1
|
Gao R, Xu Y, Zhang M, Zeng Q, Zhu G, Su W, Wang R. From Gene Discovery to Stroke Risk: C5orf24's Pivotal Role Uncovered. Mol Neurobiol 2025:10.1007/s12035-025-04802-y. [PMID: 40038197 DOI: 10.1007/s12035-025-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Stroke is a leading cause of death and disability worldwide. It is crucial to understand the influencing factors and potential mechanisms of stroke, as well as reducing its risk. This study identified the expression of the B230219D22Rik gene in mouse microglial cells, corresponding to the human gene C5orf24, using the NCBI database. We then validated the role of C5orf24 in stroke using quantitative real-time PCR, enzyme-linked immunosorbent assay, western blot and Mendelian randomization (MR) analysis. Additionally, we evaluated the causal association of C5orf24 with three other vascular diseases: coronary heart disease, myocardial infarction, and embolism. The gene B230219D22Rik and C5orf24 expressed in microglia was observed to have reduced expression in mouse and human cell stroke models, respectively. In MR analysis, we found a significant causal relationship between increased C5orf24 levels and reduced stroke risk (OR = 0.68, 95% CI 0.48-0.98, P = 4.07 × 10-2). However, this association was not observed in three other vascular diseases. To further explore the function of C5orf24 in stroke, we overexpressed C5orf24 in the oxygen-glucose deprivation/reperfusion (OGD/R) model of human microglial cell line clone 3 (HMC3) in vitro and found that C5orf24 inhibited the expression of inflammatory factors IL-1β and IL-6. In our study, we revealed a causal relationship between elevated levels of C5orf24 and a reduced risk of stroke through cell experiments and MR analysis, and found that inflammation might play a mediating role. This suggests that C5orf24 could be a promising drug target for stroke treatment.
Collapse
Affiliation(s)
- Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Sudman M, Stöger R, Bentley GR, Melamed P. Association of childhood dehydroepiandrosterone sulfate concentration, pubertal development, and DNA methylation at puberty-related genes. Eur J Endocrinol 2024; 191:623-635. [PMID: 39670713 DOI: 10.1093/ejendo/lvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE High concentrations of dehydroepiandrosterone sulfate (DHEAS) often precede premature puberty and sometimes polycystic ovary syndrome (PCOS). We hypothesized that the underlying mechanisms might involve DNA methylation. As an indicator of the downstream effects of DHEAS, we looked for associations between prepubertal DHEAS concentration, pubertal progression, and DNA methylation at puberty-related genes in blood cells. DESIGN Blood methylome and DHEAS concentration at 7.5 and 8.5 years, respectively, were analyzed in 91 boys and 82 girls. Pubertal development data were collected between 8.1 and 17 years (all from UK birth cohort, Avon Longitudinal Study of Parents and Children [ALSPAC]). METHODS Correlation between DHEAS and pubertal measurements was assessed by Spearman's correlation. DHEAS association with methylation at individual CpGs or regions was evaluated by linear regression, and nearby genes examined by enrichment analysis and intersection with known puberty-related genes. RESULTS Boys and girls with higher childhood DHEAS concentrations had more advanced pubic hair growth throughout puberty; girls also had advanced breast development, earlier menarche, and longer menstrual cycles. DHEAS concentration was associated with methylation at individual CpGs near several puberty-related genes. In boys, 14 genes near CpG islands with DHEAS-associated methylation were detected, and in girls, there were 9 which included LHCGR and SRD5A2; FGFR1 and FTO were detected in both sexes. CONCLUSIONS The association between DHEAS and pubertal development, as reported previously, suggests a physiological connection. Our novel findings showing that DHEAS concentration correlates negatively and linearly with DNA methylation levels at regulatory regions of key puberty-related genes, provide a mechanism for such a functional relationship.
Collapse
Affiliation(s)
- Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Gillian R Bentley
- Department of Anthropology, Durham University, Durham DH1 3LE, United Kingdom
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
5
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Clark BJ, Klinge CM. Structure-function of DHEA binding proteins. VITAMINS AND HORMONES 2022; 123:587-617. [PMID: 37717999 DOI: 10.1016/bs.vh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
7
|
Anier K, Somelar K, Jaako K, Alttoa M, Sikk K, Kokassaar R, Kisand K, Kalda A. Psychostimulant-induced aberrant DNA methylation in an in vitro model of human peripheral blood mononuclear cells. Clin Epigenetics 2022; 14:89. [PMID: 35842682 PMCID: PMC9288712 DOI: 10.1186/s13148-022-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Several reports have provided crucial evidence in animal models that epigenetic modifications, such as DNA methylation, may be involved in psychostimulant-induced stable changes at the cellular level in the brain. Epigenetic editors DNA methyltransferases (DNMTs) and ten-eleven translocation enzymes (TETs) coordinate expression of gene networks, which then manifest as long-term behavioural changes. However, the extent to which aberrant DNA methylation is involved in the mechanisms of substance use disorder in humans is unclear. We previously demonstrated that cocaine modifies gene transcription, via DNA methylation, throughout the brain and in peripheral blood cells in mice. Results We treated human peripheral blood mononuclear cells (PBMCs) from healthy male donors (n = 18) in vitro with psychostimulants (amphetamine, cocaine). After treatment, we assessed mRNA levels and enzymatic activities of TETs and DNMTs, conducted genome-wide DNA methylation assays and next-generation sequencing. We found that repeated exposure to psychostimulants decreased mRNA levels and enzymatic activity of TETs and 5-hydroxymethylation levels in PBMCs. These data were in line with observed hyper- and hypomethylation and mRNA expression of marker genes (IL-10, ATP2B4). Additionally, we evaluated whether the effects of cocaine on epigenetic editors (DNMTs and TETs) and cytokines interleukin-6 (IL-6) and IL-10 could be reversed by the DNMT inhibitor decitabine. Indeed, decitabine eliminated cocaine’s effect on the activity of TETs and DNMTs and decreased cytokine levels, whereas cocaine increased IL-6 and decreased IL-10. Conclusions Our data suggest that repeated psychostimulant exposure decreases TETs’ enzymatic activity in PBMCs. Co-treatment with decitabine reversed TETs’ levels and modulated immune response after repeated cocaine exposure. Further investigation is needed to clarify if TET could represent a putative biomarker of psychostimulant use and if DNMT inhibition could have therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01303-w.
Collapse
Affiliation(s)
- Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kelli Somelar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Margret Alttoa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kerli Sikk
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Raul Kokassaar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
8
|
Lax E. DNA Methylation as a Therapeutic and Diagnostic Target in Major Depressive Disorder. Front Behav Neurosci 2022; 16:759052. [PMID: 35431832 PMCID: PMC9006940 DOI: 10.3389/fnbeh.2022.759052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Elad Lax
- *Correspondence: Elad Lax ; orcid.org/0000-0002-0310-0520
| |
Collapse
|
9
|
The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex. Pain Rep 2021; 6:e944. [PMID: 34278163 PMCID: PMC8280078 DOI: 10.1097/pr9.0000000000000944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Chronic administration of S-adenosylmethionine reverses neuropathic pain–induced changes in DNA methylation in the mouse frontal cortex. Chronic pain is associated with persistent but reversible structural and functional changes in the prefrontal cortex (PFC). This stable yet malleable plasticity implicates epigenetic mechanisms, including DNA methylation, as a potential mediator of chronic pain–induced cortical pathology. We previously demonstrated that chronic oral administration of the methyl donor S-adenosyl methionine (SAM) attenuates long-term peripheral neuropathic pain and alters global frontal cortical DNA methylation. However, the specific genes and pathways associated with the resolution of chronic pain by SAM remain unexplored.
Collapse
|
10
|
Fan L, Shi C, Hu X, Zhang Z, Zheng H, Luo H, Fan Y, Zhang S, Hu Z, Yang J, Mao C, Xu Y. Analysis of 12 GWAS-Linked Loci With Parkinson's Disease in the Chinese Han Population. Front Neurol 2021; 12:623913. [PMID: 33897588 PMCID: PMC8058430 DOI: 10.3389/fneur.2021.623913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
A recent large-scale European-originated genome-wide association study identified 38 novel independent risk signals in 37 loci for Parkinson's disease (PD). However, whether these new loci are associated with PD in Asian populations remains elusive. The present study aimed to explore the relationship between the 12 most relevant loci with larger absolute values for these new risk loci and PD in the Chinese Han population. We performed a case-control study including 527 PD patients and 435 healthy controls. In the allele model, it was found that rs10748818/GBF1 was associated with PD in the Chinese Han population [p = 0.035, odds ratio (OR) 1.221, 95% confidence interval (CI) 1.014–1.472
Collapse
Affiliation(s)
- Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Assis MA, Díaz D, Ferrado R, Ávila-Zarza CA, Weruaga E, Ambrosio E. Transplantation with Lewis bone marrow induces the reinstatement of cocaine-seeking behavior in male F344 resistant rats. Brain Behav Immun 2021; 93:23-34. [PMID: 33278561 DOI: 10.1016/j.bbi.2020.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023] Open
Abstract
One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-β, Tlr-2, Tlr-4 and Il-1β was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina; Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
| | - David Díaz
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rosa Ferrado
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carmelo Antonio Ávila-Zarza
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Grupo de Estadística Aplicada, Departamento de Estadísticas, USAL, Salamanca, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
12
|
Asaoka Y, Won M, Morita T, Ishikawa E, Lee YA, Goto Y. Monoamine and genome-wide DNA methylation investigation in behavioral addiction. Sci Rep 2020; 10:11760. [PMID: 32678220 PMCID: PMC7366626 DOI: 10.1038/s41598-020-68741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Behavioral addiction (BA) is characterized by repeated, impulsive and compulsive seeking of specific behaviors, even with consequent negative outcomes. In drug addiction, alterations in biological mechanisms, such as monoamines and epigenetic processes, have been suggested, whereas whether such mechanisms are also altered in BA remains unknown. In this preliminary study with a small sample size, we investigated monoamine concentrations and genome-wide DNA methylation in blood samples from BA patients and control (CT) subjects. Higher dopamine (DA) metabolites and the ratio between DA and its metabolites were observed in the BA group than in the CT group, suggesting increased DA turnover in BA. In the methylation assay, 186 hyper- or hypomethylated CpGs were identified in the BA group compared to the CT group, of which 64 CpGs were further identified to correlate with methylation status in brain tissues with database search. Genes identified with hyper- or hypomethylation were not directly associated with DA transmission, but with cell membrane trafficking and the immune system. Some of the genes were also associated with psychiatric disorders, such as drug addiction, schizophrenia, and autism spectrum disorder. These results suggest that BA may involve alterations in epigenetic regulation of the genes associated with synaptic transmission, including that of monoamines, and neurodevelopment.
Collapse
Affiliation(s)
- Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Moojun Won
- Kyowa Hospital, Obu, Aichi, 474-0071, Japan
| | | | | | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
13
|
Viola TW, Fries GR. A promising era for epigenetic research: revealing the molecular signature of neuropsychiatric disorders. ACTA ACUST UNITED AC 2019; 41:469-470. [PMID: 31826091 PMCID: PMC6899348 DOI: 10.1590/1516-4446-2019-0638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
14
|
Fan XY, Shi G, Zhao P. Methylation in Syn and Psd95 genes underlie the inhibitory effect of oxytocin on oxycodone-induced conditioned place preference. Eur Neuropsychopharmacol 2019; 29:1464-1475. [PMID: 31735530 DOI: 10.1016/j.euroneuro.2019.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) is one of the most effective analgesics in medicine, but is associated with the development of dependence. Recent studies demonstrating epigenetic changes in the brain after exposure to opiates have provided an insight into possible mechanisms underlying addiction. Oxytocin (OT), an endogenous neuropeptide well known for preventing drug abuse, is a promising pharmacotherapy to counteract addiction. Therefore, we explored the mechanism of Oxy addiction and the role of OT in Oxy-induced epigenetic alterations. In this study, drug-induced changes in conditioned place preference (CPP), i.e. the expression of synaptic proteins and synaptic density in the ventral tegmental area (VTA) were measured. We also sought to identify DNA methyltransferases (DNMTs), ten-eleven translocations (TETs), global 5-methylcytosine (5-mC), and DNA methylation of two genes implicated in plasticity (Synaptophysin, Syn; Post-synaptic density protein 95, Psd95). Oxy (3.0 mg/kg, i.p.) induced CPP acquisition in Sprague-Dawley rats. Oxy down-regulated DNMT1 and up-regulated TET1-3, leading to a decrease in global 5-mC levels and differential demethylation at exon 1 of Syn and exon 2 of Psd95. These changes in DNA methylation of Syn and Psd95 elevated the expression of synaptic proteins (SYN, PSD95) and synaptic density in the VTA. Pretreatment with OT (2.5 µg, i.c.v.) via its receptor specifically blocked Oxy CPP, normalized synaptic density, and regulated DNMT1 and TET2-3 causing reverse of DNA demethylation of Syn and Psd95. DNA methylation is an important gene regulation mechanism underlying Oxy CPP, and OT - via its receptor - could specifically inhibit Oxy addiction.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China.
| |
Collapse
|
15
|
Sartor GC. Epigenetic pharmacotherapy for substance use disorder. Biochem Pharmacol 2019; 168:269-274. [PMID: 31306644 PMCID: PMC6733674 DOI: 10.1016/j.bcp.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Identifying novel therapeutics for the treatment of substance use disorder (SUD) is an area of intensive investigation. Prior strategies that have attempted to modify one or a few neurotransmitter receptors have had limited success, and currently there are no FDA-approved medications for the treatment of cocaine, methamphetamine, and marijuana use disorders. Because drugs of abuse are known to alter the expression of numerous genes in reward-related brain regions, epigenetic-based therapies have emerged as intriguing targets for therapeutic innovation. Here, I evaluate potential therapeutic approaches and challenges in targeting epigenetic factors for the treatment of SUD and highlight examples of promising strategies and future directions.
Collapse
Affiliation(s)
- Gregory C Sartor
- University of Connecticut, Department of Pharmaceutical Sciences, 69 N. Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
16
|
Rusch HL, Robinson J, Yun S, Osier ND, Martin C, Brewin CR, Gill JM. Gene expression differences in PTSD are uniquely related to the intrusion symptom cluster: A transcriptome-wide analysis in military service members. Brain Behav Immun 2019; 80:904-908. [PMID: 31039430 PMCID: PMC6752960 DOI: 10.1016/j.bbi.2019.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/19/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with wide-spread immune dysregulation; however, little is known about the gene expression differences attributed to each PTSD symptom cluster. This is an important consideration when identifying diagnostic and treatment response markers in highly comorbid populations with mental and physical health conditions that share symptoms. To this aim, we utilized a transcriptome-wide analysis of differential gene expression in peripheral blood by comparing military service members: (1) with vs. without PTSD, (2) with high vs. low PTSD cluster symptom severity, and (3) with improved vs. not improved PTSD symptoms following 4-8 weeks of evidenced-based sleep treatment. Data were analyzed at a ±2.0-fold change magnitude with subsequent gene ontology-based pathway analysis. In participants with PTSD (n = 39), 89 differentially expressed genes were identified, and 94% were upregulated. In participants with high intrusion symptoms (n = 22), 1040 differentially expressed genes were identified, and 98% were upregulated. No differentially expressed genes were identified for the remaining two PTSD symptom clusters. Ten genes (C5orf24, RBAK, CREBZF, CD69, PMAIP1, AGL, ZNF644, ANKRD13C, ESCO1, and ZCCHC10) were upregulated in participants with PTSD and high intrusion symptoms at baseline and downregulated in participants with improved PTSD symptoms following treatment. Pathway analysis identified upregulated immune response systems and metabolic networks with a NF-kB hub, which were downregulated with symptom reduction. Molecular biomarkers implicated in intrusion symptoms and PTSD symptom improvement may inform the development of therapeutic targets for precise treatment of PTSD.
Collapse
Affiliation(s)
- Heather L Rusch
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Jeffrey Robinson
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sijung Yun
- Yotta Biomed, LLC, Bethesda, MD 20817, United States
| | - Nicole D Osier
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Chris R Brewin
- University College London, London WC1E 6BT, United Kingdom
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|