by comparing Met allele carriers to Val/Val homozygotes and (2) the association of serum BDNF with brain volume measurements. METHOD Studies included in the meta-analyses were identified through an electronic search of PubMed and PsycInfo (via EBSCO) for English language publications from January 2000 through December 2017. Included studies had conducted a genotyping procedure of Val66Met or obtained assays of serum BDNF and obtained brain volume data in patients with psychotic disorders. Nonhuman studies were excluded. RESULTS Study 1 which included 52 comparisons of Met carriers and Val/Val homozygotes found evidence of lower right and left hippocampal volumes among Met allele carriers with schizophrenia. Frontal measurements, while also lower among Met carriers, did not achieve statistical significance. Study 2 which included 7 examinations of the correlation between serum BDNF and brain volume found significant associations between serum BDNF levels and right and left hippocampal volume with lower BDNF corresponding to lower volumes. DISCUSSION The meta-analyses provided evidence of associations between brain volume alterations in schizophrenia and variations on the Val66Met SNP and serum BDNF. Given the limited number of studies, it remains unclear if BDNF effects are global or regionally specific.
Collapse
Affiliation(s)
- Anthony O. Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, New York, USA,*Anthony O. Ahmed, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY 10605 (USA),
| | - Samantha Kramer
- Department of Psychology, Long Island University Post, New York, New York, USA
| | - Naama Hofman
- Department of Psychology, St. John's University, New York, New York, USA
| | - John Flynn
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Marie Hansen
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Victoria Martin
- Department of Psychology, City University of New York, New York, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, Georgia, USA
| | - Peter F. Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
47
|
Chen MH, Lin WC, Tsai SJ, Li CT, Cheng CM, Wu HJ, Bai YM, Hong CJ, Tu PC, Su TP. Effects of treatment refractoriness and brain-derived neurotrophic factor Val66Met polymorphism on antidepressant response to low-dose ketamine infusion. Eur Arch Psychiatry Clin Neurosci 2021; 271:1267-1274. [PMID: 33959800 DOI: 10.1007/s00406-021-01264-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Evidence suggests that levels of treatment refractoriness and brain-derived neurotrophic factor (BDNF) rs6265 polymorphism are related to the antidepressant effects of conventional antidepressants and repetitive transcranial magnetic stimulation. However, whether these factors are associated with the antidepressant effects of low-dose ketamine remains unclear. In total, 71 patients with treatment-resistant depression (TRD) were randomized to 0.5 mg/kg ketamine, 0.2 mg/kg ketamine, and saline control infusion groups. They were further divided into three treatment refractoriness groups according to the Maudsley staging method and were genotyped for Val66Met BDNF polymorphism. Participants' Hamilton Depression Rating Scale (HDRS) scores were assessed preinfusion, at 40, 80, 120, and 240 min postinfusion, and sequentially on days 2-7 and 14 after infusion. Patients with any Val allele exhibited an antidepressant response (p = 0.029) to 0.5 mg/kg ketamine vs. 0.2 mg/kg ketamine vs. saline control infusions. However, the trajectory of HDRS scores did not differ (p = 0.236) between the treatment groups among Met/Met carriers. In the low treatment refractoriness group, the 0.2 mg/kg ketamine infusion exhibited the optimal antidepressant effect (p = 0.002); in the moderate treatment refractoriness group, the 0.5 mg/kg ketamine infusion achieved the strongest antidepressant effect (p = 0.006); however, in the high treatment refractoriness group, the trajectory of depressive symptoms did not differ between treatments (p = 0.325). In future clinical practice, ketamine dose may be adjusted according to the level of treatment refractoriness and BDNF rs6265 polymorphism to achieve the optimal antidepressant effect for patients with TRD.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan. .,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Wu
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Beitou district, Taipei, 112, Taiwan. .,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
Gorzkowska A, Cholewa J, Cholewa J, Wilk A, Klimkowicz-Mrowiec A. Risk Factors for Apathy in Polish Patients with Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910196. [PMID: 34639517 PMCID: PMC8507785 DOI: 10.3390/ijerph181910196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022]
Abstract
Apathy, a feeling of indifference or a general lack of interest and motivation to engage in activity, is one of the most common neuropsychiatric symptoms in Parkinson’s disease (PD). The large variation in prevalence and the underlying pathophysiological processes remain unclear due to heterogeneous PD populations. The purpose of this study was to identify risk factors for apathy, the modification or treatment of which may be clinically relevant and improve quality of life and caregiver burden for patients with Parkinson’s disease. Caucasian subjects with Parkinson’s disease were included in the study. Baseline demographics, neurological deficit, medications taken, cognitive and neuropsychiatric status, and the polymorphisms in the brain-derived neurotrophic factor gene were assessed. Apathy was diagnosed in 53 (50.5%) patients. They were less educated (OR 0.76 CI 0.64–0.89; p = 0.001), more frequently depressed (OR 1.08 CI 1.01–1.15; p = 0.018), and less frequently treated with inhibitors of monoamine oxidase-B (MAOB-I) (OR 0.07 CI 0.01–0.69; p = 0.023). Although apathetic patients were more likely to carry the Met/Met genotype, differences in the brain-derived neurotrophic factor BDNF rs6265 polymorphism between apathetic and non-apathetic PD patients were not statistically significant in multivariate analysis. Some risk factors for apathy may be clinically modifiable. Further studies are needed to assess whether modeling modifiable apathy risk factors will affect the prevalence of this neuropsychiatric symptom in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Joanna Cholewa
- Department of Physical Education and Adapted Physical Activity, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | - Jaroslaw Cholewa
- Department of Health Related Physical Activity and Tourism, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
- Correspondence: ; Tel.: +48-601-560-011
| | - Aleksander Wilk
- Department of Neurosurgery, University Hospital, 31-501 Krakow, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 31-008 Krakow, Poland;
| |
Collapse
|
49
|
Carmichael J, Hicks AJ, Spitz G, Gould KR, Ponsford J. Moderators of gene-outcome associations following traumatic brain injury. Neurosci Biobehav Rev 2021; 130:107-124. [PMID: 34411558 DOI: 10.1016/j.neubiorev.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The field of genomics is the principal avenue in the ongoing development of precision/personalised medicine for a variety of health conditions. However, relating genes to outcomes is notoriously complex, especially when considering that other variables can change, or moderate, gene-outcome associations. Here, we comprehensively discuss moderation of gene-outcome associations in the context of traumatic brain injury (TBI), a common, chronically debilitating, and costly neurological condition that is under complex polygenic influence. We focus our narrative review on single nucleotide polymorphisms (SNPs) of three of the most studied genes (apolipoprotein E, brain-derived neurotrophic factor, and catechol-O-methyltransferase) and on three demographic variables believed to moderate associations between these SNPs and TBI outcomes (age, biological sex, and ethnicity). We speculate on the mechanisms which may underlie these moderating effects, drawing widely from biomolecular and behavioural research (n = 175 scientific reports) within the TBI population (n = 72) and other neurological, healthy, ageing, and psychiatric populations (n = 103). We conclude with methodological recommendations for improved exploration of moderators in future genetics research in TBI and other populations.
Collapse
Affiliation(s)
- Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate Rachel Gould
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
50
|
Ney LJ, Matthews A, Nicholson E, Zuj D, Ken Hsu CM, Steward T, Graham B, Harrison B, Nichols D, Felmingham K. BDNF genotype Val66Met interacts with acute plasma BDNF levels to predict fear extinction and recall. Behav Res Ther 2021; 145:103942. [PMID: 34340176 DOI: 10.1016/j.brat.2021.103942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotropic factor (BDNF) is a potent regulator of memory processes and is believed to influence the consolidation of fear extinction memories. No previous human study has tested the effect of unstimulated BDNF on fear extinction recall, and no study has tested the association between plasma BDNF levels and psychophysiological responding during an extinction paradigm. We tested the association between fear responses during a 2-day differential conditioning, extinction and extinction recall paradigm and Val66Met genotype in a group of healthy participants (N = 191). There were no group differences during habituation or acquisition. Met allele carriers compared to Val homozygotes displayed higher responses to the CS + compared to the CS- during extinction learning and had higher responding to both the CS+ and CS- during extinction recall. Plasma levels of BDNF protein that were collected in a sub-sample of the group (n = 56) moderated the effect of Met allele presence, such that lower BDNF level was associated with higher skin conductance response in the Met but not Val group to the CS+ during extinction learning and to both the CS+ and CS- during extinction recall. The current results extend previous observations of a Val66Met effect during fear extinction learning to extinction recall and show for the first time that these effects are moderated by plasma BDNF level.
Collapse
Affiliation(s)
- Luke John Ney
- School of Psychological Sciences, University of Tasmania, Australia.
| | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| | - Emma Nicholson
- School of Psychological Sciences, University of Melbourne, Australia
| | - Daniel Zuj
- Department of Psychology, Swansea University, United Kingdom
| | | | - Trevor Steward
- School of Psychological Sciences, University of Melbourne, Australia
| | - Bronwyn Graham
- School of Psychology, University of New South Wales, Australia
| | - Ben Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|