1
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Supakul S, Hatakeyama Y, Leventoux N, Itsuno M, Numata N, Hiramine H, Morimoto S, Iwata A, Maeda S, Okano H. Urine-derived cells from the aged donor for the 2D/3D modeling of neural cells via iPSCs. AGING BRAIN 2023; 4:100101. [PMID: 38045491 PMCID: PMC10689952 DOI: 10.1016/j.nbas.2023.100101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 12/05/2023] Open
Abstract
Human neural cell models derived from induced pluripotent stem cells (iPSCs) have been widely accepted to model various neurodegenerative diseases such as Alzheimer's disease (AD) in vitro. Although the most common sources of iPSCs are fibroblasts and peripheral blood mononuclear cells, the collection of these cells is invasive. To reduce the donor's burden, we propose the use of urine-derived cells (UDCs), which can be obtained non-invasively from a urine sample. However, the collection of UDCs from elderly donors suffering from age-related diseases such as AD has not been reported, and it is unknown whether these UDCs from the donor aged over 80 years old can be converted into iPSCs and differentiated into neural cells. In this study, we reported a case of using the UDCs from the urine sample of an 89-year-old AD patient, and the UDCs were successfully reprogrammed into iPSCs and differentiated into neural cells in four different ways: (i) the dual SMAD inhibition with small-molecules via the neural progenitor precursor stage, (ii) the rapid induction method using transient expression of Ngn2 and microRNAs without going through the neural progenitor stage, (iii) the cortical brain organoids for 3D culture, and (iv) the human astrocytes. The accumulation of phosphorylated Tau proteins, which is a pathological hallmark of AD, was examined in the neuronal models generated from the UDCs of the aged donor. The application of this cell source will broaden the target population for disease modeling using iPS technology.
Collapse
Affiliation(s)
- Sopak Supakul
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Yuki Hatakeyama
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Maika Itsuno
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Naoko Numata
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Hayato Hiramine
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, 160-8582 Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 173-0015 Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 173-0015 Tokyo, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| |
Collapse
|
4
|
Jiang Z, Shi C, Han H, Fu M, Zhu H, Han T, Fei J, Huang Y, Jin Z, He J, Wang Y, Chen X, Shen H. Autologous non-invasively derived stem cells mitochondria transfer shows therapeutic advantages in human embryo quality rescue. Biol Res 2023; 56:60. [PMID: 37978575 PMCID: PMC10657142 DOI: 10.1186/s40659-023-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The decline in the quantity and quality of mitochondria are closely associated with infertility, particularly in advanced maternal age. Transferring autologous mitochondria into the oocytes of infertile females represents an innovative and viable strategy for treating infertility, with no concerns regarding ethical considerations. As the donor cells of mitochondria, stem cells have biological advantages but research and evidence in this area are quite scarce. METHODS To screen out suitable human autologous ooplasmic mitochondrial donor cells, we performed comprehensive assessment of mitochondrial physiology, function and metabolic capacity on a varity of autologous adipose, marrow, and urine-derived mesenchymal stromal cells (ADSC, BMSC and USC) and ovarian germline granulosa cells (GC). Further, to explore the biosafety, effect and mechanism of stem cell-derived mitochondria transfer on human early embryo development, randomized in-vitro basic studies were performed in both of the young and aged oocytes from infertile females. RESULTS Compared with other types of mesenchymal stromal cells, USC demonstrated a non-fused spherical mitochondrial morphology and low oxidative stress status which resembled the oocyte stage. Moreover, USC mitochondrial content, activity and function were all higher than other cell types and less affected by age, and it also exhibited a biphasic metabolic pattern similar to the pre-implantation stage of embryonic development. After the biosafety identification of the USC mitochondrial genome, early embryos after USC mitochondrial transfer showed improvements in mitochondrial content, activity, and cytoplasmic Ca2+ levels. Further, aging embryos also showed improvements in embryonic morphological indicators, euploidy rates, and oxidative stress status. CONCLUSION Autologous non-invasively derived USC mitochondria transfer may be an effective strategy to improve embryonic development and metabolism, especially in infertile females with advanced age or repeated pregnancy failure. It provides evidence and possibility for the autologous treatment of infertile females without invasive and ethical concerns.
Collapse
Affiliation(s)
- Zhixin Jiang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Cheng Shi
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hongjing Han
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Han
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Yining Huang
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Zhiping Jin
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Jianan He
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, 102629, China
| | - Yanbin Wang
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| | - Xi Chen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
5
|
Nguyen L, Thewes L, Westerhoff M, Wruck W, Reichert AS, Berndt C, Adjaye J. JNK Signalling Regulates Self-Renewal of Proliferative Urine-Derived Renal Progenitor Cells via Inhibition of Ferroptosis. Cells 2023; 12:2197. [PMID: 37681928 PMCID: PMC10486975 DOI: 10.3390/cells12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
With a global increase in chronic kidney disease patients, alternatives to dialysis and organ transplantation are needed. Stem cell-based therapies could be one possibility to treat chronic kidney disease. Here, we used multipotent urine-derived renal progenitor cells (UdRPCs) to study nephrogenesis. UdRPCs treated with the JNK inhibitor-AEG3482 displayed decreased proliferation and downregulated transcription of cell cycle-associated genes as well as the kidney progenitor markers-SIX2, SALL1 and VCAM1. In addition, levels of activated SMAD2/3, which is associated with the maintenance of self-renewal in UdRPCs, were decreased. JNK inhibition resulted in less efficient oxidative phosphorylation and more lipid peroxidation via ferroptosis, an iron-dependent non-apoptotic cell death pathway linked to various forms of kidney disease. Our study is the first to describe the importance of JNK signalling as a link between maintenance of self-renewal and protection against ferroptosis in SIX2-positive renal progenitor cells.
Collapse
Affiliation(s)
- Lisa Nguyen
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Leonie Thewes
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - Michelle Westerhoff
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Wasco Wruck
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Carsten Berndt
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - James Adjaye
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
- EGA Institute for Women’s Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
6
|
Ishizuka T, Komaki H, Asahina Y, Nakamura H, Motohashi N, Takeshita E, Shimizu‐Motohashi Y, Ishiyama A, Yonee C, Maruyama S, Hida E, Aoki Y. Systemic administration of the antisense oligonucleotide
NS
‐089/
NCNP
‐02 for skipping of exon 44 in patients with Duchenne muscular dystrophy: Study protocol for a phase I/
II
clinical trial. Neuropsychopharmacol Rep 2023. [DOI: 10.1002/npr2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
- Takami Ishizuka
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Hirofumi Komaki
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yasuko Asahina
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Harumasa Nakamura
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Norio Motohashi
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Eri Takeshita
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yuko Shimizu‐Motohashi
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Akihiko Ishiyama
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Chihiro Yonee
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Shinsuke Maruyama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Graduate School of Medicine Osaka University Osaka Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| |
Collapse
|
7
|
Bassil K, Horstkötter D. Ethical Implications in Making Use of Human Cerebral Organoids for Investigating Stress-Related Mechanisms and Disorders. Camb Q Healthc Ethics 2023; 32:1-13. [PMID: 36799029 DOI: 10.1017/s0963180123000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The generation of three-dimensional cerebral organoids from human-induced pluripotent stem cells (hPSC) has facilitated the investigation of mechanisms underlying several neuropsychiatric disorders, including stress-related disorders, namely major depressive disorder and post-traumatic stress disorder. Generating hPSC-derived neurons, cerebral organoids, and even assembloids (or multi-organoid complexes) can facilitate research into biomarkers for stress susceptibility or resilience and may even bring about advances in personalized medicine and biomarker research for stress-related psychiatric disorders. Nevertheless, cerebral organoid research does not come without its own set of ethical considerations. With increased complexity and resemblance to in vivo conditions, discussions of increased moral status for these models are ongoing, including questions about sentience, consciousness, moral status, donor protection, and chimeras. There are, however, unique ethical considerations that arise and are worth looking into in the context of research into stress and stress-related disorders using cerebral organoids. This paper provides stress research-specific ethical considerations in the context of cerebral organoid generation and use for research purposes. The use of stress research as a case study here can help inform other practices of in vitro studies using brain models with high ethical considerations.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Dorothee Horstkötter
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
9
|
Wang J, Chen S, Pan C, Li G, Tang Z. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming. Front Bioeng Biotechnol 2022; 10:799152. [PMID: 35875485 PMCID: PMC9301571 DOI: 10.3389/fbioe.2022.799152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of regenerative capacity of neurons leads to poor prognoses for some neurological disorders. The use of small molecules to directly reprogram somatic cells into neurons provides a new therapeutic strategy for neurological diseases. In this review, the mechanisms of action of different small molecules, the approaches to screening small molecule cocktails, and the methods employed to detect their reprogramming efficiency are discussed, and the studies, focusing on neuronal reprogramming using small molecules in neurological disease models, are collected. Future research efforts are needed to investigate the in vivo mechanisms of small molecule-mediated neuronal reprogramming under pathophysiological states, optimize screening cocktails and dosing regimens, and identify safe and effective delivery routes to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Gaigai Li
- *Correspondence: Gaigai Li, ; Zhouping Tang,
| | | |
Collapse
|
10
|
Talmon M, Massara E, Pruonto G, Quaregna M, Boccafoschi F, Riva B, Fresu LG. Characterization of a functional Ca2+ toolkit in urine-derived stem cells and derived skeletal muscle cells. Cell Calcium 2022; 103:102548. [DOI: 10.1016/j.ceca.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
|
11
|
Huang YZ, He T, Cui J, Jiang YL, Zeng JF, Zhang WQ, Xie HQ. Urine-Derived Stem Cells for Regenerative Medicine: Basic Biology, Applications, and Challenges. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:978-994. [PMID: 35049395 DOI: 10.1089/ten.teb.2021.0142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regenerative medicine based on stem cell research has the potential to provide advanced health care for human beings. Recent studies demonstrate that stem cells in human urine can serve as an excellent source of graft cells for regenerative therapy, mainly due to simple, low-cost, and noninvasive cell isolation. These cells, termed human urine-derived stem cells (USCs), are highly expandable and can differentiate into various cell lineages. They share many biological properties with mesenchymal stem cells, such as potent paracrine effects and immunomodulation ability. The advantage of USCs has motivated researchers to explore their applications in regenerative medicine, including genitourinary regeneration, musculoskeletal repair, skin wound healing, and disease treatment. Although USCs have showed many positive outcomes in preclinical studies, and although the possible applications of USCs for animal therapy have been reported, many issues need to be addressed before clinical translation. This article provides a comprehensive review of USC biology and recent advances in their application for tissue regeneration. Challenges in the clinical translation of USC-based therapy are also discussed. Impact statement Recently, stem cells isolated from urine, referred to as urine-derived stem cells (USCs), have gained much interest in the field of regenerative medicine. Many advantages of human USCs have been found for cell-based therapy: (i) the cell isolation procedure is simple and low cost; (ii) they have remarkable proliferation ability, multidifferentiation potential, and paracrine effects; and (iii) they facilitate tissue regeneration in many animal models. With the hope to facilitate the development of USC-based therapy, we describe the current understanding of USC biology, summarize recent advances in their applications, and discuss future challenges in clinical translation.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Breast Surgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jun-Feng Zeng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
12
|
Falzarano MS, Rossi R, Grilli A, Fang M, Osman H, Sabatelli P, Antoniel M, Lu Z, Li W, Selvatici R, Al-Khalili C, Gualandi F, Bicciato S, Torelli S, Ferlini A. Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases. Front Physiol 2021; 12:716471. [PMID: 34744760 PMCID: PMC8565768 DOI: 10.3389/fphys.2021.716471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders (http://www.musclegenetable.fr/) whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mingyan Fang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Hana Osman
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Zhiyuan Lu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Wenyan Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Rita Selvatici
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Cristina Al-Khalili
- Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesca Gualandi
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Alessandra Ferlini
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
13
|
Shi T, Cheung M. Urine-derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci 2021; 11:85. [PMID: 33985584 PMCID: PMC8117626 DOI: 10.1186/s13578-021-00594-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines. Among the different somatic cell types, urine-derived stem cells (USCs) are an ideal cell source for iPSC and iNSC reprogramming, as USCs are highly proliferative, multipotent, epithelial in nature, and easier to reprogram than skin fibroblasts. In addition, the use of USCs represents a simple, low-cost and non-invasive procedure for generating iPSCs/iNSCs. This review describes the cellular and molecular properties of USCs, their differentiation potency, different reprogramming methods for the generation of iPSCs/iNSCs, and their potential applications in modeling neurological diseases.
Collapse
Affiliation(s)
- Tianyuan Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Zidan AA, Perkins GB, Al-Hawwas M, Elhossiny A, Yang J, Bobrovskaya L, Mourad GM, Zhou XF, Hurtado PR. Urine stem cells are equipped to provide B cell survival signals. STEM CELLS (DAYTON, OHIO) 2021; 39:803-818. [PMID: 33554422 PMCID: PMC8248326 DOI: 10.1002/stem.3351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
The interplay between mesenchymal stem cells (MSCs) and immune cells has been studied for MSCs isolated from different tissues. However, the immunomodulatory capacity of urine stem cells (USCs) has not been adequately researched. The present study reports on the effect of USCs on peripheral blood lymphocytes. USCs were isolated and characterized before coculture with resting and with anti‐CD3/CD28 bead stimulated lymphocytes. Similarly to bone marrow mesenchymal stem cells (BM‐MSCs), USCs inhibited the proliferation of activated T lymphocytes and induced their apoptosis. However, they also induced strong activation, proliferation, and cytokine and antibody production by B lymphocytes. Molecular phenotype and supernatant analysis revealed that USCs secrete a range of cytokines and effector molecules, known to play a central role in B cell biology. These included B cell‐activating factor (BAFF), interleukin 6 (IL‐6) and CD40L. These findings raise the possibility of an unrecognized active role for kidney stem cells in modulating local immune cells.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Griffith B Perkins
- Department of Molecular & Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mohammed Al-Hawwas
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ahmed Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianyu Yang
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Pharmacy, Kunming Medical University, Kunming, People's Republic of China
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ghada M Mourad
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Plinio R Hurtado
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Binda A, Murano C, Rivolta I. Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer's Disease: A State-of-the-Art (2017-2020). Int J Nanomedicine 2020; 15:6113-6135. [PMID: 32884267 PMCID: PMC7434571 DOI: 10.2147/ijn.s231480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The field of nanomedicine is constantly expanding. Since the first work dated in 1999, almost 28 thousand articles have been published, and more and more are published every year: just think that only in the last five years 20,855 have come out (source PUBMED) including original research and reviews. The goal of this review is to present the current knowledge about nanomedicine in Alzheimer’s disease, a widespread neurodegenerative disorder in the over 60 population that deeply affects memory and cognition. Thus, after a brief introduction on the pathology and on the state-of-the-art research for NPs passing the BBB, special attention is placed to new targets that can enter the interest of nanoparticle designers and to new promising therapies. The authors performed a literature review limited to the last three years (2017–2020) of available studies with the intention to present only novel formulations or approaches where at least in vitro studies have been performed. This choice was made because, while limiting the sector to nanotechnology applied to Alzheimer, an organic census of all the relevant news is difficult to obtain.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy
| |
Collapse
|
16
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells 2020; 9:cells9030573. [PMID: 32121221 PMCID: PMC7140531 DOI: 10.3390/cells9030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.
Collapse
|